JPS63226510A - Method and device for controlling fluidized medium in fluidized-bed combustion furnace - Google Patents

Method and device for controlling fluidized medium in fluidized-bed combustion furnace

Info

Publication number
JPS63226510A
JPS63226510A JP62058245A JP5824587A JPS63226510A JP S63226510 A JPS63226510 A JP S63226510A JP 62058245 A JP62058245 A JP 62058245A JP 5824587 A JP5824587 A JP 5824587A JP S63226510 A JPS63226510 A JP S63226510A
Authority
JP
Japan
Prior art keywords
medium
fluidized
fluidized bed
detecting
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62058245A
Other languages
Japanese (ja)
Other versions
JP2518838B2 (en
Inventor
Kyoichi Yorozu
萬 強一
Shigenobu Takada
高田 茂伸
Masahiko Tanabe
田辺 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62058245A priority Critical patent/JP2518838B2/en
Publication of JPS63226510A publication Critical patent/JPS63226510A/en
Application granted granted Critical
Publication of JP2518838B2 publication Critical patent/JP2518838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Control Of Combustion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To permit the automatic control of the supplying amount of fluidized medium in accordance with the change of grain size of the fluidized medium, by a method wherein the inlet temperature and the outlet temperature of detecting medium in a detecting tube, which receives heat at specified positions in and out of a fluidized bed consisting of the fluidized medium and fuel, are measured and a temperature difference between them is operated to control the supplying amount of the fluidized medium. CONSTITUTION:Combustion air, before entering into an air preheater 4, is introduced into a detecting tube 7 as a detecting medium. The temperature of the detecting medium is measured by a thermometer 19 and then, the medium is utilized as combustion air. Heat exchange between combustion gas in a fluidized bed 3 and fluidized medium is effected when the detecting medium passes through the detecting tube 7. When the grain size of the fluidized medium becomes rough, the heat transfer rate becomes worse and the temperature of the medium at the outlet port of the detecting tube 7 is reduced. When the grain size becomes small, it becomes reverse. The temperature rise of the detecting medium at the outlet port of the detecting tube 7, arranged out of the fluidized bed 3, becomes about 1/2 compared with the temperature rise of the same at the outlet port of the detecting tube 7, arranged in the fluidized bed 3; therefore, a temperature difference is generated between the detecting fluid in the detecting tubes 7. This temperature difference is inputted into a controller 13 to output a signal to the inverter 9 of a fluidized medium supplier 8 and change the supplying amount of the fluidized medium in order to maintain the proper grain size of the fluidized medium.

Description

【発明の詳細な説明】 〔産業−にの利用分野〕 本発明は、流動媒体と燃料とからなる流動層の流動媒体
の制御に係り、特に、流動媒体の流動層内の流動状態及
び伝熱特性を良好に保つのに好適な流動層燃焼炉の流動
媒体の制御方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the control of a fluidized bed consisting of a fluidized medium and a fuel, and particularly to the control of the fluidized state and heat transfer of the fluidized medium in the fluidized bed. The present invention relates to a method and apparatus for controlling a fluidized medium in a fluidized bed combustion furnace suitable for maintaining good characteristics.

〔従来の技術〕[Conventional technology]

従来は、流動層燃焼炉の流動媒体の制御方法及び装置は
第2図を参照しながら説明すると、流動層3内の流動状
態を把握するためには層中温度計7によって流動層3の
層温度を計測する必要があり、例えば層温度が規定値に
対してずれてくると流動層3の流動状態が悪くなってき
たことを示す。
Conventionally, a method and apparatus for controlling a fluidized medium in a fluidized bed combustion furnace will be explained with reference to FIG. It is necessary to measure the temperature; for example, if the bed temperature deviates from a specified value, this indicates that the fluidization state of the fluidized bed 3 has deteriorated.

その場合、原因を知るためにも流動媒体の粒径分布の測
定を第2図に示されるように媒体冷却器12の媒体サン
プリング口23から、あるインターバルでサンプリング
して測定しておく必要があった。また、このサンプリン
グは燃料の灰分が多く流flI層3内にも残留する様な
ものである場合(例えば1選炭廃水スラッジ等を燃料と
した場合)、燃料の投入状態に合わせサンプリングの頻
度をふやす必要があった。更にサンプリングしたものは
振動ふるい15にかけた後、重量を計測しその粒径分布
を求める作業が必要でありこれらを運転員が行なってい
た。ところが1粒径以外の原因でも流動層3の層温度が
変化する場合があり、例えば、流動層の層高が低い場合
、燃料が供給できなくなった場合、燃料と燃焼用空気量
のバランスがとれなかった場合などその他種々あり、流
動状態把握のために種々の計測、制御など多くの人力と
時間を必要としていた。また、種々の要素が絡み合うの
で制御も建しかった。
In that case, in order to find out the cause, it is necessary to measure the particle size distribution of the fluidized medium by sampling it at certain intervals from the medium sampling port 23 of the medium cooler 12, as shown in FIG. Ta. In addition, if the fuel has a high ash content and remains in the flow flI layer 3 (for example, when using coal-washing wastewater sludge, etc. as fuel), the frequency of sampling may be increased depending on the fuel input condition. There was a need. Furthermore, after passing the sample through a vibrating sieve 15, it is necessary to measure its weight and determine its particle size distribution, which is performed by an operator. However, the bed temperature of the fluidized bed 3 may change due to factors other than the particle size. For example, if the bed height of the fluidized bed is low, or if fuel cannot be supplied, the balance between the amount of fuel and combustion air may not be maintained. There were various other cases where the flow condition was not present, and it required a lot of manpower and time to perform various measurements and controls to understand the flow state. Also, since various elements were intertwined, it was easy to control.

前記のように、流動層の流動状態制御には種々の要素が
あるが、その中で特に重要なのは流動媒体の粒径の制御
であって従来の技術ではサンプリングによって行なうの
で連続監視ができなかった。
As mentioned above, there are various factors involved in controlling the fluid state of a fluidized bed, but the most important of these is the control of the particle size of the fluidized medium, and conventional technology does this by sampling, so continuous monitoring is not possible. .

そのため、連続的に変化する他の種々のパラメーターと
の関連性が計測できない欠点があった。
Therefore, there was a drawback that the relationship with various other continuously changing parameters could not be measured.

また、流動層内の流動状態を把握するため第2図に示さ
れるように、流動層の上下方向に3本の温度計7を設置
して層温度を測定していたが、流動層の一部分の温度し
か8111定できないため、部分的に生ずる流動不良(
例えば、燃料の解砕、拡散が悪い選炭廃水スラッジ等で
は部分的にかたまって流動不良を起こす)の検出ができ
ず、その部分にクリンカー(焼きかたまった塊)が生じ
てやがて流動層全体に流動不良をおこす現象に対処でき
なかった。つまり、従来の技術では壁際の限定された位
置でしか層温度が検出できなかった。そのため1.特に
前記の様な拡散が悪C1燃料や悪い残渣が残る燃料で傾
斜壁の炉底構造をもつ流動層ボイラーでは、中央付近や
燃料投入口付近の流動状態が把握できない欠点があった
In addition, in order to understand the flow state in the fluidized bed, three thermometers 7 were installed in the vertical direction of the fluidized bed to measure the bed temperature, as shown in Figure 2, but only a portion of the fluidized bed Since only the temperature of
For example, if the fuel is crushed or the coal cleaning wastewater sludge has poor diffusion, it may not be possible to detect clinker (hardened lumps) that form in those areas and eventually flow throughout the fluidized bed. It was not possible to deal with the phenomenon that caused the defect. In other words, with the conventional technology, the layer temperature could only be detected at a limited location near the wall. Therefore 1. In particular, in a fluidized bed boiler having a bottom structure with an inclined wall and using C1 fuel with poor diffusion or fuel with poor residue as described above, there is a drawback that the flow state near the center or near the fuel input port cannot be determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は、流動媒体と燃料とからなる流動層の流動状態を
監視し制御するとき、流動媒体の粒径の変化と、他の連
続的に変化するパラメーター(1温度9層高、燃料供給
量、空気量、蒸発量、温度及びその他種々の要りを同時
に監視し制御するという点については配慮されていない
ので運転上の問題があった。
Conventionally, when monitoring and controlling the flow state of a fluidized bed consisting of a fluidized medium and fuel, changes in the particle size of the fluidized medium and other continuously changing parameters (1 temperature, 9 layer height, fuel supply amount, There were operational problems because no consideration was given to simultaneously monitoring and controlling air volume, evaporation volume, temperature, and various other requirements.

本発明の目的1主、流動媒体の粒径変化を連続的に監視
し、その変化に対応して流動媒体の供給量の制御が自動
的に行なえるようにした流動層燃焼炉の流動媒体の制御
方法及び装置を提供することにある。
Purpose of the present invention (1) Main purpose of the present invention is to continuously monitor the particle size change of the fluidized medium and automatically control the supply amount of the fluidized medium in response to the change. An object of the present invention is to provide a control method and device.

〔問題点を解決するための手段〕[Means for solving problems]

第一の発明の流動層燃焼炉の流動媒体の制御方法は、流
動媒体と燃料とからなる流動層内及び流動層外の特定位
置で受熱する少なくとも1個の検出管内の検出用媒体入
口及び出口温度を測定し、その温度差を演算して流動媒
体の供給量を制御する構成とする。
A method for controlling a fluidized medium in a fluidized bed combustion furnace according to the first invention includes a detection medium inlet and outlet in at least one detection tube that receives heat at a specific position within and outside the fluidized bed consisting of a fluidized medium and fuel. The configuration is such that the temperature is measured and the temperature difference is calculated to control the supply amount of the fluid medium.

また、第2の発明の流動層燃焼炉の流動媒体の制御装置
は、流動媒体と燃料とからなる流動層内及び流91層外
の特定位置に配設されて受熱する少なくとも1個の検出
管と、該検出管内を流れる検出用媒体の入口及び出口温
度を測定する複数の温度計と、これら温度計のそれぞれ
の温度差を演算して信号を出力する制御器と、前記信号
で流動媒体の供給量を制御する流動媒体供給器及び流動
媒体リサイクル機構とから構成される。
Further, the fluidized medium control device for a fluidized bed combustion furnace according to the second invention includes at least one detection tube that is disposed at a specific position inside the fluidized bed made of the fluidized medium and fuel and outside the flow 91 layer to receive heat. a plurality of thermometers that measure the inlet and outlet temperatures of the detection medium flowing in the detection tube; a controller that calculates the temperature difference between these thermometers and outputs a signal; It is composed of a fluidized media supply device that controls the supply amount and a fluidized media recycling mechanism.

〔作用〕[Effect]

本発明によれば、流動層燃焼炉の流動媒体と燃料とから
なる流動層内に配設される検出管は、流動層内の燃焼ガ
スと流動媒体が有する熱量を管内を流れる検出用媒体に
伝える。その熱量によって、検出管出口での検出用媒体
温度はある温度まで」−昇するが、流動媒体の粒径が変
化すると熱伝達率も変化し出口の検出用媒体温度に変化
を生ずる。
According to the present invention, a detection tube disposed in a fluidized bed made of a fluidized medium and fuel of a fluidized bed combustion furnace transfers the heat amount of the combustion gas and fluidized medium in the fluidized bed to the detection medium flowing inside the tube. tell. Due to the amount of heat, the temperature of the detection medium at the outlet of the detection tube rises to a certain temperature, but as the particle size of the fluid medium changes, the heat transfer coefficient also changes, causing a change in the temperature of the detection medium at the outlet.

一方、流動層外に露出して配設される検出管は、排気ガ
スの熱量を伝えるので流動層内に配設される検出管に較
べて熱伝達率が低く出口の検出用媒体温度の上昇が小さ
い。従って検出管の位置を特定して出口の検出用媒体温
度を測定することで流上ノ媒体の粒径や層高が連続的に
判かり、制御器によって流動媒体の供給量が制御される
On the other hand, a detection tube installed exposed outside the fluidized bed transmits the heat of the exhaust gas, so the heat transfer coefficient is lower than that of a detection tube installed inside the fluidized bed, resulting in an increase in the temperature of the detection medium at the outlet. is small. Therefore, by specifying the position of the detection tube and measuring the temperature of the detection medium at the outlet, the particle size and layer height of the upstream medium can be continuously determined, and the supply amount of the fluid medium can be controlled by the controller.

〔実施例〕〔Example〕

本発明に使用する装置及び制御方法について第1図を参
照しながら説明する。
The apparatus and control method used in the present invention will be explained with reference to FIG.

本発明は、流動層燃焼炉例えば流動層ボイラーの流動媒
体と燃料とからなる流動層内で流動の安定化を計るため
に最も重要な流動媒体の制御方法及び装置と維持の機構
を提供するものである。第】図に示されるように、検出
用媒体に燃焼用空気を用いる場合は空気予熱器4をバイ
パスする燃焼用空気(検出用媒体)が流れる風道6と、
その風道6に接続しかつ多種燃料が流動媒体と流動状態
で燃焼する流動層3内及び流動層3外の特定位置に配設
される複数の検出管7と、該検出管7が受熱する熱敏変
化から流動媒体の粒径変化を連続的に検知する手段とし
て検出管7出口の検出用媒体の人口及び出口温度を測定
する少なくとも1個の温度計19と、この温度計19の
それぞれの温度差を演算して信号を出力する制御器13
と、この信号によって流動媒体の供給量及びリサイクル
基が制御されるインバータ9に接続する流動媒体供給器
8及び流動媒体リサイクル機構20に属する媒体抜出し
管10.ロータリバルブ11.流動媒体冷却器12、ス
ライドゲート14、振動ふるい15、媒体輸送ブロック
16、エゼクタ−17及び媒体輸送管18とから流動層
燃焼炉の流動媒体の供給量の制御装置が構成されている
The present invention provides a fluidized medium control method, apparatus, and maintenance mechanism that are most important for stabilizing the flow in a fluidized bed consisting of a fluidized medium and fuel in a fluidized bed combustion furnace, such as a fluidized bed boiler. It is. As shown in the figure, when combustion air is used as the detection medium, a wind duct 6 through which combustion air (detection medium) bypasses the air preheater 4;
A plurality of detection tubes 7 are connected to the air passage 6 and are disposed at specific positions within and outside the fluidized bed 3 where various fuels burn in a fluidized state with a fluidized medium, and the detection tubes 7 receive heat. At least one thermometer 19 for measuring the population and outlet temperature of the detection medium at the outlet of the detection tube 7 as a means for continuously detecting changes in particle size of the fluidized medium from changes in thermal sensitivity; Controller 13 that calculates the temperature difference and outputs a signal
and a fluidic medium supply device 8 connected to an inverter 9 and a media extraction pipe 10 belonging to the fluidic medium recycling mechanism 20, whose fluidic medium supply amount and recycling unit are controlled by this signal. Rotary valve 11. The fluidized medium cooler 12, slide gate 14, vibrating screen 15, medium transport block 16, ejector 17, and medium transport pipe 18 constitute a device for controlling the amount of fluidized medium supplied to the fluidized bed combustion furnace.

燃焼用空気(検出用媒体)は押込通風機5によって空気
予熱器4を通り予熱されて流動層ボイラ一本体(流動層
燃焼炉)1に供給されるが温度差を利用するため、その
差が顕著になる様に空気予熱器4に入る前の燃焼用空気
を風道6を経由して検出用媒体として検出管7に導く。
Combustion air (detection medium) is preheated by a forced draft fan 5 through an air preheater 4 and supplied to the fluidized bed boiler main body (fluidized bed combustion furnace) 1, but since the temperature difference is used, the difference is In order to be more noticeable, the combustion air before entering the air preheater 4 is guided through the air passage 6 to the detection tube 7 as a detection medium.

または、別途に検出用媒体を供給しても良い。検出管7
を通り昇温した検出用媒体は温度計19で温度を測定さ
れた後、ボイラ一本体1に導かれて燃焼用空気として利
用される。そして、検出管7を通過する際に流動層3内
の燃焼ガス及び流動媒体との熱交換が行なわれるが、流
動媒体の粒径が粗くなると熱伝達ユ后が悪くなり、検出
管7出口の媒体温度は下がる。粒径が細かくなるとその
逆になる。また、流動層3外に露出して配設された検出
管7は、流動層3内に配設された検出管7に較べて熱伝
達率が小さくなる(それは、流動媒体による熱伝達がな
くなるため流動層3内に配設された検出管7に較へ約1
/2になる)ため検出管7出口における検出用媒体温度
の上昇は約1/2になって流動層3内の検出管7と温度
差を生じる。
Alternatively, a detection medium may be supplied separately. Detection tube 7
The temperature of the detection medium that has been raised through the temperature gauge 19 is measured by a thermometer 19, and then guided to the boiler main body 1 and used as combustion air. When passing through the detection tube 7, heat exchange occurs between the combustion gas in the fluidized bed 3 and the fluidized medium, but as the particle size of the fluidized medium becomes coarse, the heat transfer rate deteriorates, and the The medium temperature decreases. The opposite is true when the particle size becomes finer. Furthermore, the detection tube 7 exposed outside the fluidized bed 3 has a lower heat transfer coefficient than the detection tube 7 placed inside the fluidized bed 3 (this is because heat transfer by the fluidized medium is eliminated). Therefore, compared to the detection tube 7 disposed in the fluidized bed 3, approximately 1
/2), the rise in the temperature of the detection medium at the outlet of the detection tube 7 is approximately 1/2, creating a temperature difference with the detection tube 7 in the fluidized bed 3.

今、維持しようとする流動媒体の粒径の時の検出管7出
口の検出用媒体を空気とした場合の温度は第3図に示さ
れるように判っているので、その温度変化によって流動
媒体の粒径の変化を知ることができる。この温度変化を
制御器13に入力し適正な流動媒体粒径に維持するため
、流動媒体供給I辻8のインバータ9に信号を出力し供
給器を変化させる。すなわち、流動媒体の粒径が細かす
ぎると流動層ボイラ一本体1の外へ飛散して流動層3の
層高が低くなり流動層3内で燃料の拡散が十分に行なわ
れない。また、層中管2が流動層3から露出しそうにな
り摩耗が激しくなるいわゆるスプラッシュゾーンに入る
現象が出る。一方、流動媒体の粒径が粗くなると流動層
3内での流動が緩慢になって層中管2への熱伝達が悪く
なり層温度が上がって、クリンカー(焼きかたまった塊
)生成の1−ラブルも生じやすく運転不能になるので流
動媒体の供給量を変化させる必要がある。
Now, the temperature when air is used as the detection medium at the outlet of the detection tube 7 at the particle size of the fluid medium to be maintained is known as shown in Figure 3, so the temperature change can be used to Changes in particle size can be detected. In order to input this temperature change to the controller 13 and maintain the fluidized medium particle size at an appropriate level, a signal is output to the inverter 9 of the fluidized medium supply point 8 to change the feeder. That is, if the particle size of the fluidized medium is too small, it will scatter to the outside of the fluidized bed boiler main body 1 and the bed height of the fluidized bed 3 will become low, resulting in insufficient diffusion of fuel within the fluidized bed 3. In addition, a phenomenon occurs in which the bed tube 2 becomes exposed from the fluidized bed 3 and enters a so-called splash zone where wear becomes severe. On the other hand, when the particle size of the fluidized medium becomes coarse, the flow within the fluidized bed 3 becomes slow, heat transfer to the tubes 2 in the bed becomes poor, the bed temperature rises, and clinker (hardened lumps) is formed. Since the system is prone to trouble and becomes inoperable, it is necessary to change the amount of fluidized medium supplied.

または、流動媒体リサイクル機構のロータリバルブLを
運転成いは停止して流動媒体の抜き出し及び層高の維持
を行ない、抜き出す場合は、スライドゲート14を開け
、振動ふるい15で適正な粒径のもののみエゼクタ−1
7を媒体輸送ブロワ16で駆動することによって流動層
3内にリサイクルさせ、粒径の回復を行なわせることが
出来る様にしたものである。
Alternatively, the rotary valve L of the fluidized medium recycling mechanism is operated or stopped to extract the fluidized medium and maintain the bed height. When withdrawing the fluidized medium, open the slide gate 14 and use the vibrating sieve 15 to collect particles of appropriate particle size. chisel ejector-1
By driving the particles 7 with a medium transport blower 16, the particles can be recycled into the fluidized bed 3 and the particle size can be recovered.

この様に、検出管7を配設することによって、簡単に粒
径の制御や層高の制御ができ、しかも燃料などの変化に
応じ同時に連続的に監視することが可能となることによ
り流動状態の把握が迅速にでき、(従来は層温度の変化
のみに代替されていたが1粒径81す定が同時ではない
ため判定が難しく運転制御が困難であった)また、その
対応も温度変化によって直ちに付属機器の運転停止を行
なわせることが出来るようにしたものである。
In this way, by arranging the detection tube 7, it is possible to easily control the particle size and bed height, and it is also possible to simultaneously and continuously monitor changes in the fuel, etc., thereby making it possible to control the flow state. (Previously, this was replaced by only changes in layer temperature, but since the grain size 81 was not determined at the same time, it was difficult to judge and control operation.) This makes it possible to immediately stop the operation of attached equipment.

本発明の第3実施例を第1図を参照しながら説明する。A third embodiment of the present invention will be described with reference to FIG.

各分割層の炉底エアノズル面より150111111〜
200nnの位置で各分割層の午前後方向に少なくとも
3個所(午前後壁より500mm以内の位置と、分割層
中央付近の3箇所)に検出管及び温度計を設ける構成と
する。
150111111~ from the furnace bottom air nozzle surface of each divided layer
The configuration is such that detection tubes and thermometers are provided at at least three locations in the morning and rear directions of each division layer at 200 nn positions (positions within 500 mm from the morning rear wall and three locations near the center of the division layer).

本発明の第4実施例は、燃料を自然落下で供給する流動
層燃焼炉例えば流動層ボイラーでは燃料の投入口直下に
検出管及び温度計を設ける構成とする。
In a fourth embodiment of the present invention, in a fluidized bed combustion furnace, such as a fluidized bed boiler, in which fuel is supplied by gravity, a detection tube and a thermometer are provided directly below the fuel inlet.

本発明の第5実施例を第1図を参照しながら説明する。A fifth embodiment of the present invention will be described with reference to FIG.

燃焼残渣が流動層内に残る燃料を供給する流動層燃焼炉
例えば流動層ボイラーでは流動層の」二下方向に少なく
とも3箇所(静止層高より100m下の位置と、流動層
中央の位置と、炉底エアノズル面より200nm上の位
置の3個所)に検出管及び温度計を設け、これらが同時
に層温度検出及び表示を行なえる構成とする。
In a fluidized bed combustion furnace, such as a fluidized bed boiler, in which combustion residue remains in the fluidized bed, the fuel is supplied to at least three locations below the fluidized bed (a location 100 m below the static bed height, a location at the center of the fluidized bed, Detection tubes and thermometers are installed at three locations 200 nm above the furnace bottom air nozzle surface, and the configuration is such that these can simultaneously detect and display the layer temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流動層燃焼炉の流動媒体の制御装置に
よって流動媒体をサンプリングすることなく、検出管に
設けた温度計で出口の検品用媒体温度を読むことが容易
に、かつ、連続的に流動媒体の粒径及び層高の管理がで
きるとともに、流動媒体の供給量とリサイクル量が制御
されるので効率良い流動層の流動状態の維持及び向上が
図られ。
According to the present invention, the temperature of the inspection medium at the outlet can be easily and continuously read with a thermometer installed in the detection tube without sampling the fluidized medium by the fluidized medium control device of the fluidized bed combustion furnace. The particle size and bed height of the fluidized medium can be controlled, and the supply amount and recycling amount of the fluidized medium can be controlled, so that the fluidized state of the fluidized bed can be efficiently maintained and improved.

運転制御の向上、簡素化及び経費の減少の効果がある。This has the effect of improving operational control, simplifying it, and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流動層燃焼炉の流動媒体の制御装置の
回路図、第2図は従来技術の流動媒体のサンプリング要
領を示す回路図、第3図は流動媒体の温度と粒径との関
係を示すグラフである。 1・・・流動層燃焼炉、  3・・・流動層、7・・・
検出管、     8・・・流動媒体供給器。 13・・・制御器、    19・・・温度計、20・
・・流動媒体リサイクル機構。
Fig. 1 is a circuit diagram of the fluidized medium control device of the fluidized bed combustion furnace of the present invention, Fig. 2 is a circuit diagram showing the procedure for sampling the fluidized medium of the prior art, and Fig. 3 shows the temperature and particle size of the fluidized medium. It is a graph showing the relationship between. 1... Fluidized bed combustion furnace, 3... Fluidized bed, 7...
Detection tube, 8... Fluid medium supply device. 13...Controller, 19...Thermometer, 20.
...Fluid media recycling mechanism.

Claims (5)

【特許請求の範囲】[Claims] (1)流動媒体と燃料とからなる流動層内及び流動層外
の特定位置で受熱する少なくとも1個の検出管内の検出
用媒体入口及び出口温度を測定し、その温度差を演算し
て流動媒体の供給量を制御することを特徴とする流動層
燃焼炉の流動媒体の制御方法。
(1) Measure the inlet and outlet temperatures of the detection medium in at least one detection tube that receives heat at a specific position within the fluidized bed consisting of the fluidized medium and fuel and outside the fluidized bed, and calculate the temperature difference to detect the fluidized medium. 1. A method for controlling a fluidized medium in a fluidized bed combustion furnace, the method comprising: controlling the supply amount of a fluidized bed combustion furnace.
(2)流動媒体と燃料とからなる流動層内及び流動層外
の特定位置に配設されて受熱する少なくとも1個の検出
管と、該検出管内を流れる検出用媒体の入口及び出口温
度を測定する複数の温度計と、これら温度計のそれぞれ
の温度差を演算して信号を出力する制御器と、前記信号
で流動媒体の供給量を制御する流動媒体供給器及び流動
媒体リサイクル機構とからなることを特徴とする流動燃
焼炉の流動媒体の制御装置。
(2) At least one detection tube that receives heat and is disposed at a specific position within and outside the fluidized bed consisting of a fluidized medium and fuel, and measures the inlet and outlet temperatures of the detection medium flowing inside the detection tube. a controller that calculates the temperature difference between these thermometers and outputs a signal, and a fluidic medium supply device and fluidic medium recycling mechanism that control the amount of fluidic medium supplied using the signal. A fluidized medium control device for a fluidized combustion furnace, characterized in that:
(3)流動層燃焼炉の炉底のエアーノズルの位置に近く
、それぞれの分割層の前後方向に少なくとも3個の検出
管及び温度計を設けたことを特徴とする特許請求の範囲
第2項に記載の流動層燃焼炉の流動媒体の制御装置。
(3) Claim 2, characterized in that at least three detection tubes and thermometers are provided in the front and back direction of each divided bed near the position of the air nozzle at the bottom of the furnace of the fluidized bed combustion furnace. A control device for a fluidized medium in a fluidized bed combustion furnace according to .
(4)燃料を自然落下で供給する流動層燃焼炉において
、前記燃料の投入口直下に検出管及び温度計を設けたこ
とを特徴とする特許請求の範囲第2項又は第3項に記載
の流動層燃焼炉の流動媒体の制御装置。
(4) In a fluidized bed combustion furnace in which fuel is supplied by gravity, a detection tube and a thermometer are provided directly below the fuel inlet. A control device for fluidized media in a fluidized bed combustion furnace.
(5)燃料残渣が流動層内に残る燃料を供給する流動層
燃焼炉において、流動層の上下方向に少なくとも3個所
に検出管及び温度計を設けたことを特徴とする特許請求
の範囲第2項、第3項及び第4項のうちいずれか1項に
記載の流動層燃焼炉の流動媒体の制御装置。
(5) A fluidized bed combustion furnace that supplies fuel with fuel residue remaining in the fluidized bed, characterized in that detection tubes and thermometers are provided at at least three locations in the vertical direction of the fluidized bed. A control device for a fluidized medium in a fluidized bed combustion furnace according to any one of Items 1, 3, and 4.
JP62058245A 1987-03-13 1987-03-13 Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace Expired - Fee Related JP2518838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058245A JP2518838B2 (en) 1987-03-13 1987-03-13 Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058245A JP2518838B2 (en) 1987-03-13 1987-03-13 Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace

Publications (2)

Publication Number Publication Date
JPS63226510A true JPS63226510A (en) 1988-09-21
JP2518838B2 JP2518838B2 (en) 1996-07-31

Family

ID=13078734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058245A Expired - Fee Related JP2518838B2 (en) 1987-03-13 1987-03-13 Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace

Country Status (1)

Country Link
JP (1) JP2518838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078345A1 (en) * 2004-02-13 2005-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of fluidized bed combustion for biomass fuel burning and apparatus therefor
JP2008241133A (en) * 2007-03-27 2008-10-09 Sumitomo Heavy Ind Ltd Fluid bed-type boiler
KR102243141B1 (en) * 2020-07-09 2021-04-22 한솔이엠이(주) Fluidized bed incinerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078345A1 (en) * 2004-02-13 2005-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of fluidized bed combustion for biomass fuel burning and apparatus therefor
JP2008241133A (en) * 2007-03-27 2008-10-09 Sumitomo Heavy Ind Ltd Fluid bed-type boiler
KR102243141B1 (en) * 2020-07-09 2021-04-22 한솔이엠이(주) Fluidized bed incinerator

Also Published As

Publication number Publication date
JP2518838B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
CN107750320A (en) Control method for the operation of burning boiler
JPS63226510A (en) Method and device for controlling fluidized medium in fluidized-bed combustion furnace
WO2019107422A1 (en) Fluidized bed monitoring method and device
JP2825734B2 (en) Control device for coal drying / classifying device
KR100794559B1 (en) Detection of poor fluidization in a fluidized bed ash cooler
JPH0375402A (en) Combustion control for fluidized bed furnace
JPS5952105A (en) Operation of fluidized bed type combustion furnace
JPH08258980A (en) Transporting condition determining method for powder and granular material inside hopper and device thereof
JPH05272732A (en) Method of controlling combustion in waste incinerator
JPS59225209A (en) Control method for height of fluidized bed and device thereof
JPS63187018A (en) Control device for fluidized bed type refuse incinerator
KR100883824B1 (en) Apparatus for detecting lump coal incomming to pulverized coal supplyer
JPS6124911A (en) Method of operation control of fluidizing incinerator
JPH10111187A (en) Fluidized bed combustor
JPH0623777B2 (en) Simultaneous measurement of fluid temperature and velocity
JP2909296B2 (en) Fluidized bed height control device for combustion furnace
JPH0346341Y2 (en)
JPS5913891B2 (en) Granulated slag production equipment
SU538207A1 (en) Device for feeding dust in the sintering furnace
JPS58211629A (en) Detecting method of layer factor of fluidized bed
JPH11248127A (en) Method for estimating volume of air being pushed into incinerator
JP2909297B2 (en) Fluidized bed height control device for combustion furnace
JPS613916A (en) Soot blower controlling device
JPH08278005A (en) Grain size monitoring device for circulation particle in circulation fluidized bed device
JPS6241634B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees