JPH06321621A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH06321621A
JPH06321621A JP5114431A JP11443193A JPH06321621A JP H06321621 A JPH06321621 A JP H06321621A JP 5114431 A JP5114431 A JP 5114431A JP 11443193 A JP11443193 A JP 11443193A JP H06321621 A JPH06321621 A JP H06321621A
Authority
JP
Japan
Prior art keywords
oxide superconductor
sintered body
sintered compact
grains
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5114431A
Other languages
Japanese (ja)
Other versions
JP3314102B2 (en
Inventor
Takayuki Inoue
貴之 井上
Hiromi Fujioka
ひろみ 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11443193A priority Critical patent/JP3314102B2/en
Publication of JPH06321621A publication Critical patent/JPH06321621A/en
Application granted granted Critical
Publication of JP3314102B2 publication Critical patent/JP3314102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the density a sintered compact as well as the degree of orientation of the crystalline grains of the sintered compact and to stably obtain an oxide superconductor having very high critical current density. CONSTITUTION:A mixture of oxides of elements constituting an oxide superconductor or compds. forming the oxides is compacted or calcined and compacted, the resulting compact is fired in an oxidizing atmosphere to form a sintered compact and this compact is partially or entirely melted under pressure. The melted sintered compact is recrystallized during cooling and flaky grains are deformed by the diffusion of atoms. By this deformation, the grains are turned into grains having a high aspect ratio and the sintered compact is densified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関し、詳細には、高密度で且つ高配向性を有する
酸化物超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a method for producing an oxide superconductor having high density and high orientation.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体よりも高い臨界温度Tc(抵抗がゼ
ロになる温度)を有する材料として酸化物超電導体が発
見され、その実用化が期待されている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as a material having a higher critical temperature Tc (temperature at which resistance becomes zero) than metal superconductors conventionally used as superconductors, and their practical application is expected. Has been done.

【0003】現在、酸化物超電導体としては、主として
Y−Ba−Cu−O系(以下、Y系という)、Bi−S
r−Ca−Cu−O系(以下、Bi系という)及びTl
−Ba−Ca−Cu−O系(以下、Tl系という)の3
種が知られており、これらは液体窒素等の安価な冷却媒
体で超電導となる臨界温度を有しているため、各分野で
実用化が進められている。なお、実用化に際してはこれ
ら酸化物超電導体は臨界電流密度(抵抗ゼロにおける電
流値)が大きいことも必要とされている。このうちBi
系酸化物超電導体においてはその結晶が鱗片状粒子から
なることから、この鱗片状粒子を一方向に配向させるこ
とにより臨界電流密度を高くすることができると考えら
れている。また、焼結体としてその相対密度を高め、高
緻密化することも特性上大きな要因であると言われてい
る。
At present, as oxide superconductors, mainly Y-Ba-Cu-O-based (hereinafter referred to as Y-based) and Bi-S are used.
r-Ca-Cu-O system (hereinafter referred to as Bi system) and Tl
-Ba-Ca-Cu-O system (hereinafter referred to as Tl system) 3
Species are known, and since these have a critical temperature at which they become superconducting with an inexpensive cooling medium such as liquid nitrogen, they are being put to practical use in various fields. In practical use, these oxide superconductors are required to have a large critical current density (current value at zero resistance). Of these, Bi
Since the crystals of the oxide-based oxide superconductors are composed of scaly particles, it is considered that the critical current density can be increased by orienting the scaly particles in one direction. In addition, it is said that the fact that the relative density of the sintered body is increased and the sintered body is highly densified is a major factor in terms of characteristics.

【0004】そこで、高密度の酸化物超電導体を作成す
る方法として、高い機械的な圧力を加えつつ加熱するホ
ットプレス法が採用されている。
Therefore, as a method for producing a high-density oxide superconductor, a hot press method of applying high mechanical pressure and heating is adopted.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、Bi
系酸化物超電導体を作成する場合、例えば仮焼粉末をホ
ットプレス焼成すると緻密化自体は進行しそれなりの効
果があるが、粒子の配向化の点からは不十分であるため
に、得られる焼結体のJc値もせいぜい1000A/c
2 以下であり、実用的レベルには到底達していないの
が現状であった。
[Problems to be Solved by the Invention] However, Bi
When making a system oxide superconductor, for example, calcination powder is hot-press fired, the densification itself progresses and there is a certain effect, but since it is insufficient from the viewpoint of grain orientation, the obtained calcination is performed. The Jc value of the union is at most 1000 A / c
It was m 2 or less, and it was the current situation that it did not reach the practical level.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して先に仮焼粉末を常圧で成形、焼成した後、
該焼結体に圧力を加えつつ加熱処理を行う、いわゆるホ
ットフォージング処理を行うことによって、高配向、高
密度でJc値が1500〜4500A/cm2 程度の優
れた酸化物超電導体が得られ、このホットフォ−ジング
処理は繰り返し行うことによって、さらに焼結体の密度
および配向度を高めることが可能であることを提案した
が、さらに高いJc値が得られる方法について検討した
ところ、このホットフォージング処理中に溶融あるいは
部分溶融させることにより、粒子内の原子が一方向加圧
下で加圧方向に垂直な方向に拡散するため、変形量が増
加するとともに加圧面に対し粒子のアスペクト比が大き
くなるため配向度が向上し、均一な組織で高いJc値を
有する酸化物超電導体が得られることを知見した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention first formed a calcined powder under normal pressure and fired it,
By subjecting the sintered body to heat treatment while applying pressure, so-called hot forging treatment, an excellent oxide superconductor having a high orientation and a high density and a Jc value of about 1500 to 4500 A / cm 2 can be obtained. It was proposed that this hot fogging treatment could be repeated to further increase the density and orientation of the sintered body. By melting or partially melting during the ging process, the atoms in the particles diffuse under pressure in one direction in the direction perpendicular to the pressing direction, increasing the amount of deformation and increasing the aspect ratio of the particles to the pressing surface. Therefore, it was found that the degree of orientation is improved and an oxide superconductor having a uniform structure and a high Jc value can be obtained.

【0007】即ち、本発明は、酸化物超電導体を構成す
る元素の酸化物あるいは酸化物形成化合物からなる混合
体を成形するか、あるいは該混合体を仮焼した後に成形
する。その後に該成形体を一旦酸化性雰囲気中で焼成
し、該焼結体をホットフォージング処理する時に溶融あ
るいは部分溶融させることを特徴とするものである。
That is, according to the present invention, a mixture of oxides or oxide-forming compounds of the elements constituting the oxide superconductor is molded, or the mixture is calcined and then molded. After that, the molded body is once fired in an oxidizing atmosphere, and is melted or partially melted when the sintered body is subjected to hot forging treatment.

【0008】以下、本発明の酸化物超電導体の製造方法
における工程(a)〜(c)について個々に説明する。 調合成形工程(a) 酸化物超電導体を構成する金属の酸化物粉末あるいは焼
成により酸化物を形成しうる炭酸塩や硝酸塩粉末等を用
いてこれらを酸化物超電導体を形成しうる割合に秤量混
合する。具体的には前述したBi系酸化物超電導体を作
成する場合には、Bi2 3 、SrO、CaCO3 、C
uOの各粉末を用いてこれらを原子比においてSrを2
としたとき、Biが1.8〜2.3、Caが1. 0〜
3.5、Cuが2.0〜4.5の範囲になるように秤量
する。また、高Tc相の生成させることを目的として上
記の混合体にさらにPbO粉末、およびK2 CO3 、N
2CO3 、Li2 CO2 等をSrを2としてPbを
0.1〜0.5、K、Li、Naを0.05〜0.6の
割合で混合することができる。
The steps (a) to (c) in the method for producing an oxide superconductor according to the present invention will be individually described below. Formulation and molding step (a) Using oxide powder of metal constituting oxide superconductor or carbonate or nitrate powder capable of forming oxide by firing, etc., these are weighed and mixed in a ratio capable of forming oxide superconductor. To do. Specifically, when the Bi-based oxide superconductor described above is prepared, Bi 2 O 3 , SrO, CaCO 3 , C
Using each powder of uO, Sr is 2
Then, Bi is 1.8 to 2.3 and Ca is 1.0 to
Weigh so that 3.5 and Cu are in the range of 2.0 to 4.5. In addition, PbO powder, K 2 CO 3 , and N were added to the above mixture for the purpose of forming a high Tc phase.
It is possible to mix a 2 CO 3 , Li 2 CO 2 and the like with Sr as 2 and Pb with 0.1 to 0.5 and K, Li and Na in a ratio of 0.05 to 0.6.

【0009】上記のようにして得られた混合粉末を公知
の成形手段によって成形する。また、所望によっては上
記の混合粉末を700〜850℃の酸化性雰囲気中で1
〜30時間程度仮焼後、粉砕し同様に成形する。なお、
成形方法としてはプレス成形、押出成形、ドクターブレ
ード成形法等が採用される。
The mixed powder obtained as described above is molded by a known molding means. If desired, the above mixed powder may be mixed in an oxidizing atmosphere at 700 to 850 ° C.
After calcination for about 30 hours, it is crushed and similarly shaped. In addition,
As a molding method, press molding, extrusion molding, doctor blade molding, or the like is adopted.

【0010】焼成工程(b) 次に、上記のようにして得られた成形体を840〜85
5℃の酸化性雰囲気中で5〜200時間程度焼成する。
この焼成を非加圧で行うと鱗片状の結晶の成長により低
密度の焼結体となるために、ホットプレス焼成を行って
もよい。この焼成工程終了時点では、焼結体の鱗片状結
晶はほとんど無配向状態である。
Baking step (b) Next, the molded body obtained as described above is heated to 840-85.
Baking is performed in an oxidizing atmosphere at 5 ° C. for about 5 to 200 hours.
If this firing is performed without pressurization, a scaly crystal grows to form a low-density sintered body, so hot press firing may be performed. At the end of this firing step, the scale-like crystals of the sintered body are in a substantially non-oriented state.

【0011】ホットフォージング処理工程(c) 次に、上記の焼結体をホットフォージング処理する。こ
のホットフォージング処理は、図1に示すように、焼結
体1をプレスパンチ2,3により方向Aに圧力を付加す
ると同時に適当な加熱手段(図示せず)で加熱する。ホ
ットプレス法とは、図1において焼結体1の水平方向が
開放されている点で異なり、このように水平方向が開放
されていることにより焼結体の変形の自由度を高められ
る。
Hot Forging Treatment Step (c) Next, the above sintered body is subjected to hot forging treatment. In this hot forging treatment, as shown in FIG. 1, the sintered body 1 is heated by an appropriate heating means (not shown) while applying pressure in the direction A by the press punches 2 and 3. This is different from the hot pressing method in that the horizontal direction of the sintered body 1 is open in FIG. 1, and the freedom of deformation of the sintered body can be increased by opening the horizontal direction in this way.

【0012】本発明によれば、この時の焼結体が部分溶
融あるいは溶融するような条件で処理することが重要で
ある。部分溶融あるいは溶融はBi系酸化物超電導体作
製においては、840〜1150℃の温度で5分〜4時
間行えばよく、その後徐冷し結晶化させ、800〜86
0℃で0〜10時間保持させる。この時の圧力は50k
g/cm2 以上とし、雰囲気は、大気中等の酸化性雰囲
気であることが望ましい。
According to the present invention, it is important to treat the sintered body at this time under the condition that it partially melts or melts. Partial melting or melting may be performed at a temperature of 840 to 1150 ° C. for 5 minutes to 4 hours in the production of a Bi-based oxide superconductor, and then gradually cooled to crystallize 800 to 86.
Hold at 0 ° C. for 0-10 hours. The pressure at this time is 50k
It is desirable that the g / cm 2 is not less than, and the atmosphere is an oxidizing atmosphere such as air.

【0013】また、ホットフォージング処理に際しては
図1において焼結体1とプレスパンチ2,3との間に銀
や金、銅等の延性金属板を介して圧力を付加すると、粒
子の移動性が高まることによってさらに配向性を高める
ことができる。
In the hot forging process, when the pressure is applied between the sintered body 1 and the press punches 2 and 3 in FIG. 1 through a ductile metal plate such as silver, gold or copper, the mobility of particles is increased. It is possible to further enhance the orientation by increasing the value.

【0014】[0014]

【作用】溶融を伴わない従来のホットフォージング処理
では、粒子の滑りにより配向が進行するが、同時に粒子
の破壊が起こるために配向度はある程度しか進まなくな
ってしまう。これに対して本発明の構成によれば、焼成
工程(b)によって得られた焼結体に対してホットフォ
ージング処理中に部分溶融あるいは溶融させる過程を含
むことが最も重要である。焼成工程(b)によって生成
された鱗片状の結晶粒子が加圧下で部分溶融あるいは溶
融した後に再結晶化される過程で、一旦破壊された鱗片
状粒子が原子の拡散によって変形し、加圧面に対しアス
ペクト比が大きい粒子に変換されるために加圧面に対す
る配向性が高まり、それと同時に緻密化が進行して粒子
同士の接触面積が増大するために密度および配向度がさ
らに向上する。これにより酸化物超電導体の臨界電流密
度を飛躍的に高めることができるのである。
In the conventional hot forging treatment that does not involve melting, orientation progresses due to slippage of particles, but at the same time, the degree of orientation only progresses to some extent because the particles break. On the other hand, according to the configuration of the present invention, it is most important to include a step of partially melting or melting the sintered body obtained by the firing step (b) during the hot forging treatment. In the process in which the scale-like crystal particles generated in the firing step (b) are partially melted under pressure or melted and then recrystallized, the once broken scale-like particles are deformed by the diffusion of atoms, and On the other hand, since the particles are converted into particles having a large aspect ratio, the orientation with respect to the pressing surface is enhanced, and at the same time, the densification progresses and the contact area between the particles is increased, so that the density and orientation degree are further improved. This can dramatically increase the critical current density of the oxide superconductor.

【0015】[0015]

【実施例】【Example】

実施例1 (a)原料粉末としてBi2 3 、SrCO3 、CaC
3 、CuOの各粉末を各金属のモル比がBi:Sr:
Ca:Cu=2.22:2:1.11:2.22となる
ように秤量後、750〜810℃で24時間仮焼し、粉
砕して平均粒径5μm の仮焼粉末を得た。この仮焼粉末
をφ12mmの金型を用いて成形圧1ton/cm2
成形して厚み約4mmの円板状成形体を得た。
Example 1 (a) As raw material powder, Bi 2 O 3 , SrCO 3 , CaC
The powder of O 3 and CuO has a molar ratio of each metal of Bi: Sr:
After weighing so that Ca: Cu = 2.22: 2: 1.1.11: 2.22, it was calcined at 750 to 810 ° C. for 24 hours and pulverized to obtain a calcined powder having an average particle size of 5 μm. This calcined powder was molded at a molding pressure of 1 ton / cm 2 using a die of φ12 mm to obtain a disk-shaped molded body having a thickness of about 4 mm.

【0016】(b)上記成形体を大気中で850℃の温
度で20時間焼成したところ、比重2.0(アルキメデ
ス法に基づく)の焼結体が得られた。また、組織観察し
たところ、鱗片状の結晶がランダムに配列していた。
(B) When the above molded body was fired in the atmosphere at a temperature of 850 ° C. for 20 hours, a sintered body having a specific gravity of 2.0 (based on the Archimedes method) was obtained. In addition, when the structure was observed, scale-like crystals were randomly arranged.

【0017】(c)次に、この焼結体を図1に従い、1
ton/cm2 の圧力付与下で870℃まで上昇させて
焼結体の一部溶融させた後、8時間かけて845℃まで
徐冷し、この温度で1時間保持し冷却した(試料No.
1)。
(C) Next, according to FIG.
After the temperature was raised to 870 ° C. under a pressure of ton / cm 2 to partially melt the sintered body, the sintered body was gradually cooled to 845 ° C. over 8 hours, and kept at this temperature for 1 hour and cooled (Sample No.
1).

【0018】また、(c)における他の条件として1t
on/cm2 の圧力付与下で870℃まで上昇させて焼
結体の一部溶融させた後、4時間かけて845℃まで徐
冷し、この温度で1時間保持し冷却した(試料No.
2)。
As another condition in (c), 1t
After applying a pressure of on / cm 2 to raise the temperature to 870 ° C. to partially melt the sintered body, the sintered body was gradually cooled to 845 ° C. over 4 hours, and held at this temperature for 1 hour and cooled (Sample No.
2).

【0019】さらに(c)における他の条件として1t
on/cm2 の圧力付与下で900℃まで上昇させて焼
結体を溶融させた後、8時間かけて845℃まで徐冷
し、この温度で1時間保持し冷却した(試料No.3)。
As another condition in (c), 1t
After applying a pressure of on / cm 2 to raise the temperature to 900 ° C. to melt the sintered body, it was gradually cooled down to 845 ° C. over 8 hours, and kept at this temperature for 1 hour and cooled (Sample No. 3). .

【0020】得られた各焼結体に対してアルキメデス法
により比重を調べるととにX線回折を測定し、X線回折
のチャートデータに基づき、下記の数1
The specific gravity of each of the obtained sintered bodies was examined by the Archimedes method and X-ray diffraction was measured. Based on the X-ray diffraction chart data, the following formula 1

【0021】[0021]

【数1】 [Equation 1]

【0022】から(001)面の配向度fを求めた。From the above, the orientation degree f of the (001) plane was obtained.

【0023】さらに、上記焼結体について、抵抗法に基
づき、試料を液体窒素中で電流を徐々に高め、高圧端子
に1μV/cmの電圧が生じた時の電流値を臨界電流密
度Jc(77K,0T)として求め、同時に臨界温度T
cも測定した。結果は表1に示した。
Further, with respect to the above-mentioned sintered body, the current value when the voltage of 1 μV / cm was generated at the high voltage terminal of the sample was gradually increased in liquid nitrogen based on the resistance method, and the current value was determined as the critical current density Jc (77K). , 0T), and at the same time, the critical temperature T
c was also measured. The results are shown in Table 1.

【0024】比較例1 実施例1に記載した(a)(b)にて作製した焼結体を
1ton/cm2 の圧力下で840℃で10時間ホット
フォージング処理して焼結体を得た(試料No.4)。
Comparative Example 1 The sintered body prepared in (a) and (b) described in Example 1 was hot-forged at 840 ° C. for 10 hours under a pressure of 1 ton / cm 2 to obtain a sintered body. (Sample No. 4).

【0025】さらに、実施例1に記載した(a)(b)
にて作製した焼結体を1ton/cm2 の圧力下で85
0℃で10時間ホットフォージング処理して焼結体を得
た(試料No.5)。
Further, (a) and (b) described in Example 1
The sintered body prepared in 1. was heated under a pressure of 1 ton / cm 2 to 85
A hot forging treatment was performed at 0 ° C. for 10 hours to obtain a sintered body (Sample No. 5).

【0026】得られた各焼結体に対して、実施例1と同
様に特性の評価を行った。結果は表1に示した。
The characteristics of each of the obtained sintered bodies were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように本発明試料No.1
乃至No.3と、比較試料No.4およびNo.5との比較に
おいてホットフォージング処理中に部分溶融あるいは溶
融させることにより配向性を高めるとともに臨界電流密
度、臨界温度を高めることができた。
As is clear from Table 1, the present invention sample No. 1
In comparison between No. 3 to No. 3 and Comparative samples No. 4 and No. 5, it was possible to raise the orientation property and raise the critical current density and the critical temperature by partially melting or melting during the hot forging treatment.

【0029】[0029]

【発明の効果】以上、詳述した通り、本発明の方法によ
れば、酸化物超電導体、例えば、Bi−Sr−Ca−C
u−O系酸化物超電導体の作成に際して、焼結体をホッ
トフォージング処理中に部分溶融あるいは溶融させるこ
とにより、焼結体の結晶粒子の配向度を高めるとともに
高密度化が達成できるために高配向性を有し、且つ臨界
電流密度が極めて高い酸化物超電導体を安定して得るこ
とができる。
As described above in detail, according to the method of the present invention, an oxide superconductor such as Bi-Sr-Ca-C is used.
In producing a u-O-based oxide superconductor, by partially melting or melting the sintered body during the hot forging treatment, it is possible to increase the orientation degree of the crystal grains of the sintered body and achieve high density. An oxide superconductor having a high orientation and an extremely high critical current density can be stably obtained.

【0030】このように、臨界電流密度の高い酸化物超
電導体が得られることにより酸化物超電導体の実用化を
さらに進めることができる。
By thus obtaining an oxide superconductor having a high critical current density, the oxide superconductor can be further put into practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導体の製造方法におけるホ
ットフォージング処理を説明するための図である。
FIG. 1 is a diagram for explaining hot forging treatment in the method for producing an oxide superconductor according to the present invention.

【符号の説明】[Explanation of symbols]

1 焼結体 2,3 プレスパンチ 1 Sintered body 2,3 Press punch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA 7244−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01B 12/00 ZAA 7244-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化物超電導体を構成する元素の酸化物あ
るいは酸化物形成化合物からなる混合体を成形するか、
あるいは該混合体を仮焼後成形する工程と、該成形体を
酸化性雰囲気中で焼成する工程と、得られた焼結体を加
圧中に部分溶融あるいは溶融する条件にて熱処理する工
程と、を具備することを特徴とする酸化物超電導体の製
造方法。
1. Forming a mixture of oxides or oxide-forming compounds of the elements constituting the oxide superconductor,
Alternatively, a step of forming the mixture after calcination, a step of firing the formed body in an oxidizing atmosphere, and a step of heat-treating the obtained sintered body under conditions of partial melting or melting during pressurization A method for producing an oxide superconductor, comprising:
JP11443193A 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor Expired - Fee Related JP3314102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11443193A JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11443193A JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH06321621A true JPH06321621A (en) 1994-11-22
JP3314102B2 JP3314102B2 (en) 2002-08-12

Family

ID=14637549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11443193A Expired - Fee Related JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3314102B2 (en)

Also Published As

Publication number Publication date
JP3314102B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP3314102B2 (en) Manufacturing method of oxide superconductor
EP0354537A2 (en) Method of manufacturing a powder of Bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2969220B2 (en) Manufacturing method of oxide superconductor
JPH06263520A (en) Production of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2555734B2 (en) Production method of superconducting material
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JP3568657B2 (en) Manufacturing method of oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP4215180B2 (en) The manufacturing method of calcining powder used for Bi type 2223 oxide superconductor manufacture, and the manufacturing method of Bi type 2223 oxide superconductor.
JPH0238359A (en) Production of superconductor
JPH0692717A (en) Production of bi based oxiee superconductor
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JPH01239712A (en) Manufacture of superconductive material
JP3285636B2 (en) Manufacturing method of oxide superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH0464269A (en) Manufacture of oxide superconductor and manufacture of oxide superconducting thin film
JPH05135634A (en) Manufacture of oxide superconductive wire
JPH054803A (en) Production of oxide superconductive structure
JPS63270342A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees