JPH06183897A - Method for growing silicon carbide single crystal - Google Patents

Method for growing silicon carbide single crystal

Info

Publication number
JPH06183897A
JPH06183897A JP35468192A JP35468192A JPH06183897A JP H06183897 A JPH06183897 A JP H06183897A JP 35468192 A JP35468192 A JP 35468192A JP 35468192 A JP35468192 A JP 35468192A JP H06183897 A JPH06183897 A JP H06183897A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
silicon carbide
crucible
sublimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35468192A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maeda
泰宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP35468192A priority Critical patent/JPH06183897A/en
Publication of JPH06183897A publication Critical patent/JPH06183897A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a sublimation method for the growth of a silicon carbide single crystal free from impurity contamination, crystal defects, etc., keeping the polymorphism of the seed crystal and having high quality. CONSTITUTION:A crucible 1 is heated with a heater 5 to apply a prescribed temperature gradient to the crucible. When the part holding the raw material powder 2 is heated to a sublimable temperature range and the part holding a seed crystal 4 is heated to a temperature range to enable the growth of crystal, the crucible 1 is shifted with an operation shaft 9 to expose the seed crystal 4 to a sublimable temperature atmosphere. The state is maintained for a prescribed period to remove the surface layer of the seed crystal 4 by sublimation. The cleaned seed crystal 4 is transferred to the temperature range to enable the crystal growth and the crystal growth is started. Since a single crystal is grown on the cleaned surface of the seed crystal 4, the polymorphism of the seed crystal 4 is succeeded as it is to the grown crystal to obtain a silicon carbide single crystal free from impurity contamination, crystal defects, etc., and having stoichiometrical uniformity and high quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、品質安定性に優れた炭
化ケイ素単結晶を高い歩留りで製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide single crystal excellent in quality stability with a high yield.

【0002】[0002]

【従来の技術】炭化ケイ素単結晶は、炭化ケイ素粉末を
原料として使用する昇華法で通常作製されている。昇華
法では、炭化ケイ素原料粉末を種結晶と共にルツボに収
容し、不活性雰囲気中で2000〜2400℃に加熱す
る。加熱によって炭化ケイ素原料粉末から昇華した蒸気
は、成長温度域に維持された種結晶に接触し、結晶方位
を揃えた単結晶として種結晶の上に成長する。ルツボに
は、黒鉛製ルツボが従来から使用されている。原料粉末
は20〜30g程度が秤量されて黒鉛製ルツボの下部又
は上部に入れられ、反対側に種結晶が配置される。たと
えば、図1に示すようにルツボ1の上部に炭化ケイ素原
料粉末2を入れる場合、ルツボ1の内部を多孔質の黒鉛
板3で仕切り、ルツボ1の底部に種結晶4を配置する。
また、ルツボ1の下部に炭化ケイ素原料粉末2を入れる
場合には、ルツボ1の上蓋に種結晶4を張り付ける。
2. Description of the Related Art Silicon carbide single crystals are usually produced by a sublimation method using silicon carbide powder as a raw material. In the sublimation method, silicon carbide raw material powder is placed in a crucible together with a seed crystal and heated to 2000 to 2400 ° C. in an inert atmosphere. The vapor sublimated from the silicon carbide raw material powder by heating comes into contact with the seed crystal maintained in the growth temperature range and grows on the seed crystal as a single crystal having a uniform crystal orientation. A graphite crucible has been conventionally used for the crucible. About 20 to 30 g of the raw material powder is weighed and put in the lower part or the upper part of the graphite crucible, and the seed crystal is arranged on the opposite side. For example, when the silicon carbide raw material powder 2 is put in the upper part of the crucible 1 as shown in FIG. 1, the inside of the crucible 1 is partitioned by a porous graphite plate 3, and the seed crystal 4 is arranged at the bottom of the crucible 1.
Further, when the silicon carbide raw material powder 2 is put in the lower part of the crucible 1, the seed crystal 4 is attached to the upper lid of the crucible 1.

