JPH0634353Y2 - Pulverized coal injection facility - Google Patents

Pulverized coal injection facility

Info

Publication number
JPH0634353Y2
JPH0634353Y2 JP11195090U JP11195090U JPH0634353Y2 JP H0634353 Y2 JPH0634353 Y2 JP H0634353Y2 JP 11195090 U JP11195090 U JP 11195090U JP 11195090 U JP11195090 U JP 11195090U JP H0634353 Y2 JPH0634353 Y2 JP H0634353Y2
Authority
JP
Japan
Prior art keywords
pulverized coal
duct
furnace
thermometer
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11195090U
Other languages
Japanese (ja)
Other versions
JPH0469438U (en
Inventor
剛士 花本
政彦 内村
繁一 三木
知夫 兄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11195090U priority Critical patent/JPH0634353Y2/en
Publication of JPH0469438U publication Critical patent/JPH0469438U/ja
Application granted granted Critical
Publication of JPH0634353Y2 publication Critical patent/JPH0634353Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は炉に微粉炭を吹き込む微粉炭吹込設備に係り、
特にインジェクタータンクから微粉炭供給ダクトに連通
する微粉炭投入ダクトの目詰まりを確実に検出し得るよ
うにした微粉炭吹込設備に関するものである。
The present invention relates to a pulverized coal blowing facility for blowing pulverized coal into a furnace,
In particular, the present invention relates to a pulverized coal injection facility capable of reliably detecting clogging of a pulverized coal feeding duct that communicates from an injector tank to a pulverized coal supply duct.

【従来の技術】[Prior art]

周知のように、例えば炉には重油の他に微粉炭が吹き込
まれるが、炉への微粉炭の吹き込みには以下に説明する
ような構成になる微粉炭吹込設備が用いられている。 炉に微粉炭を吹き込む一般的な微粉炭吹込設備は、模式
的構成説明図の第6図に示すように、炉hに連通する微
粉炭供給ダクト1を備え、この微粉炭供給ダクト1には
先ず炉h側から順に、この微粉炭供給ダクト1に微粉炭
を供給するインジェクタータンク2の下部の微粉炭投入
ダクト2aが三方継手2bを介して連通し、次いで空気供給
源aから供給される空気流量を測定する空気流量計3が
連通してなる構成になっている。 従って、インジェクタータンク2から微粉炭供給ダクト
1に微粉炭が供給されると、微粉炭は三方継手2bと炉h
の吹込口までの間の微粉炭混合送給部1aにおいて、空気
供給源aから供給される空気に混入すると共に下流側に
送給され、吹込口から炉h内に吹込まれる。 ところで、微粉炭投入ダクト2aに微粉炭が詰まると微粉
炭混合送給部1aに微粉炭が供給されなくなる結果、この
微粉炭混合送給部1aの内部抵抗が低下して空気流量が増
大するので、この空気流量の増大によって微粉炭投入ダ
クト2aの目詰まりが検出される。 つまり、微粉炭投入ダクト2aが目詰まりすると、微粉炭
混合送給部1a内の圧力損失だけとなるから、微粉炭供給
ダクト1の全体の圧損が、圧損変化説明図の第7図
(b)に示すように減少すると共に、これを流れる空気
流量は、空気流量変化説明図の第7図(a)に示すよう
に、正常時の空気流量をFANとすると、微粉炭供給ダク
ト2aの目詰まり発生により空気流量が急激に多くなりF
AAとなり、空気流量がFAAからFANに立ち上がる点を空気
流量計3によって測定して微粉炭投入ダクト2aの目詰ま
りを検出している。
As is well known, for example, pulverized coal is blown into a furnace in addition to heavy oil, but pulverized coal blowing equipment having a configuration as described below is used to blow pulverized coal into the furnace. A general pulverized coal blowing facility for blowing pulverized coal into a furnace is provided with a pulverized coal supply duct 1 communicating with a furnace h, as shown in FIG. First, in order from the furnace h side, the pulverized coal charging duct 2a in the lower part of the injector tank 2 for supplying the pulverized coal to the pulverized coal supplying duct 1 communicates with each other through the three-way joint 2b, and then the air supplied from the air supply source a. The air flow meter 3 for measuring the flow rate is in communication. Therefore, when the pulverized coal is supplied from the injector tank 2 to the pulverized coal supply duct 1, the pulverized coal is collected in the three-way joint 2b and the furnace h.
In the pulverized coal mixing and feeding section 1a up to the blowing port, the air is mixed with the air supplied from the air supply source a and fed to the downstream side, and is blown into the furnace h from the blowing port. By the way, when the pulverized coal charging duct 2a is clogged with pulverized coal, the pulverized coal mixing / feeding unit 1a is no longer supplied, so that the internal resistance of the pulverized coal mixing / feeding unit 1a decreases and the air flow rate increases. The clogging of the pulverized coal charging duct 2a is detected by the increase in the air flow rate. That is, if the pulverized coal feeding duct 2a is clogged, only the pressure loss in the pulverized coal mixing and feeding section 1a will occur, so that the overall pressure loss of the pulverized coal supply duct 1 is the pressure loss change explanatory diagram in FIG. 7 (b). As shown in Fig. 7 (a) of the air flow rate change explanatory diagram, the air flow rate decreases as shown in Fig. 7 and the normal air flow rate is F AN. The air flow rate suddenly increases due to clogging, and F
The point where the air flow rate becomes AA and the air flow rate rises from F AA to F AN is measured by the air flow meter 3 to detect clogging of the pulverized coal charging duct 2a.

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、上記したような微粉炭吹込設備では空気供給
源から供給される空気が、微粉炭投入ダクトを通してイ
ンジェクタータンクに逆流する場合があったりする他、
周知のように微粉炭吹込設備の中には供給空気量を一定
に制御するようにしたものもある。 このような何れの設備の場合にあっても、空気流量計に
よって検出される空気流量の変化が少ないので、微粉炭
投入ダクトの目詰まりの発生を検出することができない
場合が多々あって、その稼働効率の向上を阻害する一大
要因となっていた。 従って、本考案は確実に微粉炭投入ダクトの目詰まりの
発生を確実に検出し得る微粉炭吹込設備の提供を目的と
する。
However, in the pulverized coal blowing facility as described above, the air supplied from the air supply source may flow back to the injector tank through the pulverized coal charging duct,
As is well known, some of the pulverized coal blowing equipment is designed so that the amount of supplied air is controlled to be constant. In any of such equipment, since the change in the air flow rate detected by the air flow meter is small, it is often not possible to detect the occurrence of clogging of the pulverized coal charging duct. It was a major factor that hindered the improvement of operating efficiency. Therefore, an object of the present invention is to provide a pulverized coal injection facility that can reliably detect the occurrence of clogging of the pulverized coal charging duct.

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、微粉炭供給ダクトの微粉炭混合送給部には微
粉炭が送給されている場合といない場合とでは、この微
粉炭混合送給部の温度や静電容量が相違することを知見
して、上記した課題を解決したものであって、 従って、本考案の第1考案に係る微粉炭吹込設備の構成
は、空気供給源から炉に連通する微粉炭供給ダクトに、
微粉炭投入ダクトを介して微粉炭を供給するインジェク
タータンクが連通してなる微粉炭吹込設備において、前
記微粉炭供給ダクトの微粉炭投入ダクトとの連通部より
炉側に温度計を付設し、受信した該温度計の出力と予め
入力されている温度設定値との大小を比較する演算器を
配設したことを特徴とする。 また、本考案の第2考案に係る微粉炭吹込設備の構成
は、空気供給源から炉に連通する微粉炭供給ダクトに、
微粉炭投入ダクトを介して微粉炭を供給するインジェク
タータンクが連通してなる微粉炭吹込設備において、前
記微粉炭供給ダクトの微粉炭投入ダクトとの連通部より
炉側に静電容量検出センサを内設し、受信した該静電容
量検出センサの出力と予め入力されている静電容量設定
値との大小を比較する演算器を配設したことを特徴とす
る。
According to the present invention, the temperature and the capacitance of the pulverized coal mixing and feeding unit are different depending on whether the pulverized coal mixing and feeding unit of the pulverized coal feeding duct is fed or not. According to the findings, the above problems have been solved. Therefore, the configuration of the pulverized coal blowing equipment according to the first aspect of the present invention is such that the pulverized coal supply duct communicating from the air supply source to the furnace is
In a pulverized coal injection facility in which an injector tank that supplies pulverized coal through a pulverized coal feeding duct is connected, a thermometer is attached to the furnace side from the communication part of the pulverized coal feeding duct with the pulverized coal feeding duct to receive it. It is characterized in that an arithmetic unit for comparing the magnitude of the output of the thermometer with the preset temperature setting value is provided. Further, the configuration of the pulverized coal blowing equipment according to the second aspect of the present invention is such that the pulverized coal supply duct communicating from the air supply source to the furnace is
In a pulverized coal injection facility in which an injector tank for supplying pulverized coal is connected via a pulverized coal feeding duct, a capacitance detection sensor is installed inside the pulverized coal feeding duct on the furnace side from the communicating portion with the pulverized coal feeding duct. It is characterized in that an arithmetic unit for arranging and comparing the received output of the electrostatic capacitance detection sensor and the electrostatic capacitance set value input in advance is provided.

【作用】[Action]

先ず、本考案の第1考案に係る微粉炭吹込設備によれ
ば、微粉炭が供給されているときは微粉炭との摩擦によ
り微粉炭が微粉炭供給ダクトの微粉炭投入ダクトとの連
通部より炉側が暖められているが、微粉炭供給ダクトが
目詰まりを起こすと、微粉炭が供給されなくなるのでこ
の部位の温度が低下する。そして、低下したこの部位の
温度が温度計によって測定されると共に、演算器によっ
てこの温度計の出力値が予め入力されている温度設定値
と比較される。 次に、本考案の第2考案に係る微粉炭吹込設備によれ
ば、微粉炭供給ダクトの微粉炭投入ダクトとの連通部よ
り炉側に微粉炭が供給されているときの静電容量と、微
粉炭供給ダクトが目詰まりを起こして微粉炭が供給され
ていないときとの静電容量とは相違するが、前者の静電
容量をC1とし、後者の静電容量をC2とすると、C1>C2
関係があるので、この変化が静電容量検出センサによっ
て検出されると共に、演算器によって静電容量検出セン
サの出力値が予め入力されている静電容量設定値と比較
される。
First, according to the pulverized coal blowing equipment according to the first aspect of the present invention, when the pulverized coal is being supplied, the pulverized coal is rubbed with the pulverized coal from the communicating portion with the pulverized coal feeding duct of the pulverized coal supply duct. Although the furnace side is warmed, if the pulverized coal supply duct is clogged, the pulverized coal is no longer supplied, and the temperature at this site drops. Then, the lowered temperature of this portion is measured by the thermometer, and the output value of the thermometer is compared with the preset temperature input value by the calculator. Next, according to the pulverized coal blowing equipment according to the second aspect of the present invention, the electrostatic capacity when the pulverized coal is being supplied to the furnace side from the communicating portion of the pulverized coal supply duct with the pulverized coal charging duct, It is different from the capacitance when the pulverized coal supply duct is clogged and pulverized coal is not being supplied, but if the capacitance of the former is C 1 and the capacitance of the latter is C 2 , then Since there is a relationship of C 1 > C 2 , this change is detected by the capacitance detection sensor, and the output value of the capacitance detection sensor is compared by the calculator with the pre-input capacitance setting value. It

【実施例】【Example】

本考案に係る微粉炭吹込設備の実施例を、第1図乃至第
5図を参照しながら、従来と同一のものを同一符号を以
て以下に説明する。 第1実施例 この第1実施例になる微粉炭吹込設備を、その模式的構
成説明図の第1図と、温度変化説明図の第2図とを参照
しながら説明すると、第1図に示す符号hは炉であり、
この炉hには空気供給源aから微粉炭供給ダクト1が連
通している。 また、空気供給源aと炉hへの連通部との間において、
前記微粉炭供給ダクト1にはインジェクタータンク2の
下部の、遠隔操作開閉弁vが介装されてなる微粉炭投入
ダクト2aが三方継手2bを介して連通している。そして、
前記三方継手2bから炉hへの連通部との間の微粉炭混合
送給部1aに温度計4を付設した。このような温度計とし
ては、例えば熱電対を用いれば良い。 次いで、この温度計4の出力を、予め入力されている設
定温度と比較して温度計4の出力が設定温度以下になる
と出力信号を出力すると共に、その出力信号に基づいて
前記遠隔操作弁vを閉弁制御する演算器5を配設してな
る構成とした。 なお、この演算器5からの出力側が接続されてなるもの
は、温度計4の出力が設定温度以下になったときに警報
を発する監視用表示器6である。 以下、上記構成になる微粉炭吹込設備の作用態様を説明
すると、インジェクタータンク2から微粉炭投入ダクト
2aを通して微粉炭供給ダクト1の微粉炭混合送給部1aに
微粉炭が供給されているときは、微粉炭との摩擦により
微粉炭混合送給部1aが暖められているが、微粉炭混合送
給部1aまたは三方継手2bが目詰まりを起こすと、微粉炭
が供給されなくなるのでこの部位の温度が低下する。 すると、低下したこの部位の温度が温度計4により測定
されると共に、演算器5によりこの温度計の出力値が予
め入力されている温度設定値と比較される。つまり、温
度変化を実線で、また温度設定値を破線で示す第2図の
ように、実線で示す温度変化曲線と破線で示す温度設定
値との交点において、演算器5は微粉炭混合送給部1aま
たは三方継手2bが目詰まりを起こしたものと判断する。 その出力が監視用表示器6に入力されると、監視用表示
器6は目詰まり警報を発する。それと同時に遠隔操作開
閉弁vが閉弁され、インジェクタータンク2への空気の
逆流が防止される。 空気が逆流すると、インジェクタータンク2内の微粉炭
が燃焼するので、このような目詰まりの早期発見は微粉
炭の燃焼防止に対して極めて有効な手段となる。 第2実施例 この第2実施例になる微粉炭吹込設備を、その模式的構
成説明図の第3図と、静電容量検出センサの構成説明図
の第4図と、静電容量変化説明図の第5図とを参照しな
がら、第1実施例と相違する点についてだけ説明する。 即ち、上記した第1実施例において微粉炭混合送給部1a
に付設した温度計4を静電容量検出センサ7に置換して
なる構成としたものである。 より詳しくは、第4図において示すように、微粉炭混合
送給部1aに後述する静電容量検出センサ7が外設されて
いる。 この静電容量検出センサ7の詳細は、半円弧状に形成さ
れ、所定の間隔を隔ててその凹面側が相対する状態で対
向する一対の導電帯板7aのそれぞれの出力が出力導出線
7bを介して演算器5に接続されてなる構成になってい
る。 以下、上記構成になる微粉炭吹込設備の作用態様を説明
すると、インジェクタータンク2から微粉炭投入ダクト
2aを通して微粉炭供給ダクト1の微粉炭混合送給部1aに
微粉炭が供給されているときの静電容量検出センサ7の
内設部位の静電容量をC1とし、微粉炭投入ダクト2aが目
詰まりして微粉炭混合送給部1aに微粉炭が供給されてい
ないときの静電容量検出センサ7の内設部位の静電容量
をC2とすると、C1>C2の関係がある。 故に、静電容量変化を実線で、また静電容量設定値を破
線で示す第5図のように、実線で示す静電容量変化曲線
と破線で示す静電容量設定値との交点において、演算器
5は微粉炭投入ダクト2aが目詰まりを起こしたものと判
断する。 そして、その出力が監視用表示器6に入力されると、監
視用表示器6は目詰まり警報が発せられると共に遠隔操
作開閉弁vが閉弁されるので、この第2実施例は上記第
1実施例と同効である。 このように、上記2実施例になる微粉炭吹込設備は何れ
も、微粉炭混合送給部1aまたは三方継手2bの目詰まりや
微粉炭投入ダクト2aを通してのインジェクタータンク2
への空気の逆流に基づく微粉炭の燃焼に対して速やかに
然るべき処置を講じることができるようになり、復旧時
間の短縮に伴って微粉炭吹込設備の稼働率の大幅な向上
が可能になった。
An embodiment of the pulverized coal blowing equipment according to the present invention will be described below with reference to FIGS. First Embodiment A pulverized coal blowing facility according to the first embodiment will be described with reference to FIG. 1 of a schematic configuration explanatory view and FIG. 2 of a temperature change explanatory diagram. FIG. Reference numeral h is a furnace,
The pulverized coal supply duct 1 is communicated with the furnace h from the air supply source a. Further, between the air supply source a and the communication part to the furnace h,
The pulverized coal supply duct 1 is connected to a pulverized coal charging duct 2a, which is provided at a lower portion of the injector tank 2 and in which a remotely operated opening / closing valve v is interposed, through a three-way joint 2b. And
A thermometer 4 was attached to the pulverized coal mixing and feeding section 1a between the three-way joint 2b and the communication section to the furnace h. As such a thermometer, for example, a thermocouple may be used. Next, the output of the thermometer 4 is compared with a preset temperature input in advance, and when the output of the thermometer 4 becomes equal to or lower than the preset temperature, an output signal is output and the remote control valve v is output based on the output signal. The arithmetic unit 5 for controlling the valve closing is arranged. It should be noted that what is connected to the output side of the computing unit 5 is a monitoring display 6 that issues an alarm when the output of the thermometer 4 becomes below a set temperature. Hereinafter, the operation mode of the pulverized coal blowing equipment having the above-mentioned configuration will be described. From the injector tank 2 to the pulverized coal charging duct.
When pulverized coal is being supplied to the pulverized coal mixing and feeding unit 1a of the pulverized coal feeding duct 1 through 2a, the pulverized coal mixing and feeding unit 1a is warmed by friction with the pulverized coal, but the pulverized coal mixing and feeding unit 1a is warmed. When the feeding part 1a or the three-way joint 2b is clogged, the pulverized coal is no longer supplied, and the temperature of this part drops. Then, the lowered temperature of this portion is measured by the thermometer 4, and the output value of the thermometer is compared by the calculator 5 with the preset temperature set value. That is, as shown in FIG. 2 in which the temperature change is indicated by a solid line and the temperature set value is indicated by a broken line, at the intersection of the temperature change curve indicated by the solid line and the temperature set value indicated by the broken line, the computing unit 5 causes the pulverized coal mixed feed It is determined that the part 1a or the three-way joint 2b has clogged. When the output is input to the monitor display 6, the monitor display 6 issues a clogging alarm. At the same time, the remote control on-off valve v is closed to prevent backflow of air to the injector tank 2. When the air flows backward, the pulverized coal in the injector tank 2 burns, so early detection of such clogging is an extremely effective means for preventing the combustion of the pulverized coal. Second Embodiment A pulverized coal blowing facility according to the second embodiment is schematically illustrated in FIG. 3, FIG. 4 is an explanatory view of a configuration of a capacitance detection sensor, and FIG. Only the points different from the first embodiment will be described with reference to FIG. That is, in the above-described first embodiment, the pulverized coal mixing and feeding unit 1a
In this configuration, the thermometer 4 attached to is replaced with the capacitance detection sensor 7. More specifically, as shown in FIG. 4, the pulverized coal mixing and feeding section 1a is provided with a capacitance detection sensor 7 to be described later. The details of this capacitance detection sensor 7 are formed in a semi-circular shape, and the output of each of a pair of conductive strips 7a facing each other with their concave surfaces facing each other at a predetermined interval is an output lead line.
It is configured to be connected to the computing unit 5 via 7b. Hereinafter, the operation mode of the pulverized coal blowing equipment having the above-mentioned configuration will be described. From the injector tank 2 to the pulverized coal charging duct.
The electrostatic capacity of the internal portion of the electrostatic capacity detection sensor 7 when the pulverized coal is being supplied to the pulverized coal mixing and feeding section 1a of the pulverized coal supply duct 1 through 2a is set to C 1 , and the pulverized coal charging duct 2a is when the capacitance of the inner portion position of the electrostatic capacitance detecting sensor 7 when the pulverized coal in the pulverized coal mixture feeding portion 1a is not supplied clogged and C 2, a relationship of C 1> C 2 . Therefore, as shown in FIG. 5 in which the capacitance change is indicated by a solid line and the capacitance setting value is indicated by a broken line, calculation is performed at the intersection of the capacitance change curve indicated by the solid line and the capacitance setting value indicated by the broken line. The vessel 5 judges that the pulverized coal charging duct 2a is clogged. When the output is input to the monitor display 6, the monitor display 6 issues a clogging alarm and the remote control on-off valve v is closed. It has the same effect as the embodiment. As described above, in all of the pulverized coal blowing equipment according to the above-described two embodiments, the pulverized coal mixing and feeding unit 1a or the three-way joint 2b is clogged, and the injector tank 2 through the pulverized coal charging duct 2a is used.
It is now possible to take appropriate measures promptly for the combustion of pulverized coal due to the backflow of air to the air, and it has become possible to significantly improve the operating rate of the pulverized coal injection facility as the recovery time is shortened. .

【考案の効果】[Effect of device]

以上詳述したように、第1考案によれば、微粉炭投入ダ
クトが目詰まりして微粉炭供給ダクトに微粉炭が供給さ
れなくなると、微粉炭供給ダクトの温度が低下し、これ
が温度計により検出され、また第2考案によれば、微粉
炭投入ダクトが目詰まりして微粉炭供給ダクトに微粉炭
が供給されなくなると、微粉炭供給ダクトの静電容量が
低下してこれが静電容量検出センサによって検出され、
そしてそれらの検出値が何れもそれらの設定値のそれぞ
れと大小比較されるので、空気流量の変化の如何を問わ
ず微粉炭投入ダクトの目詰まりが確実に検出できるよう
になり、速やかに微粉炭投入ダクト目詰まりの復旧処置
を講じることが可能になる結果、微粉炭吹込設備の稼働
率の向上に対して極めて多大な効果を奏する。
As described above in detail, according to the first aspect, when the pulverized coal feeding duct is clogged and the pulverized coal feeding duct is no longer supplied, the temperature of the pulverized coal feeding duct decreases, and this is caused by the thermometer. According to the second invention, when the pulverized coal supply duct is clogged and the pulverized coal supply duct is no longer supplied, the electrostatic capacitance of the pulverized coal supply duct decreases and this is detected as the electrostatic capacitance. Detected by the sensor,
Since the detected values are compared with their respective set values, clogging of the pulverized coal charging duct can be reliably detected regardless of changes in the air flow rate, and pulverized coal can be promptly detected. As a result of being able to take measures to restore the clogging of the charging duct, a very great effect is achieved for improving the operating rate of the pulverized coal blowing equipment.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第5図は本考案の実施例に係り、第1図は第
1実施例になる微粉炭吹込設備の模式的構成説明図、第
2図は温度変化説明図、第3図は第2実施例になる微粉
炭吹込設備の模式的構成説明図、第4図は静電容量検出
センサの構成説明図、第5図は静電容量変化説明図、第
6図乃至第7図(b)は従来例に係り、第6図は微粉炭
吹込設備の模式的構成説明図、第7図(a)は空気流量
変化説明図、第7図(b)は圧損変化説明図である。 1…微粉炭供給ダクト、1a…微粉炭混合送給部、2…イ
ンジェクタータンク、2a…微粉炭投入ダクト、2b…三方
継手、4…温度計、5…演算器、6…監視用表示器、7
…静電容量検出センサ、7a…導電帯板、7b…出力導出
線、a…空気供給源、h…炉、v…遠隔操作開閉弁。
1 to 5 relate to an embodiment of the present invention, FIG. 1 is a schematic configuration explanatory view of pulverized coal blowing equipment according to the first embodiment, FIG. 2 is a temperature change explanatory view, and FIG. 3 is A schematic configuration explanatory view of a pulverized coal blowing facility according to a second embodiment, FIG. 4 is a configuration explanatory view of a capacitance detection sensor, FIG. 5 is a capacitance change explanatory view, and FIGS. 6 to 7 ( FIG. 6B is a schematic configuration explanatory view of the pulverized coal blowing equipment, FIG. 7A is an air flow rate variation explanatory diagram, and FIG. 7B is a pressure loss variation explanatory diagram. DESCRIPTION OF SYMBOLS 1 ... Pulverized coal supply duct, 1a ... Pulverized coal mixing and feeding section, 2 ... Injector tank, 2a ... Pulverized coal input duct, 2b ... Three-way joint, 4 ... Thermometer, 5 ... Computing unit, 6 ... Monitoring indicator, 7
... Capacitance detection sensor, 7a ... Conductive strip, 7b ... Output lead wire, a ... Air supply source, h ... Furnace, v ... Remotely operated on-off valve.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】空気供給源から炉に連通する微粉炭供給ダ
クトに、微粉炭投入ダクトを介して微粉炭を供給するイ
ンジェクタータンクが連通してなる微粉炭吹込設備にお
いて、前記微粉炭供給ダクトの微粉炭投入ダクトとの連
通部より炉側に温度計を付設し、受信した該温度計の出
力と予め入力されている温度設定値との大小を比較する
演算器を配設したことを特徴とする微粉炭吹込設備。
1. A pulverized coal injection facility in which an injector tank for supplying pulverized coal through a pulverized coal feeding duct communicates with a pulverized coal supply duct communicating from an air supply source to a furnace. It is characterized in that a thermometer is attached to the furnace side from the communication part with the pulverized coal charging duct, and a calculator is provided for comparing the received output of the thermometer and the temperature input value input in advance. Pulverized coal blowing equipment.
【請求項2】空気供給源から炉に連通する微粉炭供給ダ
クトに、微粉炭投入ダクトを介して微粉炭を供給するイ
ンジェクタータンクが連通してなる微粉炭吹込設備にお
いて、前記微粉炭供給ダクトの微粉炭投入ダクトとの連
通部より炉側に静電容量検出センサを内設し、受信した
該静電容量検出センサの出力と予め入力されている静電
容量設定値との大小を比較する演算器を配設したことを
特徴とする微粉炭吹込設備。
2. A pulverized coal blowing facility in which an injector tank for supplying pulverized coal through a pulverized coal charging duct communicates with a pulverized coal supply duct communicating from an air supply source to a furnace. A capacitance detection sensor is installed inside the furnace from the part communicating with the pulverized coal charging duct, and the calculation is performed to compare the magnitude of the received output of the capacitance detection sensor with the preset capacitance setting value. Pulverized coal blowing equipment characterized by the provision of a vessel.
JP11195090U 1990-10-24 1990-10-24 Pulverized coal injection facility Expired - Lifetime JPH0634353Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195090U JPH0634353Y2 (en) 1990-10-24 1990-10-24 Pulverized coal injection facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195090U JPH0634353Y2 (en) 1990-10-24 1990-10-24 Pulverized coal injection facility

Publications (2)

Publication Number Publication Date
JPH0469438U JPH0469438U (en) 1992-06-19
JPH0634353Y2 true JPH0634353Y2 (en) 1994-09-07

Family

ID=31859443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195090U Expired - Lifetime JPH0634353Y2 (en) 1990-10-24 1990-10-24 Pulverized coal injection facility

Country Status (1)

Country Link
JP (1) JPH0634353Y2 (en)

Also Published As

Publication number Publication date
JPH0469438U (en) 1992-06-19

Similar Documents

Publication Publication Date Title
CN104236108A (en) Gas secondary pressure detecting and adjusting device and method of gas water heater
US7168628B2 (en) Control valve monitoring
EP2177828A1 (en) Gas shutoff device
JPH0634353Y2 (en) Pulverized coal injection facility
JP5243843B2 (en) Combustion equipment and abnormality diagnosis method for combustion equipment
CN207095056U (en) Water heater
CN207907976U (en) The temperature and pressure compensation measuring device that crystal processing workshop is installed with low level
CN219588982U (en) Pulverized coal equally dividing device
JP3063514B2 (en) Flow measurement method using pressure sensor
JP2017129392A (en) Gas meter
GB1600988A (en) Refrigerated containers including airflow indicator
CN205405291U (en) Electrified intelligent temperature controller who shows that flows
CN116007399A (en) Combustion control system for heating furnace and combustion control method for heating furnace
JPS63226510A (en) Method and device for controlling fluidized medium in fluidized-bed combustion furnace
JPH0346341Y2 (en)
JP3849196B2 (en) Fluid safety supply device
JPH0731161Y2 (en) Zirconia oximeter
JP2525914B2 (en) Controller for electric mixing valve in water heater
AU2002244537B2 (en) Control valve monitoring
JPH06180266A (en) Monitoring device for abnormality of gas supply equipment
JPH042733A (en) Method for detecting and controlling abnormal falling of material in vertical melting furnace
JPH0740808Y2 (en) Water pump capacity detection device in boiler system
JPH0542591B2 (en)
JPH08183969A (en) Method for sensing through panel of unvaporized liquid in open rack type lng vaporizer and apparatus therefor
JPS6384751A (en) Method for detecting clogging of spray nozzle for continuous casting