JP3164640B2 - Manufacturing method of oxide superconductor - Google Patents

Manufacturing method of oxide superconductor

Info

Publication number
JP3164640B2
JP3164640B2 JP10710292A JP10710292A JP3164640B2 JP 3164640 B2 JP3164640 B2 JP 3164640B2 JP 10710292 A JP10710292 A JP 10710292A JP 10710292 A JP10710292 A JP 10710292A JP 3164640 B2 JP3164640 B2 JP 3164640B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
sintered body
plate
oxide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10710292A
Other languages
Japanese (ja)
Other versions
JPH05301758A (en
Inventor
ひろみ 井村
祐二 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10710292A priority Critical patent/JP3164640B2/en
Publication of JPH05301758A publication Critical patent/JPH05301758A/en
Application granted granted Critical
Publication of JP3164640B2 publication Critical patent/JP3164640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関し、詳細には、高密度で且つ高配向性を有する
酸化物超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconductor, and more particularly, to a method for manufacturing an oxide superconductor having high density and high orientation.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体によりも高い臨界温度Tc(抵抗が
ゼロになる温度)を有する材料として酸化物超電導体が
発見され、その実用化が期待されている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as materials having a higher critical temperature Tc (temperature at which the resistance becomes zero) than metal-based superconductors conventionally used as superconductors, and their practical use is expected. Have been.

【0003】現在、酸化物超電導体としては、主として
Y−Ba−Cu−O系(以下、Y系という)およびBi
−Sr−Ca−Cu−O系(以下、Bi系という)の2
種が知られており、後者の酸化物超電導体では、更にT
cが110Kの高Tc相と、Tcが80K相の低Tc相
の2種が知られており、Y系に比較してTcが高いこと
からその実用化が特に進められている。
[0003] At present, oxide superconductors mainly include Y-Ba-Cu-O-based (hereinafter referred to as Y-based) and Bi-based.
-Sr-Ca-Cu-O-based (hereinafter referred to as Bi-based) 2
Species are known, and in the latter oxide superconductor, T
Two types, a high Tc phase having a c of 110K and a low Tc phase having a Tc of 80K are known, and their practical use has been particularly advanced since their Tc is higher than that of the Y system.

【0004】このBi系における高Tc相と低Tc相
は、具体的には、高Tc相が Bi2 Sr2 Ca2 Cu3 10+ δ からなり、低Tc相が Bi2 Sr2 Ca1 Cu2 8+δ からなる。
[0004] High Tc phase and the low Tc phase in the Bi-based, specifically, high Tc phase consists Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ, low Tc phase Bi 2 Sr 2 Ca 1 It consists of Cu 2 O 8+ δ.

【0005】これら酸化物超電導体は、その実用化に際
しては高い臨界温度を有するとともに臨界電流密度(抵
抗ゼロにおける電流値)が大きいことが必要とされてい
る。
When these oxide superconductors are put to practical use, they need to have a high critical temperature and a large critical current density (current value at zero resistance).

【0006】そこでBi系酸化物超電導体においてはそ
の結晶が燐片状粒子からなることから、この燐片状粒子
を一方向に配向させることにより臨界電流密度を高くす
ることができると考えられている。また、焼結体として
その相対密度を高め、高緻密化することも特性上大きな
要因であると言われている。
[0006] Therefore, in the Bi-based oxide superconductor, since the crystal is composed of scaly particles, it is considered that the critical current density can be increased by orienting the scaly particles in one direction. I have. It is also said that increasing the relative density and increasing the density of the sintered body is also a major factor in characteristics.

【0007】そこで、高密度の酸化物超電導体を作成す
る方法として、高い機械的な圧力を加えつつ加熱するホ
ットプレス法が採用されている。
Therefore, as a method for producing a high-density oxide superconductor, a hot press method in which heating is performed while applying a high mechanical pressure is employed.

【0008】[0008]

【発明が解決しようとする問題点】しかしながら、Bi
系酸化物超電導体を作成する場合、例えば低Tc相の仮
焼粉末をホットプレス焼成すると緻密化自体は進行する
が、高Tc相の生成が少ないために高Tc化、高Jc化
が望めない。そこで、上記ホットプレス後の焼結体をさ
らに熱処理し、高Tc相を生成することも提案される
が、熱処理によって粒成長が生じるために密度は逆に低
下する傾向にある。
[Problems to be solved by the invention] However, Bi
In the case of producing a system-based oxide superconductor, for example, if a calcined powder having a low Tc phase is fired by hot pressing, densification itself proceeds, but high Tc and high Jc cannot be expected due to a small generation of a high Tc phase. . Therefore, it is also proposed to further heat-treat the sintered body after the hot pressing to generate a high Tc phase, but the density tends to decrease on the contrary due to the grain growth caused by the heat treatment.