【0003】ルツボ1の周囲には、所定の温度勾配でル
ツボ1内を加熱することができるヒータ5が配置されて
いる。ヒータ5としては、抵抗加熱方式,高周波誘導加
熱方式等が採用されている。この条件下でルツボ1を圧
力760トール以下の不活性ガス雰囲気中にセットし、
種結晶4側が原料粉末2側よりも低くなる温度勾配をつ
け全体を2000〜2400℃の高温雰囲気に維持す
る。加熱によって原料粉末2が昇華し、Si,Si2
C,SiC2 ,SiC等の蒸気が種結晶4に降り注ぐ。
これらの蒸気から約0.5〜2mm/時の成長速度で、
炭化ケイ素単結晶が種結晶4の上に成長する。
A heater 5 that can heat the inside of the crucible 1 with a predetermined temperature gradient is arranged around the crucible 1. As the heater 5, a resistance heating method, a high frequency induction heating method, or the like is adopted. Under this condition, set the crucible 1 in an inert gas atmosphere with a pressure of 760 Torr or less,
A temperature gradient is applied so that the seed crystal 4 side is lower than the raw material powder 2 side, and the whole is maintained in a high temperature atmosphere of 2000 to 2400 ° C. The raw material powder 2 is sublimated by heating, and Si, Si 2
Vapors of C, SiC 2 , SiC, etc. fall onto the seed crystal 4.
At a growth rate of about 0.5-2 mm / hour from these vapors,
A silicon carbide single crystal grows on the seed crystal 4.

【0004】[0004]

【発明が解決しようとする課題】ルツボ1に収容された
炭化ケイ素原料粉末2の昇華反応は、通常おかれる圧力
下では、一定の決まった温度により均一な同じ成分の昇
華ガスを発生するものではない。ルツボ1の加熱が開始
され、原料粉末2の昇華温度まで昇温する過程で個々の
ガス成分が優先的に発生する。たとえば、昇華初期には
Siが過剰に昇華ガスとなる。そのため、結晶成長に不
適当な昇華ガスが種結晶4の表面に降り注ぎ、その後の
単結晶成長過程に悪影響を及ぼす。また、原料粉末2自
体の汚れ、ルツボ1内面の汚れ等に起因して、昇温の過
程で種々の不純物が発生する。不純物ガスも同様に種結
晶4に降り注ぎ、種結晶4の表面を汚染する。
The sublimation reaction of the silicon carbide raw material powder 2 contained in the crucible 1 does not generate a uniform sublimation gas of the same component at a fixed temperature under a pressure which is usually applied. Absent. When the heating of the crucible 1 is started and the temperature of the raw material powder 2 is raised to the sublimation temperature, individual gas components are preferentially generated. For example, Si becomes an excessive sublimation gas in the initial stage of sublimation. Therefore, a sublimation gas unsuitable for crystal growth is poured onto the surface of the seed crystal 4 and adversely affects the subsequent single crystal growth process. Further, various impurities are generated in the process of temperature rise due to the contamination of the raw material powder 2 itself, the contamination of the inner surface of the crucible 1, and the like. The impurity gas is likewise poured onto the seed crystal 4 to contaminate the surface of the seed crystal 4.

【0005】昇華ガスの成分変動や不純物ガスによる悪
影響は、結晶成長開始直後に現れ易い。すなわち、結晶
成長開始直後の結晶中に多くの不純物や結晶欠陥が取り
込まれ易く、また種結晶4と異なる多形性をもつ単結晶
を成長させる原因が生じる。その結果、得られた単結晶
は、品質が安定化せず、製品としての歩留りが低いもの
となる。本発明は、このような問題を解消すべく案出さ
れたものであり、単結晶の成長開始に先立って種結晶の
表面一部を昇華除去することにより、結晶成長開始直後
に現れ易い昇華ガスの成分変動や不純物ガスによる悪影
響を排除し、一定した品質の炭化ケイ素単結晶を成長さ
せることを目的とする。
Fluctuations in the components of the sublimation gas and adverse effects of the impurity gas are likely to appear immediately after the start of crystal growth. That is, many impurities and crystal defects are likely to be incorporated into the crystal immediately after the start of crystal growth, and a cause for growing a single crystal having a polymorphism different from that of the seed crystal 4 arises. As a result, the quality of the obtained single crystal is not stabilized, and the yield as a product is low. The present invention has been devised to solve such a problem, and by sublimating and removing a part of the surface of the seed crystal prior to the start of growth of the single crystal, a sublimation gas that is likely to appear immediately after the start of crystal growth. The purpose of the present invention is to grow a silicon carbide single crystal having a constant quality by eliminating the adverse effects of the component fluctuations and the impurity gas.

【0006】[0006]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶成長方法は、その目的を達成するため、炭化ケイ素原
料粉末を昇華させ種結晶の上に単結晶として成長させる
際、種結晶配置部を昇華温度域にさらし、前記種結晶の
表面層を昇華除去し、次いで前記種結晶配置部を成長温
度域に保持し、前記炭化ケイ素原料粉末から発生した昇
華ガスを前記種結晶に降り注ぐことを特徴とする。昇華
法では、ルツボ内の原料部分が昇華温度に、種結晶部分
がこれより低い成長温度に維持されるように、ヒータの
温度分布が設定されている。そこで、本発明において
は、この温度分布を利用してルツボを上下動させること
により、種結晶配置部の温度を変化させる。また、固定
されたルツボを使用して昇華法を実施する場合、種結晶
のみを上下動させる。
In order to achieve the object, the method for growing a silicon carbide single crystal according to the present invention, in order to achieve the object, when a silicon carbide raw material powder is sublimated and grown as a single crystal on a seed crystal, a seed crystal arranging portion is used. Is exposed to a sublimation temperature range to remove the surface layer of the seed crystal by sublimation, and then the seed crystal arrangement part is held in a growth temperature range, and a sublimation gas generated from the silicon carbide raw material powder is poured into the seed crystal. Characterize. In the sublimation method, the temperature distribution of the heater is set so that the raw material portion in the crucible is maintained at the sublimation temperature and the seed crystal portion is maintained at the lower growth temperature. Therefore, in the present invention, the temperature of the seed crystal arrangement portion is changed by moving the crucible up and down utilizing this temperature distribution. Moreover, when carrying out the sublimation method using a fixed crucible, only the seed crystal is moved up and down.

【0007】以下、図面を参照しながら本発明を具体的
に説明する。黒鉛製のルツボ1及びヒータ5は、図1に
示すように断熱ライニングされたチャンバー6に収容さ
れる。チャンバー6は、不活性ガス源に接続された給気
管7及び真空ポンプに接続された排気管8を備えてお
り、減圧排気及び不活性ガス導入によって所定の減圧不
活性雰囲気に維持される。ルツボ1内は多孔質黒鉛板3
で仕切られており、その上部に炭化ケイ素原料粉末2が
収容される。他方、黒鉛板3より下方のルツボ1内に、
種結晶4が配置される。図1の例では、ルツボ1全体が
操作軸9に接続されており、操作軸9を介してルツボ1
が上下動する。
The present invention will be described in detail below with reference to the drawings. The graphite crucible 1 and the heater 5 are housed in a chamber 6 that is lined with heat insulation, as shown in FIG. The chamber 6 is provided with an air supply pipe 7 connected to an inert gas source and an exhaust pipe 8 connected to a vacuum pump, and is maintained in a predetermined reduced pressure inert atmosphere by reducing pressure exhaust and introducing an inert gas. Porous graphite plate 3 inside crucible 1
It is partitioned by, and the silicon carbide raw material powder 2 is contained in the upper part thereof. On the other hand, in the crucible 1 below the graphite plate 3,
Seed crystal 4 is arranged. In the example of FIG. 1, the entire crucible 1 is connected to the operating shaft 9, and the crucible 1 is connected via the operating shaft 9.
Moves up and down.

【0008】ヒータ5に電源が投入され、ルツボ1が所
定の温度に加熱される。原料配置部が昇華可能温度に、
種結晶配置部が結晶成長可能温度となる一定の温度勾配
をもつ状態までルツボ1内が加熱されたとき、操作軸9
によってルツボ1を所定距離だけ上方に移動させる。ル
ツボ1の上昇により、原料粉末配置部が昇華可能温度域
にあることは勿論、図2に示すように種結晶配置部も昇
華可能温度域に入る。ルツボ1の上昇状態を維持する
と、種結晶4の表面層が昇華によって除去される。ルツ
ボ1を上昇位置に維持する時間と種結晶4の表面層除去
との関係は、種結晶4の表面の汚染状態及び必要とされ
る表面状態に応じ、経験的に定まる。本発明者等の研究
によるとき、炭化ケイ素結晶の昇華速度、すなわち23
50〜2400℃の温度域で表面層が昇華除去される割
合は、時間当り0.5〜1.5mmであった。したがっ
て、0.1mmの表面層を昇華除去するためには、種結
晶配置部を2400℃に約4分間加熱保持することが必
要になる。
The heater 5 is turned on to heat the crucible 1 to a predetermined temperature. The temperature of the raw material placement section is
When the inside of the crucible 1 is heated to a state in which the seed crystal arrangement part has a constant temperature gradient at which the crystal can grow, the operating shaft 9
The crucible 1 is moved upward by a predetermined distance by. Due to the rise of the crucible 1, the raw material powder arrangement portion is in the sublimable temperature range, and the seed crystal arrangement portion is also in the sublimation temperature area as shown in FIG. When the crucible 1 is maintained in the raised state, the surface layer of the seed crystal 4 is removed by sublimation. The relationship between the time for maintaining the crucible 1 in the raised position and the removal of the surface layer of the seed crystal 4 is empirically determined depending on the contamination state of the surface of the seed crystal 4 and the required surface state. According to the study by the present inventors, the sublimation rate of silicon carbide crystals, that is, 23
The rate of sublimation removal of the surface layer in the temperature range of 50 to 2400 ° C. was 0.5 to 1.5 mm per hour. Therefore, in order to remove the surface layer of 0.1 mm by sublimation, it is necessary to heat and hold the seed crystal arranging portion at 2400 ° C. for about 4 minutes.

【0009】種結晶4の表面層が昇華除去された後、操
作軸9を介してルツボ1を所定の成長位置まで下降させ
る。この位置では、原料粉末2が昇華温度域にあり、種
結晶4が結晶成長温度域にある。したがって、清浄化さ
れた種結晶4の表面に原料粉末2から発生した昇華ガス
が降り注ぎ、炭化ケイ素単結晶の成長が開始する。得ら
れた炭化ケイ素単結晶は、原料粉末2から発生した昇華
ガスが成分的に定常化された後で、しかも不純物汚染の
ない種結晶4の表面上で成長したものである。したがっ
て、種結晶の多形性をそのまま引き継ぎ、化学量論的に
も安定した高品質の単結晶となる。
After the surface layer of the seed crystal 4 is removed by sublimation, the crucible 1 is lowered to a predetermined growth position via the operating shaft 9. At this position, the raw material powder 2 is in the sublimation temperature range and the seed crystal 4 is in the crystal growth temperature range. Therefore, the sublimation gas generated from the raw material powder 2 is poured onto the surface of the cleaned seed crystal 4, and the growth of the silicon carbide single crystal starts. The obtained silicon carbide single crystal was grown on the surface of the seed crystal 4 after the sublimation gas generated from the raw material powder 2 was stabilized in terms of its constituents, and which was free from impurity contamination. Therefore, the polymorphism of the seed crystal is inherited as it is, and a high-quality single crystal that is stoichiometrically stable is obtained.

【0010】結晶成長に先立つ種結晶4表面の昇華除去
は、ルツボ1全体ではなく種結晶4のみを上昇させるこ
とによっても行うことができる。この場合、図3に示す
ように、ルツボ1を固定し、種結晶4を取り付けた台座
10を操作軸9に接続する。ルツボ1内の温度勾配が上
部の原料粉末配置部が昇華可能温度域に、下部の種結晶
は一部が成長可能温度域になったとき、操作軸9を介し
て種結晶4を上昇させる。種結晶4の表面を昇華可能温
度域に所定時間さらすことにより、種結晶4の表面層を
昇華除去する。次いで、操作軸9によって種結晶4を下
降させ、結晶成長温度位置に設定する。この位置で、清
浄化された種結晶4の表面上で結晶成長が開始する。得
られた炭化ケイ素単結晶は、図1の場合と同様に種結晶
4の多形性をそのまま引き継ぎ、高品質の単結晶とな
る。
Sublimation removal of the seed crystal 4 surface prior to crystal growth can also be performed by raising only the seed crystal 4 instead of raising the entire crucible 1. In this case, as shown in FIG. 3, the crucible 1 is fixed, and the pedestal 10 to which the seed crystal 4 is attached is connected to the operation shaft 9. When the temperature gradient inside the crucible 1 is in the sublimable temperature range in the upper raw material powder arrangement part and in the lower seed crystal part in the growth possible temperature range, the seed crystal 4 is raised via the operating shaft 9. By exposing the surface of the seed crystal 4 to the sublimable temperature range for a predetermined time, the surface layer of the seed crystal 4 is removed by sublimation. Next, the seed crystal 4 is lowered by the operation shaft 9 and set at the crystal growth temperature position. At this position, crystal growth starts on the surface of the cleaned seed crystal 4. The obtained silicon carbide single crystal inherits the polymorphism of the seed crystal 4 as it is, as in the case of FIG. 1, and becomes a high quality single crystal.

【0011】[0011]

【作用】炭化ケイ素の成長過程では、結晶成長に先立っ
て表面層が昇華除去された種結晶4の上に、原料粉末2
から発生した昇華ガスが降り注ぐ。そのため、昇華ガス
が接触する種結晶4の表面は、不純物によって汚染され
ていない清浄な状態になっている。また、特に昇華初期
に変動し易い昇華ガスの成分も、この時点では定常化さ
れている。すなわち、種結晶4の表面状態が結晶成長に
好適な状態に維持されると共に、昇華ガスが成分変動の
ない定常状態になっていることから、高品質の炭化ケイ
素単結晶が種結晶4の上に成長する。
In the process of growing silicon carbide, the raw material powder 2 is placed on the seed crystal 4 whose surface layer has been sublimated and removed prior to crystal growth.
Sublimation gas generated from pours down. Therefore, the surface of the seed crystal 4 in contact with the sublimation gas is in a clean state not contaminated with impurities. The components of the sublimation gas, which tend to fluctuate particularly in the initial stage of sublimation, are also stabilized at this point. That is, since the surface state of the seed crystal 4 is maintained in a state suitable for crystal growth and the sublimation gas is in a steady state with no component fluctuation, a high-quality silicon carbide single crystal is formed on the seed crystal 4. Grow to.

【0012】[0012]

【実施例】黒鉛製ルツボ1の下蓋の台座にC軸方向を成
長面とする4Hの多形性をもつ種結晶4を載せ、ルツボ
1の上部に多孔質黒鉛板3を装着して炭化ケイ素原料粉
末2を収容した。ルツボ1を操作軸9に接続し、操作軸
9を移動させてルツボ1をヒータ5内の最下位置にセッ
トした。チャンバー6内を排気し、不活性ガスの導入に
よって、チャンバー6内を10トールの減圧不活性雰囲
気に維持した。次いで、ヒータ5に通電して、加熱を開
始した。ルツボ1の上部が2400℃の昇華温度に達し
たとき、種結晶4が昇華可能温度域に入るように、操作
軸9によりルツボ1を上昇させた。この上昇位置にルツ
ボ1を8分間保持し、種結晶4の表面層を厚み0.2m
mだけ昇華除去した。次いで、種結晶4が結晶成長温度
位置となるように、ルツボ1を下降させた。このときか
ら、結晶成長が開始された。結晶成長を3時間継続した
後で、ヒータ5を切り、結晶成長を終了した。
EXAMPLE A seed crystal 4 having a polymorphism of 4H having a growth surface in the C-axis direction was placed on the pedestal of the lower lid of the graphite crucible 1, and a porous graphite plate 3 was attached to the upper part of the crucible 1 for carbonization. Silicon raw material powder 2 was contained. The crucible 1 was connected to the operation shaft 9, and the operation shaft 9 was moved to set the crucible 1 at the lowest position in the heater 5. The chamber 6 was evacuated and an inert gas was introduced to maintain the chamber 6 in a reduced pressure inert atmosphere of 10 Torr. Then, the heater 5 was energized to start heating. When the upper part of the crucible 1 reached a sublimation temperature of 2400 ° C., the crucible 1 was raised by the operating shaft 9 so that the seed crystal 4 entered the sublimable temperature range. The crucible 1 is held at this elevated position for 8 minutes, and the surface layer of the seed crystal 4 has a thickness of 0.2 m.
Only m was removed by sublimation. Next, the crucible 1 was lowered so that the seed crystal 4 was at the crystal growth temperature position. From this time, crystal growth started. After the crystal growth was continued for 3 hours, the heater 5 was turned off and the crystal growth was completed.

【0013】得られた炭化ケイ素単結晶は、直径20m
m及び高さ4mmのサイズをもっていた。この炭化ケイ
素単結晶を高さ方向に切断し、切断面をラッピングして
試験片とした。種結晶4の近傍で成長した単結晶の表面
及び内部を顕微鏡観察したところ、従来の単結晶にみら
れた不純物粒子の混入や結晶欠陥,結晶構造に寄与しな
い昇華ガス成分の混入は何ら検出されなかった。また、
種結晶4近傍の単結晶から得られた試験片について、吸
収波長を分光光度測定器により測定した結果、種結晶4
と同じ多形性の4Hであり、種結晶4の結晶構造を継承
していることが判った。C軸面を成長面とし、6Hの多
形性をもつ種結晶4を使用して、同様に炭化ケイ素単結
晶を成長させた。この場合にも、得られた炭化ケイ素単
結晶は、種結晶と同じ6Hであり、種結晶4の結晶構造
を継承していた。
The obtained silicon carbide single crystal has a diameter of 20 m.
It had a size of m and a height of 4 mm. This silicon carbide single crystal was cut in the height direction and the cut surface was lapped to obtain a test piece. Microscopic observation of the surface and the inside of the single crystal grown in the vicinity of the seed crystal 4 revealed no contamination of impurity particles, crystal defects, or sublimation gas components that did not contribute to the crystal structure, which were observed in conventional single crystals. There wasn't. Also,
The absorption wavelength of the test piece obtained from the single crystal near the seed crystal 4 was measured by a spectrophotometer, and the result was that the seed crystal 4
It was found to be 4H having the same polymorphism as that of, and inherited the crystal structure of seed crystal 4. A seed crystal 4 having a polymorphism of 6H was used as a growth surface, and a silicon carbide single crystal was similarly grown. In this case as well, the obtained silicon carbide single crystal had the same 6H as the seed crystal, and inherited the crystal structure of seed crystal 4.

【0014】[0014]

【発明の効果】以上に説明したように、本発明において
は、結晶成長に先立って種結晶の表面層を昇華除去する
ことによって清浄化し、清浄化された種結晶表面に単結
晶を成長させている。そのため、不純物の付着がない清
浄な種結晶表面で結晶成長が開始され、種結晶の多形性
がそのまま継承される。また、結晶成長に消費される昇
華ガスも成分的に定常化されたものが使用され、化学量
論的に一定した単結晶が成長する。このようにして得ら
れた炭化ケイ素単結晶は、不純物やそれに起因する結晶
欠陥を含まず、高品質の単結晶となる。また、種結晶の
近傍で成長した単結晶も不純物混入,結晶欠陥等がない
ことから製品として使用されるため、高い歩留りで高品
質の炭化ケイ素単結晶を製造することが可能となる。
As described above, in the present invention, the surface layer of the seed crystal is cleaned by sublimation removal prior to crystal growth, and a single crystal is grown on the cleaned seed crystal surface. There is. Therefore, crystal growth is started on a clean seed crystal surface free of impurities and the polymorphism of the seed crystal is inherited as it is. Further, the sublimation gas consumed for crystal growth is also a componentally stationary one, and a single crystal that is stoichiometrically constant grows. The silicon carbide single crystal thus obtained does not contain impurities or crystal defects due to it, and becomes a high quality single crystal. Further, since the single crystal grown in the vicinity of the seed crystal is also used as a product because it does not have impurities and crystal defects, it is possible to manufacture a high-quality silicon carbide single crystal with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った炭化ケイ素単結晶製造装置FIG. 1 is an apparatus for producing a silicon carbide single crystal according to the present invention.

【図2】 同装置におけるヒータ内の温度分布[Fig. 2] Temperature distribution in a heater in the same apparatus

【図3】 種結晶のみを上下動させる炭化ケイ素単結晶
製造装置
FIG. 3 is a silicon carbide single crystal manufacturing apparatus that vertically moves only a seed crystal.

【符号の説明】[Explanation of symbols]

1:ルツボ 2:原料粉末 3:多孔質の黒鉛板
4:種結晶 5:ヒータ 6:チャンバー
7:給気管 8:排気管 9:操作軸 10:台
1: Crucible 2: Raw material powder 3: Porous graphite plate
4: Seed crystal 5: Heater 6: Chamber
7: Air supply pipe 8: Exhaust pipe 9: Operation axis 10: Pedestal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素原料粉末を昇華させ種結晶の
上に単結晶として成長させる際、種結晶配置部を昇華温
度域にさらし、前記種結晶の表面層を昇華除去し、次い
で前記種結晶配置部を成長温度域に保持し、前記炭化ケ
イ素原料粉末から発生した昇華ガスを前記種結晶に降り
注ぐことを特徴とする炭化ケイ素単結晶の成長方法。
1. When sublimating a silicon carbide raw material powder and growing it as a single crystal on a seed crystal, the seed crystal arrangement part is exposed to a sublimation temperature range to remove the surface layer of the seed crystal by sublimation, and then the seed crystal. A method for growing a silicon carbide single crystal, characterized in that the arrangement part is maintained in a growth temperature range, and sublimation gas generated from the silicon carbide raw material powder is poured onto the seed crystal.
【請求項2】 請求項1記載の種結晶配置部の温度変化
は、炭化ケイ素原料粉末及び種結晶を収容したルツボ全
体或いは前記種結晶を上下動させることにより行う炭化
ケイ素単結晶の成長方法。
2. A method for growing a silicon carbide single crystal, wherein the temperature change of the seed crystal arranging portion according to claim 1 is performed by vertically moving the entire crucible containing the silicon carbide raw material powder and the seed crystal or the seed crystal.
JP35468192A 1992-12-16 1992-12-16 Method for growing silicon carbide single crystal Withdrawn JPH06183897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35468192A JPH06183897A (en) 1992-12-16 1992-12-16 Method for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35468192A JPH06183897A (en) 1992-12-16 1992-12-16 Method for growing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH06183897A true JPH06183897A (en) 1994-07-05

Family

ID=18439190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35468192A Withdrawn JPH06183897A (en) 1992-12-16 1992-12-16 Method for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH06183897A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119792A (en) * 1994-10-21 1996-05-14 Sumitomo Electric Ind Ltd Determination of crystallization rate in sublimation method, purification of crystal and method for growing single crystal
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2006027976A (en) * 2004-07-20 2006-02-02 Univ Waseda Method for producing nitride single crystal and producing apparatus therefor
US7678195B2 (en) * 2005-04-07 2010-03-16 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals
CN102925967A (en) * 2011-08-10 2013-02-13 李汶军 Method for growing silicon carbide mono-crystals through multi-crucible physical vapor transport technology, and device thereof
CN108396375A (en) * 2018-03-29 2018-08-14 苏州奥趋光电技术有限公司 A kind of crucible device of isoepitaxial growth aluminum-nitride single crystal
WO2017209376A3 (en) * 2016-05-30 2018-09-07 주식회사 사파이어테크놀로지 Growth apparatus for silicon carbide single crystal ingot, and growth method therefor
CN114108096A (en) * 2021-11-30 2022-03-01 江苏集芯半导体硅材料研究院有限公司 Silicon carbide crystal growing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119792A (en) * 1994-10-21 1996-05-14 Sumitomo Electric Ind Ltd Determination of crystallization rate in sublimation method, purification of crystal and method for growing single crystal
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2006027976A (en) * 2004-07-20 2006-02-02 Univ Waseda Method for producing nitride single crystal and producing apparatus therefor
JP4670002B2 (en) * 2004-07-20 2011-04-13 学校法人早稲田大学 Method for producing nitride single crystal
US7678195B2 (en) * 2005-04-07 2010-03-16 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals
CN102925967A (en) * 2011-08-10 2013-02-13 李汶军 Method for growing silicon carbide mono-crystals through multi-crucible physical vapor transport technology, and device thereof
WO2017209376A3 (en) * 2016-05-30 2018-09-07 주식회사 사파이어테크놀로지 Growth apparatus for silicon carbide single crystal ingot, and growth method therefor
CN108396375A (en) * 2018-03-29 2018-08-14 苏州奥趋光电技术有限公司 A kind of crucible device of isoepitaxial growth aluminum-nitride single crystal
CN114108096A (en) * 2021-11-30 2022-03-01 江苏集芯半导体硅材料研究院有限公司 Silicon carbide crystal growing device

Similar Documents

Publication Publication Date Title
JP5779171B2 (en) Method and apparatus for sublimation growth of SiC single crystal
US7767022B1 (en) Method of annealing a sublimation grown crystal
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JP2000302600A (en) Method for growing large-sized single-polytype silicon carbide single crystal
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP5482643B2 (en) Silicon carbide single crystal ingot manufacturing equipment
RU2736814C1 (en) Method of producing monocrystalline sic
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JP3982022B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH0710697A (en) Device for producing silicon carbide single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH061699A (en) Device for producing silicon carbide single crystal
JPH10139589A (en) Production of single crystal
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor
JPS61158890A (en) Crystal growth apparatus
JPH1179896A (en) Production of silicon carbide single crystal
JPH0648898A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307