JPH06350154A - Piezoelectric thin film element - Google Patents

Piezoelectric thin film element

Info

Publication number
JPH06350154A
JPH06350154A JP5137892A JP13789293A JPH06350154A JP H06350154 A JPH06350154 A JP H06350154A JP 5137892 A JP5137892 A JP 5137892A JP 13789293 A JP13789293 A JP 13789293A JP H06350154 A JPH06350154 A JP H06350154A
Authority
JP
Japan
Prior art keywords
film
pzt
thin film
substrate
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137892A
Other languages
Japanese (ja)
Other versions
JP3341357B2 (en
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13789293A priority Critical patent/JP3341357B2/en
Publication of JPH06350154A publication Critical patent/JPH06350154A/en
Application granted granted Critical
Publication of JP3341357B2 publication Critical patent/JP3341357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve piezoelectric characteristic, ferrodielectric characteristic and pyroelectric characteristic by using a PZT thin film having optimum crystal line orientation property and composition. CONSTITUTION:A titanate zirconate (PZT) film 105 whose chemical formula is Pb1+y(ZrXTi1-X)O3+Y, composition rate is in the range of O<=X<=0.55 and 0<=Y<=0.5 and crystal structure is rhombohedron system is formed on a substrate 101 wherein a <111> orientation metallic film 104 is formed. A <111> orientation degree of the PZT film 105 to a main surface vertical direction of the substrate 101 is 70% or more. Otherwise, a PZT film 105 whose chemical formula is Pb1+Y(ZrXTi1-X)O3+Y, composition rate is in the range of 0.55<=X<=1 and 0<=Y<=0.5 and crystal structure is tetragonal system is orientated on the substrate 101 wherein the <100> orientation metallic film 104 is formed. A <001> orientation degree of the PZT film 105 to a main surface vertical direction of the substrate 101 is 70% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜圧電振動子、液体噴
射装置等の圧電素子、半導体記憶装置、焦電型赤外線検
出器等に用いられる強誘電体薄膜装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film piezoelectric vibrator, a piezoelectric element such as a liquid ejecting device, a semiconductor memory device, a ferroelectric thin film device used in a pyroelectric infrared detector and the like.

【0002】[0002]

【従来の技術】本発明にかかわる従来技術は、例えば、
特開昭62−252005が開示されている。
2. Description of the Related Art The prior art relating to the present invention is, for example,
JP-A-62-252005 is disclosed.

【0003】前記従来技術によると、化学式がPb1+Y
(ZrXTi1-X)O3+Yの場合において、組成比が、0
≦X<0.55、Y=0の範囲に限定されており、バル
クの多結晶体のチタン酸ジルコン酸鉛(PZT)に於い
て、結晶構造が正方晶系の化学量論的組成に限定されて
いた。
According to the above prior art, the chemical formula is Pb 1 + Y
In the case of (Zr X Ti 1-X ) O 3 + Y , the composition ratio is 0
≤X <0.55, Y = 0, and in bulk polycrystalline lead zirconate titanate (PZT), the crystal structure is limited to a tetragonal stoichiometric composition. It had been.

【0004】更に、Zr組成比Xが0から0.55の範
囲に限られており、PZTの結晶粒の中のドメインの自
発分極の75%以上が一方向を向いていた。
Further, the Zr composition ratio X is limited to the range of 0 to 0.55, and more than 75% of the spontaneous polarization of the domain in the crystal grains of PZT is directed in one direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来技術を用いた強誘電体薄膜素子には以下に示す問題点
が存在する。
However, the ferroelectric thin film element using the above conventional technique has the following problems.

【0006】PZTのPb組成比がPb/(Zr+T
i)=1と化学量論的組成であるため、製造方法が困難
である。
The Pb composition ratio of PZT is Pb / (Zr + T
Since i) = 1 and the stoichiometric composition, the manufacturing method is difficult.

【0007】特に、Pbを含む化合物の場合、焼成、焼
結、またはスパッタ法等の成膜時の高温処理時にPbO
の形で、Pbが抜けやすく、化学量論的組成に制御する
ことは、非常に困難である。
Particularly, in the case of a compound containing Pb, PbO is used at the time of high temperature treatment during film formation such as firing, sintering, or sputtering.
In the form of, Pb is easily released, and it is very difficult to control the stoichiometric composition.

【0008】更に、ほとんどの圧電素子、半導体記憶装
置、焦電型赤外線検出器素子においては、成膜後に分極
処理をする事が許されるため、Zr組成比Xが0≦X<
0.55の範囲に限られる必要がない。
Furthermore, in most piezoelectric elements, semiconductor memory devices, and pyroelectric infrared detector elements, polarization processing is allowed after film formation, so that the Zr composition ratio X is 0 ≦ X <.
It need not be limited to the range of 0.55.

【0009】そこで、本発明はこのような課題を解決す
るもので、その目的とするところは、最適な結晶配向性
及び組成を持ったPZT薄膜を用いて、圧電特性、強誘
電体特性、焦電特性を向上することである。
Therefore, the present invention is intended to solve such a problem, and an object of the present invention is to use a PZT thin film having an optimum crystal orientation and composition to obtain piezoelectric characteristics, ferroelectric characteristics, and focal characteristics. It is to improve electric characteristics.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、 (1)本発明の圧電体薄膜素子は、金属膜が形成された
基板上に、化学式がPb1+Y(ZrXTi1-X)O3+Yで、
組成比が、0≦X<0.55、0≦Y≦0.5の範囲に
あり、結晶構造が菱面体晶系のチタン酸ジルコン酸鉛膜
であって、前記基板の主面垂直方向に対して、前記チタ
ン酸ジルコン酸鉛膜の<111>配向度が70%以上で
あることを特徴とする。
In order to solve the above problems, (1) the piezoelectric thin film element of the present invention has a chemical formula of Pb 1 + Y (Zr X Ti on a substrate on which a metal film is formed. 1-X ) O 3 + Y ,
A lead zirconate titanate film having a composition ratio of 0 ≦ X <0.55 and 0 ≦ Y ≦ 0.5 and a crystal structure of a rhombohedral system, which is perpendicular to the main surface of the substrate. In contrast, the degree of <111> orientation of the lead zirconate titanate film is 70% or more.

【0011】(2)更に、上記金属膜が、白金(P
t)、金(Au)または、PtまたはAuを主成分とす
る膜であって、前記基板の主面垂直方向に対して、<1
11>配向膜であることが望ましい。
(2) Further, the metal film is platinum (P
t), gold (Au), or a film containing Pt or Au as a main component, and <1 with respect to the direction perpendicular to the main surface of the substrate.
11> It is desirable that the alignment film.

【0012】あるいは、(3)本発明の圧電体薄膜素子
は、金属膜が形成された基板上に、化学式がPb
1+Y(ZrXTi1-X)O3+Yで、組成比が、0.55≦X
<1、0≦Y≦0.5の範囲にあり、結晶構造が正方晶
系のチタン酸ジルコン酸鉛膜であって、前記基板の主面
垂直方向に対して、前記チタン酸ジルコン酸鉛膜の<0
01>配向度が70%以上であることを特徴とする。
Alternatively, (3) the piezoelectric thin film element of the present invention has a chemical formula of Pb on a substrate on which a metal film is formed.
1 + Y (Zr X Ti 1-X ) O 3 + Y with a composition ratio of 0.55 ≦ X
A lead zirconate titanate film having a tetragonal crystal structure in the range of <1, 0 ≦ Y ≦ 0.5, the lead zirconate titanate film being perpendicular to the main surface of the substrate. <0
01> The degree of orientation is 70% or more.

【0013】(4)更に、上記金属膜が、白金(P
t)、金(Au)または、PtまたはAuを主成分とす
る膜であって、前記基板の主面垂直方向に対して、<1
00>配向膜であることが望ましい。
(4) Further, the metal film is platinum (P
t), gold (Au), or a film containing Pt or Au as a main component, and <1 with respect to the direction perpendicular to the main surface of the substrate.
00> alignment film is desirable.

【0014】[0014]

【実施例】(実施例1)以下、本発明の実施例を図面に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明に従って作成した強誘電体
薄膜素子の第1の実施例である薄膜圧電振動子の断面図
である。
FIG. 1 is a sectional view of a thin film piezoelectric vibrator which is a first embodiment of a ferroelectric thin film element prepared according to the present invention.

【0016】(100)面単結晶Si基板101に、熱
酸化を行い、1μmのSiO2膜102を形成する。
A (100) plane single crystal Si substrate 101 is thermally oxidized to form a 1 μm SiO 2 film 102.

【0017】前記SiO2膜102上に、膜厚50Aの
Ti層103と膜厚3000AのPt下部電極104を
直流スパッタリングにより形成した。
A Ti layer 103 having a film thickness of 50 A and a Pt lower electrode 104 having a film thickness of 3000 A were formed on the SiO 2 film 102 by DC sputtering.

【0018】スパッタは、Ar雰囲気、200℃の基板
温度で行った。
The sputtering was performed in an Ar atmosphere at a substrate temperature of 200 ° C.

【0019】Pt下部電極104は、Si基板101の
主面垂直方向に対して、<111>配向している。
The Pt lower electrode 104 is <111> oriented with respect to the direction perpendicular to the main surface of the Si substrate 101.

【0020】次にPZT膜105を2μm、高周波スパ
ッタ法により形成した。
Next, a PZT film 105 having a thickness of 2 μm was formed by a high frequency sputtering method.

【0021】スパッタは、ArとO2雰囲気、200℃
の基板温度で行った。
Sputtering was carried out in Ar and O 2 atmosphere at 200 ° C.
Was performed at the substrate temperature of.

【0022】スパッタリングターゲットには、Pb1+Y
(ZrXTi1-X)O3+Yを用いた。
For the sputtering target, Pb 1 + Y
Using (Zr X Ti 1-X) O 3 + Y.

【0023】ここで、Y=0.3、X=0.5である。Here, Y = 0.3 and X = 0.5.

【0024】次いで、ペロブスカイト結晶構造のPZT
を得るために、O2雰囲気中、600℃で、3時間熱処
理を行った。
Next, PZT having a perovskite crystal structure
In order to obtain the above, heat treatment was performed at 600 ° C. for 3 hours in an O 2 atmosphere.

【0025】次いで、PZT膜上に膜厚100AのTi
層106、及び膜厚2000AのAu電極107を順次
蒸着し、最後に、PZT膜105の下部に於ける単結晶
Si基板101にSiO2膜102に至るまで開口部1
08を設け、強誘電体薄膜素子を作成した。
Then, a Ti film having a thickness of 100 A is formed on the PZT film.
A layer 106 and an Au electrode 107 having a thickness of 2000 A are sequentially deposited, and finally, an opening 1 is formed on the single crystal Si substrate 101 below the PZT film 105 up to the SiO 2 film 102.
No. 08 was provided to prepare a ferroelectric thin film element.

【0026】図2に、代表的なPZT薄膜のX線回折パ
ターンを示す。
FIG. 2 shows an X-ray diffraction pattern of a typical PZT thin film.

【0027】Si基板の反射ピークとPt下部電極の反
射ピーク以外は、ペロブスカイト構造のPZTの反射ピ
ークである。
Except for the reflection peak of the Si substrate and the reflection peak of the Pt lower electrode, there are reflection peaks of PZT having a perovskite structure.

【0028】図2に示された本実施例の過剰鉛組成比Y
は、0.05、Zr組成比Xは、0.50であり、<1
11>配向度は、80%であった。
The excess lead composition ratio Y of this embodiment shown in FIG.
Is 0.05, the Zr composition ratio X is 0.50, and <1
11> The degree of orientation was 80%.

【0029】ここで、<111>配向度P(111)
は、P(111)=I(111)/ΣI(hkl)で表
す。
Here, the <111> orientation degree P (111)
Is represented by P (111) = I (111) / ΣI (hkl).

【0030】ΣI(hkl)は、X線回折(XRD)法
の高角反射法で、波長にCuKα線を用いたときの2θ
が20度〜80度のPZTの全回折強度の和を表す。
ΣI (hkl) is a high-angle reflection method of the X-ray diffraction (XRD) method, and 2θ when CuKα rays are used for the wavelength.
Represents the sum of all diffraction intensities of PZT from 20 degrees to 80 degrees.

【0031】具体的には、(100)、(110)、
(111)、(210)、(211)、(221)、
(310)結晶面反射強度の総和である。
Specifically, (100), (110),
(111), (210), (211), (221),
(310) This is the sum of the crystal plane reflection intensities.

【0032】I(111)は、同じくPZTの(11
1)結晶面反射強度を表す。
I (111) is the same as (11) of PZT.
1) Represents crystal plane reflection intensity.

【0033】図3は<111>方向に70から100%
配向した膜厚2μmのPZT薄膜の圧電定数d31のZr
組成比X依存性を示す。
FIG. 3 shows 70 to 100% in the <111> direction.
Zr of piezoelectric constant d 31 of oriented PZT thin film of 2 μm thickness
The composition ratio X dependence is shown.

【0034】PbO過剰組成比Yは、0.05である。The PbO excess composition ratio Y is 0.05.

【0035】図3中に比較のため、バルクPZTの圧電
定数も示した。
For comparison, the piezoelectric constant of bulk PZT is also shown in FIG.

【0036】図3に示すように、全組成範囲に於いて、
バルクのPZTの圧電定数より、70から100%<1
11>配向したPZT薄膜の圧電定数は、大きな値を示
した。
As shown in FIG. 3, in the entire composition range,
From the piezoelectric constant of bulk PZT, 70 to 100% <1
The piezoelectric constant of the 11> -oriented PZT thin film showed a large value.

【0037】特に、Zr組成比Xが、0から0.55の
範囲に於いて、バルクPZTに比較して、飛躍的に大き
い値を示した。
Particularly, when the Zr composition ratio X was in the range of 0 to 0.55, it showed a remarkably large value as compared with the bulk PZT.

【0038】これは、バルクPZTの結晶構造が、この
組成範囲で、正方晶系で有るのに対して、配向薄膜の場
合は、菱面体晶系となることによると考えられる。
It is considered that this is because the crystal structure of bulk PZT is tetragonal in this composition range, whereas that of oriented thin film is rhombohedral.

【0039】すなわち、バルクPZTの菱面体晶系組成
の範囲、すなわちZr組成比Xが0.55から1の範囲
では、組成比Xが小さいほど圧電定数が大きくなるが、
薄膜の場合には、更にXが0から0.55の範囲まで及
んであるためだろう。
That is, in the rhombohedral composition range of bulk PZT, that is, in the range where the Zr composition ratio X is 0.55 to 1, the smaller the composition ratio X, the larger the piezoelectric constant.
In the case of a thin film, it may be because X further ranges from 0 to 0.55.

【0040】図4には、Zr組成比X=0.45に固定
した場合の圧電定数d31のPbO過剰組成比Y依存性を
示す。
FIG. 4 shows the dependency of the piezoelectric constant d 31 on the PbO excess composition ratio Y when the Zr composition ratio X is fixed at 0.45.

【0041】PZT薄膜の膜厚は、同じく2μm、<1
11>配向度は、70から100%である。
The film thickness of the PZT thin film is 2 μm, <1.
11> The degree of orientation is 70 to 100%.

【0042】図4に示すように、圧電定数d31は、Pb
Oの過剰分Yに大きく依存しており、Yが0より小さい
と急激に低下し、Y=0.5より大では、バルクPZT
並みまで低下する。
As shown in FIG. 4, the piezoelectric constant d 31 is Pb.
It largely depends on the excess Y of O, and decreases sharply when Y is smaller than 0, and bulk PZT when Y is larger than 0.5.
Falls to the average.

【0043】Yが0.5より大きくなると圧電定数31
小さくなる理由としては、粒界へのPbOの析出である
ことがわかった。
It was found that the reason why the piezoelectric constant 31 becomes smaller when Y exceeds 0.5 is the precipitation of PbO at the grain boundaries.

【0044】従って、Yの範囲は、0以上0.5以下で
あることが望ましい。
Therefore, it is desirable that the range of Y is 0 or more and 0.5 or less.

【0045】以上実施例1に於いて、下部電極として、
<111>配向Ptを用いて説明したが、PZT薄膜の
<111>配向度が、70%以上となれば良く、Au、
Pt−Ir、Pt−Pd、Pt−Ni、Pt−Ti等他
の金属膜でも良い。
In the above Example 1, as the lower electrode,
Although the description has been made by using the <111> orientation Pt, it is sufficient that the degree of the <111> orientation of the PZT thin film is 70% or more.
Other metal films such as Pt-Ir, Pt-Pd, Pt-Ni, and Pt-Ti may be used.

【0046】更に、実施例1では、薄膜圧電振動子を例
に取り説明したが、液体噴射装置、半導体記憶装置、焦
電型赤外線検出器等にもそのまま応用できることは自明
である。
Further, in the first embodiment, the thin film piezoelectric vibrator is described as an example, but it is obvious that the invention can be directly applied to a liquid ejecting apparatus, a semiconductor memory device, a pyroelectric infrared detector and the like.

【0047】(実施例2)以下、本発明の実施例を図面
に基づいて説明する。
(Embodiment 2) An embodiment of the present invention will be described below with reference to the drawings.

【0048】図5は、本発明に従って作成した強誘電体
薄膜素子の第2の実施例の断面図である。
FIG. 5 is a sectional view of a second embodiment of a ferroelectric thin film element manufactured according to the present invention.

【0049】(100)面単結晶MgO基板201に、
高周波スパッタ法により、MgO基板201の主面方向
に対して<100>配向のPt下部電極202を形成す
る。
On the (100) plane single crystal MgO substrate 201,
A Pt lower electrode 202 having a <100> orientation with respect to the main surface direction of the MgO substrate 201 is formed by a high frequency sputtering method.

【0050】スパッタは、Ar/O2=8/2の雰囲気
中、200℃の基板温度で行った。
Sputtering was performed at a substrate temperature of 200 ° C. in an atmosphere of Ar / O 2 = 8/2.

【0051】次にPZT膜203を2μm、高周波スパ
ッタ法により形成した。
Next, a PZT film 203 having a thickness of 2 μm was formed by a high frequency sputtering method.

【0052】スパッタは、ArとO2雰囲気、700℃
の基板温度で行った。
Sputtering was performed in an Ar and O 2 atmosphere at 700 ° C.
Was performed at the substrate temperature of.

【0053】スパッタリングターゲットには、Pb1+Y
(ZrXTi1-X)O3+Yを用いた。
For the sputtering target, Pb 1 + Y
Using (Zr X Ti 1-X) O 3 + Y.

【0054】ここで、Y=0.5、X=0.6である。Here, Y = 0.5 and X = 0.6.

【0055】高温スパッタにより、アズ−スパッタで、
ペロブスカイト結晶構造のPZTを得ることができた。
By high temperature sputtering, as-sputtering,
It was possible to obtain PZT having a perovskite crystal structure.

【0056】次いで、PZT膜上に膜厚100AのTi
層204、及び膜厚2000AのAu電極205を順次
蒸着し、特性を評価した。
Then, a Ti film having a film thickness of 100 A is formed on the PZT film.
A layer 204 and an Au electrode 205 having a film thickness of 2000 A were sequentially deposited, and the characteristics were evaluated.

【0057】図6に、代表的なPZT薄膜のX線回折パ
ターンを示す。
FIG. 6 shows an X-ray diffraction pattern of a typical PZT thin film.

【0058】MgO単結晶基板の反射ピークとPt電極
の反射ピーク以外は、ペロブスカイト構造のPZTの反
射ピークである。
Except for the reflection peak of the MgO single crystal substrate and the reflection peak of the Pt electrode, there are reflection peaks of PZT having a perovskite structure.

【0059】図6に示された本実施例の過剰鉛組成比Y
は、0.10、Zr組成比Xは、0.60であり、<0
01>配向度は、98%であった。
Excess lead composition ratio Y of this embodiment shown in FIG.
Is 0.10, the Zr composition ratio X is 0.60, and <0
The 01> orientation degree was 98%.

【0060】ここで、<001>配向度P(001)
は、P(001)=I(001)/ΣI(hkl)で表
す。
Here, <001> degree of orientation P (001)
Is represented by P (001) = I (001) / ΣI (hkl).

【0061】図7は<001>方向に70から100%
配向した膜厚2μmのPZT薄膜の比誘電率εのZr組
成比X依存性を示す。
FIG. 7 shows 70% to 100% in the <001> direction.
3 shows the Zr composition ratio X dependence of the relative permittivity ε of the oriented PZT thin film having a film thickness of 2 μm.

【0062】ここで示す比誘電率εは、膜厚方向に分極
処理した後の膜厚方向の比誘電率である。
The relative permittivity ε shown here is the relative permittivity in the film thickness direction after polarization in the film thickness direction.

【0063】PbO過剰組成比Yは、0.10である。The PbO excess composition ratio Y is 0.10.

【0064】図7中に比較のため、バルクPZTの比誘
電率εも示した。
For comparison, the relative permittivity ε of bulk PZT is also shown in FIG.

【0065】図7に示すように、全組成範囲に於いて、
バルクのPZTの比誘電率εより、70から100%<
001>配向したPZT薄膜の比誘電率εは、大きな値
を示した。
As shown in FIG. 7, in the entire composition range,
From the relative permittivity ε of bulk PZT, 70 to 100% <
The relative permittivity ε of the 001> oriented PZT thin film showed a large value.

【0066】特に、Zr組成比Xが、0.55から1の
範囲に於いて、バルクPZTに比較して、飛躍的に大き
い値を示した。
Particularly, when the Zr composition ratio X was in the range of 0.55 to 1, it showed a remarkably large value as compared with the bulk PZT.

【0067】これは、バルクPZTの結晶構造が、この
組成範囲で、菱面体晶系で有るのに対して、配向薄膜の
場合は、正方晶系となることによると考えられる。
It is considered that this is because the crystal structure of bulk PZT is rhombohedral in this composition range, whereas it is tetragonal in the case of an oriented thin film.

【0068】すなわち、バルクPZTの正方晶系組成の
範囲、すなわちZr組成比Xが0から0.55の範囲で
は、組成比Xが大きいほど比誘電率が大きくなるが、薄
膜の場合には、更にXが0.55から1の範囲まで及ん
であるためだろう。
That is, in the range of the tetragonal composition of bulk PZT, that is, in the range of Zr composition ratio X from 0 to 0.55, the relative permittivity increases as the composition ratio X increases, but in the case of a thin film, It is probably because X ranges from 0.55 to 1.

【0069】図8に、Zr組成比X=0.60に固定し
た場合の比誘電率εのPbO過剰組成比Y依存性を示
す。
FIG. 8 shows the dependence of the relative permittivity ε on the PbO excess composition ratio Y when the Zr composition ratio X is fixed at 0.6 = 0.60.

【0070】PZT薄膜の膜厚は、同じく2μm、<0
01>配向度は、95から100%である。
The film thickness of the PZT thin film was 2 μm, <0.
The 01> orientation degree is 95 to 100%.

【0071】比較のためバルクPZTの比誘電率も示
す。
For comparison, the relative permittivity of bulk PZT is also shown.

【0072】図8に示すように、比誘電率εは、PbO
の過剰分Yに大きく依存しており、Yが0より小さいと
急激に低下し、Y=0.5より大では、バルクPZT並
みまたは、それ以下まで低下する。
As shown in FIG. 8, the relative permittivity ε is PbO.
It largely depends on the excess Y of Y. When Y is smaller than 0, it sharply drops, and when Y is larger than 0.5, it drops to the level of bulk PZT or less.

【0073】従って、Yの範囲は、0以上0.5以下で
あることが望ましい。
Therefore, it is desirable that the range of Y is 0 or more and 0.5 or less.

【0074】以上実施例2に於いて、下部電極として、
<100>配向Ptを用いて説明したが、PZT薄膜の
<001>配向度が、70%以上となれば良く、Au、
Pt−Ir、Pt−Pd、Pt−Ni、Pt−Ti等他
の金属膜でも良い。
In the above second embodiment, as the lower electrode,
Although the description has been made using the <100> -oriented Pt, it is sufficient that the degree of <001> orientation of the PZT thin film is 70% or more.
Other metal films such as Pt-Ir, Pt-Pd, Pt-Ni, and Pt-Ti may be used.

【0075】以上上記実施例1、2に於いて、圧電膜と
して、純粋な組成のPZT薄膜を用いて説明したが、勿
論若干の不純物が混入されていてもさしつかえない。
In the above-mentioned Examples 1 and 2, the PZT thin film having a pure composition was used as the piezoelectric film, but of course, a slight amount of impurities may be mixed.

【0076】不純物としては、一般的に圧電性を向上す
るものとして、Nb、La、Ta、Nd、W、Mo、、
Mn、、Ba、Sr、Ca、Bi等があり、15モル%
以下を加えることは可能である。
As the impurities, Nb, La, Ta, Nd, W, Mo, ...
There are Mn, Ba, Sr, Ca, Bi, etc., and 15 mol%
It is possible to add:

【0077】[0077]

【発明の効果】以上述べてきたように本発明の圧電体薄
膜素子は、以下のような効果を有する。 最適な結晶配
向性及び組成を持ったPZT薄膜を用いることにより、
バルクのPZTに比較して飛躍的に、圧電特性、強誘電
体特性、焦電特性を向上することができ、更に薄膜であ
るため、スパッタ法や化学気相成長法等で製造できるの
で、作成が容易であり、薄膜圧電振動子、液体噴射装置
等の圧電素子、半導体記憶装置、焦電型赤外線検出器等
に応用することができる。
As described above, the piezoelectric thin film element of the present invention has the following effects. By using a PZT thin film having an optimum crystal orientation and composition,
Compared with bulk PZT, it can dramatically improve piezoelectric characteristics, ferroelectric characteristics, and pyroelectric characteristics. Furthermore, since it is a thin film, it can be manufactured by sputtering or chemical vapor deposition. It can be easily applied to a thin film piezoelectric vibrator, a piezoelectric element such as a liquid ejecting apparatus, a semiconductor memory device, a pyroelectric infrared detector, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における薄膜圧電振動子の断面
図。
FIG. 1 is a sectional view of a thin film piezoelectric vibrator according to an embodiment of the invention.

【図2】本発明の実施例における、PZT薄膜のX線回
折パターンの図。
FIG. 2 is a diagram showing an X-ray diffraction pattern of a PZT thin film in an example of the present invention.

【図3】本発明の実施例及び従来のPZT薄膜の圧電定
数d31のZr組成比X依存性を示す図。
FIG. 3 is a diagram showing the Zr composition ratio X dependence of the piezoelectric constant d 31 of an example of the present invention and a conventional PZT thin film.

【図4】本発明の実施例及び従来のPZT薄膜の、Zr
組成比X=0.45に固定した場合の圧電定数d31のP
bO過剰組成比Y依存性を示す図。
FIG. 4 is a graph showing Zr of an example of the present invention and a conventional PZT thin film.
P of the piezoelectric constant d 31 when the composition ratio X is fixed at 0.45
The figure which shows bO excess composition ratio Y dependence.

【図5】本発明の実施例における強誘電体薄膜素子の断
面図。
FIG. 5 is a sectional view of a ferroelectric thin film element in an example of the present invention.

【図6】本発明の実施例における、PZT薄膜のX線回
折パターンの図。
FIG. 6 is a diagram showing an X-ray diffraction pattern of a PZT thin film in an example of the present invention.

【図7】本発明の実施例及び従来のPZT薄膜の比誘電
率εのZr組成比X依存性を示す図。
FIG. 7 is a diagram showing the Zr composition ratio X dependence of the relative permittivity ε of the example of the present invention and the conventional PZT thin film.

【図8】本発明の実施例及び従来のPZT薄膜の、Zr
組成比X=0.60に固定した場合の比誘電率εのPb
O過剰組成比Y依存性を示す図。
FIG. 8 is a graph showing Zr of an example of the present invention and a conventional PZT thin film.
Pb of relative permittivity ε when composition ratio X is fixed at 0.60
The figure which shows O excess composition ratio Y dependence.

【符号の説明】[Explanation of symbols]

101・・・単結晶Si基板 102・・・SiO2膜 103・・・Ti層 104・・・Pt下部電極 105・・・PZT膜 106・・・Ti層 107・・・Au電極 108・・・開口部 201・・・単結晶MgO基板 202・・・Pt下部電極 203・・・PZT膜 204・・・Ti層 205・・・Au電極101 ... Single crystal Si substrate 102 ... SiO 2 film 103 ... Ti layer 104 ... Pt lower electrode 105 ... PZT film 106 ... Ti layer 107 ... Au electrode 108 ... Opening 201 ... Single crystal MgO substrate 202 ... Pt lower electrode 203 ... PZT film 204 ... Ti layer 205 ... Au electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属膜が形成された基板上に、化学式が
Pb1+Y(ZrXTi1-X)O3+Yで、組成比が、0≦X<
0.55、0≦Y≦0.5の範囲にあり、結晶構造が菱
面体晶系のチタン酸ジルコン酸鉛膜であって、前記基板
の主面垂直方向に対して、前記チタン酸ジルコン酸鉛膜
の<111>配向度が70%以上であることを特徴とす
る圧電体薄膜素子。
1. A substrate having a metal film formed thereon has a chemical formula of Pb 1 + Y (Zr X Ti 1-X ) O 3 + Y and a composition ratio of 0 ≦ X <
0.55, a range of 0 ≦ Y ≦ 0.5, and a rhombohedral lead zirconate titanate film having a crystal structure, wherein the zirconate titanate is perpendicular to the main surface of the substrate. A piezoelectric thin film element, wherein the degree of <111> orientation of the lead film is 70% or more.
【請求項2】 金属膜が、白金(Pt)、金(Au)ま
たは、PtまたはAuを主成分とする膜であって、前記
基板の主面垂直方向に対して、<111>配向膜である
ことを特徴とする請求項1記載の圧電体薄膜素子。
2. The metal film is platinum (Pt), gold (Au), or a film containing Pt or Au as a main component, and a <111> orientation film with respect to a direction perpendicular to the main surface of the substrate. The piezoelectric thin film element according to claim 1, wherein the piezoelectric thin film element is present.
【請求項3】 金属膜が形成された基板上に、化学式が
Pb1+Y(ZrXTi1-X)O3+Yで、組成比が、0.55
≦X<1、0≦Y≦0.5の範囲にあり、結晶構造が正
方晶系のチタン酸ジルコン酸鉛膜であって、前記基板の
主面垂直方向に対して、前記チタン酸ジルコン酸鉛膜の
<001>配向度が70%以上であることを特徴とする
圧電体薄膜素子。
3. A substrate having a metal film formed thereon has a chemical formula of Pb 1 + Y (Zr X Ti 1-X ) O 3 + Y and a composition ratio of 0.55.
A lead zirconate titanate film having a tetragonal crystal structure in the range of ≦ X <1, 0 ≦ Y ≦ 0.5, wherein the zirconate titanate is perpendicular to the main surface of the substrate. A piezoelectric thin film element, wherein the <001> orientation degree of the lead film is 70% or more.
【請求項4】 金属膜が、白金(Pt)、金(Au)ま
たは、PtまたはAuを主成分とする膜であって、前記
基板の主面垂直方向に対して、<100>配向膜である
ことを特徴とする請求項3記載の圧電体薄膜素子。
4. The metal film is platinum (Pt), gold (Au), or a film containing Pt or Au as a main component, and a <100> orientation film with respect to a direction perpendicular to the main surface of the substrate. The piezoelectric thin film element according to claim 3, wherein the piezoelectric thin film element is present.
JP13789293A 1993-06-08 1993-06-08 Piezoelectric thin film element Expired - Lifetime JP3341357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13789293A JP3341357B2 (en) 1993-06-08 1993-06-08 Piezoelectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13789293A JP3341357B2 (en) 1993-06-08 1993-06-08 Piezoelectric thin film element

Publications (2)

Publication Number Publication Date
JPH06350154A true JPH06350154A (en) 1994-12-22
JP3341357B2 JP3341357B2 (en) 2002-11-05

Family

ID=15209121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13789293A Expired - Lifetime JP3341357B2 (en) 1993-06-08 1993-06-08 Piezoelectric thin film element

Country Status (1)

Country Link
JP (1) JP3341357B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052235A1 (en) * 1997-05-13 1998-11-19 Mitsubishi Denki Kabushiki Kaisha Dielectric thin film element and process for manufacturing the same
JP2001284671A (en) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Piezoelectric actuator, ink-jet head, and ink-jet type recording device
US6586861B2 (en) 1998-11-12 2003-07-01 Mitsubishi Denki Kabushiki Kaisha Film bulk acoustic wave device
JP2003530750A (en) * 2000-04-06 2003-10-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Tunable filter configuration with resonator
JP2005005689A (en) * 2003-05-20 2005-01-06 Matsushita Electric Ind Co Ltd Piezoelectric element and method for manufacturing same
JP2005333088A (en) * 2004-05-21 2005-12-02 Sony Corp Piezoelectric element, piezoelectric apparatus and angular velocity sensor
US7059711B2 (en) 2003-02-07 2006-06-13 Canon Kabushiki Kaisha Dielectric film structure, piezoelectric actuator using dielectric element film structure and ink jet head
US7065847B2 (en) 2001-02-09 2006-06-27 Seiko Epson Corporation Method for the manufacture of a piezoelectric element
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
US7102274B2 (en) 2003-05-20 2006-09-05 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and its manufacturing method
JP2006324681A (en) * 1995-09-19 2006-11-30 Seiko Epson Corp Piezoelectric body thin film element and ink jet recording head
KR100691153B1 (en) * 2005-03-15 2007-03-09 삼성전기주식회사 Film bulk acoustic resonator
US7475461B2 (en) 2001-09-28 2009-01-13 Seiko Epson Corporation Method and manufacturing a piezoelectric thin film element
US7525239B2 (en) 2006-09-15 2009-04-28 Canon Kabushiki Kaisha Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element
EP2061101A2 (en) 2007-11-15 2009-05-20 Sony Corporation Piezoelectric device, angular velocity sensor, and method of manufacturing a piezoelectric device
JP2009123973A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123972A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009201101A (en) * 2008-01-21 2009-09-03 Panasonic Electric Works Co Ltd Baw resonator and manufacturing method thereof
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
US7759845B2 (en) 2006-03-10 2010-07-20 Canon Kabushiki Kaisha Piezoelectric substance element, liquid discharge head utilizing the same and optical element
US8004162B2 (en) 2008-08-25 2011-08-23 Sony Corporation Piezoelectric device, angular velocity sensor, electronic apparatus, and production method of a piezoelectric device
JP2011249649A (en) * 2010-05-28 2011-12-08 Toshiba Corp Semiconductor device
US8114307B2 (en) 2006-09-15 2012-02-14 Canon Kabushiki Kaisha Piezoelectric body and liquid discharge head
JP2014199265A (en) * 2014-07-30 2014-10-23 セイコーエプソン株式会社 Pyroelectric photodetector, pyroelectric photodetection device, and electronic apparatus
US11295770B2 (en) 2015-12-03 2022-04-05 Sae Magnetics (H.K.) Ltd. Thin-film piezoelectric material substrate, thin-film piezoelectric material element, head gimbal assembly, ink jet head and method of manufacturing the thin-film piezoelectric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892406B2 (en) 2011-06-30 2016-03-23 株式会社リコー Electromechanical transducer, droplet discharge head, and droplet discharge device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324681A (en) * 1995-09-19 2006-11-30 Seiko Epson Corp Piezoelectric body thin film element and ink jet recording head
US6376889B1 (en) 1997-05-13 2002-04-23 Mitsubishi Denki Kabushiki Kaisha Dielectric thin film element and process for manufacturing the same
WO1998052235A1 (en) * 1997-05-13 1998-11-19 Mitsubishi Denki Kabushiki Kaisha Dielectric thin film element and process for manufacturing the same
US6586861B2 (en) 1998-11-12 2003-07-01 Mitsubishi Denki Kabushiki Kaisha Film bulk acoustic wave device
JP2001284671A (en) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Piezoelectric actuator, ink-jet head, and ink-jet type recording device
JP2003530750A (en) * 2000-04-06 2003-10-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Tunable filter configuration with resonator
US7065847B2 (en) 2001-02-09 2006-06-27 Seiko Epson Corporation Method for the manufacture of a piezoelectric element
US7254877B2 (en) 2001-02-09 2007-08-14 Seiko Epson Corporation Method for the manufacture of a piezoelectric element
US7475461B2 (en) 2001-09-28 2009-01-13 Seiko Epson Corporation Method and manufacturing a piezoelectric thin film element
US7059711B2 (en) 2003-02-07 2006-06-13 Canon Kabushiki Kaisha Dielectric film structure, piezoelectric actuator using dielectric element film structure and ink jet head
US7513608B2 (en) 2003-02-07 2009-04-07 Canon Kabushiki Kaisha Dielectric film structure, piezoelectric actuator using dielectric element film structure and ink jet head
US7938515B2 (en) 2003-02-07 2011-05-10 Canon Kabushiki Kaisha Dielectric film structure, piezoelectric actuator using dielectric element film structure and ink jet head
US7102274B2 (en) 2003-05-20 2006-09-05 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and its manufacturing method
JP2005005689A (en) * 2003-05-20 2005-01-06 Matsushita Electric Ind Co Ltd Piezoelectric element and method for manufacturing same
JP2005333088A (en) * 2004-05-21 2005-12-02 Sony Corp Piezoelectric element, piezoelectric apparatus and angular velocity sensor
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
KR100691153B1 (en) * 2005-03-15 2007-03-09 삼성전기주식회사 Film bulk acoustic resonator
US7759845B2 (en) 2006-03-10 2010-07-20 Canon Kabushiki Kaisha Piezoelectric substance element, liquid discharge head utilizing the same and optical element
US7525239B2 (en) 2006-09-15 2009-04-28 Canon Kabushiki Kaisha Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element
US8114307B2 (en) 2006-09-15 2012-02-14 Canon Kabushiki Kaisha Piezoelectric body and liquid discharge head
US7646140B2 (en) 2006-09-15 2010-01-12 Canon Kabushiki Kaisha Piezoelectric element containing perovskite type oxide, and liquid jet head and ultrasonic motor using the piezoelectric element
JP4715836B2 (en) * 2007-11-15 2011-07-06 ソニー株式会社 Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123972A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123973A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
US7915794B2 (en) 2007-11-15 2011-03-29 Sony Corporation Piezoelectric device having a tension stress, and angular velocity sensor
EP2061101A2 (en) 2007-11-15 2009-05-20 Sony Corporation Piezoelectric device, angular velocity sensor, and method of manufacturing a piezoelectric device
JP2010018510A (en) * 2007-12-27 2010-01-28 Ngk Insulators Ltd Crystal-oriented ceramic
JP2009201101A (en) * 2008-01-21 2009-09-03 Panasonic Electric Works Co Ltd Baw resonator and manufacturing method thereof
US8004162B2 (en) 2008-08-25 2011-08-23 Sony Corporation Piezoelectric device, angular velocity sensor, electronic apparatus, and production method of a piezoelectric device
JP2011249649A (en) * 2010-05-28 2011-12-08 Toshiba Corp Semiconductor device
JP2014199265A (en) * 2014-07-30 2014-10-23 セイコーエプソン株式会社 Pyroelectric photodetector, pyroelectric photodetection device, and electronic apparatus
US11295770B2 (en) 2015-12-03 2022-04-05 Sae Magnetics (H.K.) Ltd. Thin-film piezoelectric material substrate, thin-film piezoelectric material element, head gimbal assembly, ink jet head and method of manufacturing the thin-film piezoelectric

Also Published As

Publication number Publication date
JP3341357B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP3341357B2 (en) Piezoelectric thin film element
Horwitz et al. In situ deposition of epitaxial PbZr x Ti (1− x) O3 thin films by pulsed laser deposition
US5757061A (en) Ferroelectric thin film coated substrate, producing method thereof and capacitor structure element using thereof
EP1486590B1 (en) Multi-layer structure, and actuator element, capacitive element and filter element using the same
EP0513478B1 (en) Method for controlling crystal orientation of ferroelectric thin film
EP0716162B1 (en) Ferroelectric thin film, ferroelectric thin film covering substrate and manufacturing method of ferroelectric thin film
US5397446A (en) Method of forming a ferroelectric film
US20050105038A1 (en) Thin film multilayer body, electronic device and actuator using the thin film multilayer body, and method of manufacturing the actuator
JP2008042069A (en) Piezoelectric element, and its manufacturing method
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
EP0747938A2 (en) Ferroelectric thin film coated substrate, producing method thereof and capacitor structure element using thereof
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
US5449933A (en) Ferroelectric thin film element
KR19990006318A (en) Deposition of Ferroelectric Films and Ferroelectric Capacitor Devices
JPH08186182A (en) Ferroelectric thin-film element
JP3983091B2 (en) Vapor phase growth method of oxide dielectric film
JPH06290983A (en) Thin dielectric film and manufacture thereof
US20080019075A1 (en) Dielectric capacitor
Shoyama et al. Dielectric properties of alkoxy-derived Sr 2 Nb 2 O 7 thin films crystallized via rapid thermal annealing
McCarthy et al. Pyroelectric properties of various sol-gel derived PLZT thin films
JP3363091B2 (en) Manufacturing method of dielectric memory
JP2009212225A (en) Functional oxide structure
Eichorst et al. Effects of Platinum Electrode Structures on Crystallinity and Electrical Properties of MOD-Prepared PZT Capacitors
JP3379796B2 (en) Ferroelectric thin film manufacturing method
JP3405050B2 (en) Dielectric thin film and method for forming the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term