【0009】また上記の方法では、焼結体の緻密化には
ある程度の効果があるが、結晶粒子の配向化の点からは
不十分であるために、得られる焼結体のJc値もせいぜ
い1000A/cm2 以下であり、実用的レベルには到
底達していないのが現状であった。
Although the above method has a certain effect on the densification of the sintered body, it is insufficient in terms of the orientation of the crystal grains, so that the Jc value of the obtained sintered body is at most. At present, it is 1000 A / cm 2 or less, which is far below a practical level.

【0010】[0010]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して先に低Tc相の仮焼粉末を常圧で焼成して
充分に高Tc相を生成した後、該焼結体に圧力を加えつ
つ加熱処理を行う、いわゆるホットフォージング処理を
行うことによって、高配向、高密度でJc値が1500
〜4500A/cm2程度の優れた酸化物超電導体が得
られることを提案したが、さらに高いJc値が得られる
方法について検討したところ、このホットフォージング
処理後の板状の焼結体を複数枚積層し、該積層体の上下
面から再度加圧しながら焼成することにより、粒子への
荷重が増し、変形量が増加するため配向度が向上し、高
いJc値を有する酸化物超電導体が得られることを知見
した。
In order to solve the above-mentioned problems, the present inventors first fired a calcined powder having a low Tc phase at normal pressure to form a sufficiently high Tc phase, By performing a so-called hot forging treatment in which heat treatment is performed while applying pressure to the aggregate, a Jc value of 1500 with high orientation and high density is obtained.
It was proposed that an excellent oxide superconductor of about 4500 A / cm 2 could be obtained. However, when a method of obtaining a higher Jc value was examined, a plurality of plate-like sintered bodies after the hot forging treatment were obtained. By stacking and firing the laminate while pressing again from the upper and lower surfaces, the load on the particles increases, the amount of deformation increases, the degree of orientation improves, and an oxide superconductor having a high Jc value is obtained. I learned that

【0011】即ち、本発明は、酸化物超電導体を構成す
る元素の酸化物あるいは酸化物形成化合物からなる混合
体を板状に成形するか、あるいは該混合体を仮焼した後
に板状に成形し、該板状の成形体を一旦酸化性雰囲気中
で焼成した後に、該板状の焼結体をホットフォージング
処理し、その後板状の焼結体を複数枚積層し、該積層体
の上下面から再度酸化性雰囲気の加圧しながら焼成する
ことを特徴とするものである。
That is, the present invention provides a method of forming a mixture comprising an oxide of an element constituting an oxide superconductor or an oxide-forming compound into a plate, or forming a mixture after calcining the mixture to form a plate. Then, after the plate-shaped molded body is once fired in an oxidizing atmosphere, the plate-shaped sintered body is subjected to hot forging treatment, and thereafter, a plurality of plate-shaped sintered bodies are laminated, and It is characterized in that firing is performed again from the upper and lower surfaces while pressurizing in an oxidizing atmosphere.

【0012】以下、本発明を図面を参照しつつ説明す
る。本発明の製造方法における工程(a)〜(d)につ
いて個々に説明する。
Hereinafter, the present invention will be described with reference to the drawings. The steps (a) to (d) in the production method of the present invention will be described individually.

【0013】調合成形工程(a) 酸化物超電導体を構成する金属の酸化物粉末あるいは焼
成により酸化物を形成しうる炭酸塩や硝酸塩粉末等を用
いてこれらを酸化物超電導体を形成しうる割合に秤量混
合する。具体的には前述したBi系酸化物超電導体のう
ち高Tc相を作成する場合には、Bi2 3 、SrO、
CaCO3 、CuOの各粉末を用いてこれらを原子比に
おいてSrを2としたとき、Biが1.8〜2.2、C
aが2.0〜3.5、Cuが3.0〜4.5の範囲にな
るように秤量する。また、高Tc相の生成量を増加させ
ることを目的として上記の混合体にさらにPbO粉末、
およびK2 CO3 、Na2 CO3 、Li2 CO2 等をS
rを2としてPbを0.1〜0.5、K、Li、Naを
0.05〜0.6の割合で添加混合することができる。
Preparation process (a) Using an oxide powder of a metal constituting the oxide superconductor or a carbonate or nitrate powder capable of forming an oxide by firing, the ratio of forming these oxide superconductors Weigh and mix. Specifically, when a high Tc phase is formed in the above-described Bi-based oxide superconductor, Bi 2 O 3 , SrO,
When each of CaCO 3 and CuO powders is used and its atomic ratio is Sr = 2, Bi is 1.8 to 2.2, C
Weigh so that a is in the range of 2.0 to 3.5 and Cu is in the range of 3.0 to 4.5. Further, for the purpose of increasing the generation amount of the high Tc phase, PbO powder is further added to the above mixture,
And K 2 CO 3 , Na 2 CO 3 , Li 2 CO 2 etc.
Assuming that r is 2, Pb can be added and mixed at a ratio of 0.1 to 0.5, K, Li, and Na at a ratio of 0.05 to 0.6.

【0014】上記のようにして得られた混合粉末を公知
の成形手段によって板状に成形する。また、所望によっ
ては上記の混合粉末を700〜850℃の酸化性雰囲気
中で1〜20時間程度仮焼後、粉砕し同様に板状に成形
する。この仮焼工程によれば、前述した組成からなる混
合粉末を仮焼すると低Tc相を主体とする酸化物超電導
粉末となる。なお、成形方法としてはプレス成形、押し
出し成形、ドクターブレード成形法等が採用される。
The mixed powder obtained as described above is formed into a plate by a known forming means. If desired, the above-mentioned mixed powder is calcined in an oxidizing atmosphere at 700 to 850 ° C. for about 1 to 20 hours, and then pulverized and similarly formed into a plate shape. According to this calcining step, when the mixed powder having the above-described composition is calcined, an oxide superconducting powder mainly composed of a low Tc phase is obtained. As a molding method, press molding, extrusion molding, doctor blade molding, or the like is employed.

【0015】焼成工程(b) 次に、上記のようにして得られた成形体を840〜85
5℃の酸化性雰囲気中で5〜200時間程度焼成する。
この焼成によって一旦低Tc相の燐片状の結晶が生成さ
れるが、焼成が進行するに従い低Tc相は高Tc相に変
換される。
Firing step (b) Next, the compact obtained as described above is subjected to 840 to 85
It is baked for about 5 to 200 hours in an oxidizing atmosphere at 5 ° C.
This calcination once produces scaly crystals with a low Tc phase, but as the calcination proceeds, the low Tc phase is converted to a high Tc phase.

【0016】この焼成を非加圧で行うと燐片状の結晶の
成長により低密度の焼結体となるために、ホットプレス
焼成を行ってもよい。
If this sintering is carried out under no pressure, a sintered body having a low density is obtained by the growth of scaly crystals, so that hot press sintering may be carried out.

【0017】このような焼成工程終了時点では、焼結体
の燐片状結晶はほとんど無配向状態である。
At the end of the firing step, the scaly crystals of the sintered body are almost non-oriented.

【0018】ホットフォージング処理工程(c) 次に、上記の焼結体をホットフォージング処理する。こ
のホットフォージング処理は、図1に示すように、焼結
体1をプレスパンチ2,3により方向Aに圧力を付加す
ると同時に適当な加熱手段(図示せず)で加熱する。ホ
ットプレス法とは、焼結体1に対する加圧方向Aと直角
方向が開放状態である点で異なる。なお、この時の圧力
は50kg/cm2 以上、加熱温度は800〜850℃
で雰囲気は大気等の酸化性雰囲気であることが望まし
い。
Hot Forging Step (c) Next, the above sintered body is subjected to hot forging processing. In this hot forging treatment, as shown in FIG. 1, the sintered body 1 is heated by pressurizing means (not shown) while applying pressure in the direction A by press punches 2 and 3. The hot press method is different from the hot press method in that a direction perpendicular to the pressing direction A with respect to the sintered body 1 is open. The pressure at this time is 50 kg / cm 2 or more, and the heating temperature is 800 to 850 ° C.
The atmosphere is desirably an oxidizing atmosphere such as air.

【0019】また、ホットフォージング処理に際しては
図1において焼結体1とプレスパンチ2、3との間に、
金、銀、銅等の延性金属板を介して圧力を付加すること
によってさらに配向性を高めることができる。
In the hot forging process, the space between the sintered body 1 and the press punches 2 and 3 in FIG.
The orientation can be further increased by applying pressure through a ductile metal plate such as gold, silver, or copper.

【0020】再焼成工程(d) 次に、図2に示すように上記の工程(c)によって得ら
れた板状の焼結体4を複数枚積層し、プレスパンチ2、
3により800〜850℃の大気中等の酸化性雰囲気中
で前記積層体の上下面から圧力50kg/cm2の加圧
しながら10〜200時間程度熱処理する。場合によっ
ては、(d)工程のものをアニ−ルし、110K相の生
成を促進させることができる。
Re-firing step (d) Next, as shown in FIG. 2, a plurality of plate-like sintered bodies 4 obtained in the above-mentioned step (c) are laminated,
According to 3, heat treatment is performed for 10 to 200 hours in an oxidizing atmosphere such as the air at 800 to 850 ° C. while applying a pressure of 50 kg / cm 2 from the upper and lower surfaces of the laminate. In some cases, the step (d) can be annealed to promote the formation of the 110K phase.

【0021】[0021]

【作用】本発明の構成によれば、焼成工程(b)によっ
て得られた焼結体に対してホットフォージング処理した
後、焼結体2枚以上を積層してさらに再焼成する点が最
も重要である。まず、ホットフォージング処理によって
焼成工程(b)によって生成された燐片状の結晶粒子が
圧縮されて全体として緻密化が進行するとともに燐片状
粒子が配向することにより、粒子同士の接触面積が増大
し臨界電流密度を高めることができる。しかし、このホ
ットフォージング処理では、サンプルを挟持する構造物
も変形するため、ある程度の変形が起こった後粒子にか
かる荷重が低下し、変形が進まなくなってしまう。そこ
で、再焼成工程(d)で、焼結体2枚以上を積層し、加
圧下で再度焼成することによって、粒子にかかる荷重が
増加するため変形が活性化され、密度および配向度が再
度向上する。これにより飛躍的に酸化物超電導体の臨界
電流密度を高めることができるのである。
According to the structure of the present invention, the most important point is that after performing the hot forging treatment on the sintered body obtained in the firing step (b), two or more sintered bodies are laminated and then refired. is important. First, the scaly crystal grains generated in the firing step (b) are compressed by the hot forging treatment, and the densification proceeds as a whole and the scaly particles are oriented, so that the contact area between the particles is reduced. The critical current density can be increased. However, in this hot forging treatment, the structure holding the sample is also deformed, so that after a certain degree of deformation occurs, the load applied to the particles is reduced, and the deformation does not proceed. Therefore, in the refiring step (d), by laminating two or more sintered bodies and firing again under pressure, the load applied to the particles increases, whereby the deformation is activated and the density and the degree of orientation are improved again. I do. Thereby, the critical current density of the oxide superconductor can be dramatically increased.

【0022】以下、本発明を次の例で説明する。Hereinafter, the present invention will be described with reference to the following examples.

【0023】[0023]

【実施例】原料粉末としてBi2 3 、PbO、SrC
3 、CaCO3 、CuOの各粉末を各金属のモル比が
Bi:Pb:Sr:Ca:Cu=1.93:0.36:
2:3.17:4.25となるように秤量後、750〜
810℃で20時間仮焼し、粉砕して平均粒径5μm の
低Tc相を多量に含む仮焼粉末を得た(A工程)。
EXAMPLES Bi 2 O 3 as a raw material powder, PbO, SrC
The powders of O 3 , CaCO 3 , and CuO were mixed at a molar ratio of each metal of Bi: Pb: Sr: Ca: Cu = 1.93: 0.36:
After being weighed so as to be 2: 3.17: 4.25, 750 to
The calcined powder was calcined at 810 ° C. for 20 hours and pulverized to obtain a calcined powder having an average particle size of 5 μm and containing a large amount of a low Tc phase (Step A).

【0024】この仮焼粉末をφ12mmの金型を用いて
成形圧1ton/cm2 で成形して厚み約1mmの円板
状成形体を得た(B工程)。上記成形体を大気中で84
0℃の温度で150時間焼成したところ、比重2.0
(アルキメデス法に基づく)の焼結体が得られた(C工
程)。また、組織観察したところ、高Tc相の燐片状の
結晶がランダムに配列していた。
This calcined powder was molded at a molding pressure of 1 ton / cm 2 using a mold having a diameter of 12 mm to obtain a disk-shaped compact having a thickness of about 1 mm (step B). The above molded product was placed in air at 84
When calcined at a temperature of 0 ° C. for 150 hours, specific gravity 2.0
A sintered body (based on the Archimedes method) was obtained (Step C). When the structure was observed, scaly crystals having a high Tc phase were randomly arranged.

【0025】次に、この焼結体を図1に従い、焼結体に
対して1ton/cm2 の圧力で845℃の温度でホッ
トフォージング処理した(D工程)。その後、この焼結
体2枚を積層し、図2に従い焼結体の上下面に焼結体に
対して1ton/cm2 の圧力で845℃の温度でホッ
トフォージング処理し、試料No.1の焼結体を得た(E
工程)。
Next, according to FIG. 1, the sintered body was subjected to a hot forging treatment at a pressure of 1 ton / cm 2 at a temperature of 845 ° C. (step D). Then, the two sintered bodies were laminated, and hot forging was performed on the upper and lower surfaces of the sintered body at a pressure of 1 ton / cm 2 at a temperature of 845 ° C., as shown in FIG. (E)
Process).

【0026】最終的に得られた焼結体に対してアルキメ
デス法により比重を調べるとともにX線回折測定を行
い、X線回折のチャートデータから下記数1より(00
1)面の配向度fを求めた。
The specific gravity of the finally obtained sintered body was examined by the Archimedes method and X-ray diffraction measurement was carried out. From the X-ray diffraction chart data, the following equation (1) was obtained.
1) The degree of orientation f of the plane was determined.

【0027】[0027]

【数1】f=(P−Po )/(1−P) 式中、 P (配向試料) =ΣI (00l) /〔ΣI (hkl) +ΣI (00l) 〕 Po(未配向試料) =ΣI'(00l) /〔ΣI'(hkl) +ΣI'(00l) 〕 さらに、上記焼結体について、抵抗法に基づき、試料を
液体窒素中で電流を徐々に高め、高圧端子に1μV/c
mの電圧が生じた時の電流値を臨界電流密度Jcとして
求め、同時に臨界温度Tcも測定した。
F = (P-Po) / (1-P) where P (oriented sample) = ΣI (00l) / [ΣI (hkl) + ΣI (00l)] Po (unoriented sample) = ΣI ′ (00l) / [ΣI '(hkl) + ΣI' (00l)] Further, for the above sintered body, the current was gradually increased in liquid nitrogen based on the resistance method, and 1 μV / c was applied to the high voltage terminal.
The current value when a voltage of m was generated was determined as the critical current density Jc, and the critical temperature Tc was also measured.

【0028】その結果、比重が6.3、配向度fが0.
98、臨界電流密度が50,000A/cm2 と高く、
しかも臨界温度も107Kであり、優れた特性を示し
た。
As a result, the specific gravity was 6.3 and the orientation degree f was 0.3.
98, the critical current density is as high as 50,000 A / cm 2 ,
In addition, the critical temperature was 107K, showing excellent characteristics.

【0029】比較例1 実施例において、再フォ−ジング工程を含まない以外
は、全く同様にして焼結体(試料No.2)を作成し、同
様に特性の評価を行った。その結果、比重が6.0、配
向度fが0.75、臨界温度も104Kであり、臨界電
流密度が5,500A/cm2 と低いものであった。
Comparative Example 1 A sintered body (sample No. 2) was prepared in exactly the same manner as in the example except that the reforging step was not performed, and the characteristics were evaluated in the same manner. As a result, the specific gravity was 6.0, the degree of orientation f was 0.75, the critical temperature was 104 K, and the critical current density was as low as 5,500 A / cm 2 .

【0030】比較例2 実施例において、ホットフォージング処理後一旦室温ま
で冷却し、再度同じ条件でホットフォージング処理を行
い、最終的にホットフォージング処理を行った。得られ
た焼結体(試料No.3)に対して、実施例1と同様に特
性の評価を行った。その結果、比重が6.1、配向度f
が0.85、臨界温度も105Kでああり、本発明品と
大差がないが、臨界電流密度が9,500A/cm2
本発明よりも劣るものであった。
Comparative Example 2 In the example, after the hot forging treatment, the mixture was once cooled to room temperature, again subjected to the hot forging treatment under the same conditions, and finally subjected to the hot forging treatment. The characteristics of the obtained sintered body (sample No. 3) were evaluated in the same manner as in Example 1. As a result, the specific gravity was 6.1 and the degree of orientation f
Was 0.85 and the critical temperature was 105 K, which was not much different from the product of the present invention, but the critical current density was 9,500 A / cm 2 , which was inferior to that of the present invention.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明の方法によれ
ば、酸化物超電導体、例えば、Bi−Sr−Ca−Cu
−O系酸化物超電導体の作成に際してある程度緻密化し
た焼結体をホットフォージング処理し、さらに板状の焼
結体2枚以上を積層し、該積層体の上下面から再度ホッ
トフォ−ジングすることにより、焼結体の結晶粒子の配
向度を高めるとともに高密度化が達成できるために高配
向性を有し、且つ臨界電流密度が極めて高い酸化物超電
導体を安定して得ることができる。
As described in detail above, according to the method of the present invention, an oxide superconductor, for example, Bi-Sr-Ca-Cu
In preparing an -O-based oxide superconductor, a sintered body which has been densified to some extent is subjected to hot forging treatment, and two or more plate-shaped sintered bodies are laminated, and hot forging is again performed from the upper and lower surfaces of the laminated body. Thereby, the degree of orientation of the crystal grains of the sintered body can be increased and the density can be increased, so that an oxide superconductor having high orientation and an extremely high critical current density can be stably obtained.

【0032】このように、臨界電流密度の高い酸化物超
電導体が得られることにより酸化物超電導体の実用化を
さらに進めることができる。
As described above, the practical use of an oxide superconductor can be further promoted by obtaining an oxide superconductor having a high critical current density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物超電導体の製造方法における工
程(c)を説明するための図である。
FIG. 1 is a diagram for explaining a step (c) in a method for manufacturing an oxide superconductor according to the present invention.

【図2】本発明の酸化物超電導体の製造方法における工
程(d)を説明するための図である。
FIG. 2 is a view for explaining step (d) in the method for manufacturing an oxide superconductor according to the present invention.

【符号の説明】[Explanation of symbols]

1 焼結体 2,3 プレスパンチ 1 Sintered body 2, 3 Press punch

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の工程(a)〜(d) (a)酸化物超電導体を構成する元素の酸化物あるいは
酸化物形成化合物からなる混合体を板状に成形するか、
あるいは該混合体を仮焼後板状に成形する工程、 (b)該板状の成形体を酸化性雰囲気中で焼成する工
程、 (c)該板状の焼結体を加圧しながら加熱処理する工
程、 (d)工程(c)によって得られた板状の焼結体を複数
枚積層し、酸化性雰囲気中で前記積層体の上下面から加
圧しながら加熱処理する工程、 を具備することを特徴とする酸化物超電導体の製造方
法。
(1) The following steps (a) to (d): (a) forming a mixture comprising an oxide or an oxide-forming compound of an element constituting an oxide superconductor into a plate-like form,
Alternatively, a step of forming the mixture into a plate after calcination, (b) a step of firing the plate in an oxidizing atmosphere, and (c) a heat treatment while pressing the plate-shaped sintered body. (D) laminating a plurality of the plate-shaped sintered bodies obtained in the step (c), and performing a heat treatment while applying pressure from the upper and lower surfaces of the laminated body in an oxidizing atmosphere. A method for producing an oxide superconductor, comprising:
JP10710292A 1992-04-27 1992-04-27 Manufacturing method of oxide superconductor Expired - Fee Related JP3164640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10710292A JP3164640B2 (en) 1992-04-27 1992-04-27 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10710292A JP3164640B2 (en) 1992-04-27 1992-04-27 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH05301758A JPH05301758A (en) 1993-11-16
JP3164640B2 true JP3164640B2 (en) 2001-05-08

Family

ID=14450512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10710292A Expired - Fee Related JP3164640B2 (en) 1992-04-27 1992-04-27 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3164640B2 (en)

Also Published As

Publication number Publication date
JPH05301758A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP2003026473A (en) Method of manufacturing ceramic
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPS63288944A (en) Production of high temperature superconductor
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH06263520A (en) Production of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JP2866503B2 (en) Manufacturing method of oxide superconducting structure
EP0500966B1 (en) Oxide superconductor and method of manufacturing said superconductor
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP3285636B2 (en) Manufacturing method of oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP4893287B2 (en) Dielectric material
JP2573256B2 (en) Manufacturing method of superconductor member
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JPH08181487A (en) Manufacturing method of magnetic shield
JP2964258B2 (en) Manufacturing method of oxide superconductor
JP3187089B2 (en) Oxide superconducting structure
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees