JPH06307933A - Multiwavelength spectrophotometer - Google Patents

Multiwavelength spectrophotometer

Info

Publication number
JPH06307933A
JPH06307933A JP11781393A JP11781393A JPH06307933A JP H06307933 A JPH06307933 A JP H06307933A JP 11781393 A JP11781393 A JP 11781393A JP 11781393 A JP11781393 A JP 11781393A JP H06307933 A JPH06307933 A JP H06307933A
Authority
JP
Japan
Prior art keywords
integration time
photodetector
output
spectrum
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11781393A
Other languages
Japanese (ja)
Inventor
Minoru Okuda
実 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11781393A priority Critical patent/JPH06307933A/en
Publication of JPH06307933A publication Critical patent/JPH06307933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enhance SN ratio by setting the integration time of each element in a multichannel photodetector such that the each element can produce a substantially equal integration output thereby ensuring a sufficient integration time at a part where the optical intensity of spectrum is low while preventing saturation of the integration output at a part where the optical intensity of spectrum is high. CONSTITUTION:A spectroscopic element 5 projects a spectral image on the light receiving plane of a photodetector 6. A controller/data processor 7 controls the entire system and performs data processing whereas a display 8 presents spectral measurement results and the like. The data processor 7 opens or closes a shutter 3 to control exposure of the photodetector 6 and designates the address of each element in the photodetector 6, reads out the output from an addressed element thus performing data processing. Integration time is then set such that the higher the intensity of light on a spectrum to be measured the shorter the integration time. This constitution enhances S/N ratio and sensitivity by increasing the integration time at a part where the optical intensity is low while avoiding saturation thus allowing highly accurate measurement of the entire spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマルチチャンネル光検出
器を用いた多波長分光光度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiwavelength spectrophotometer using a multichannel photodetector.

【0002】[0002]

【従来の技術】マルチチャンネル光検出器を用いた多波
長分光光度計ではマルチチャンネル光検出器に測定すべ
きスペクトルを投射し、一定の時間露光して、光検出器
の各素子毎に光電出力を一定時間積分して、それを各素
子の測定出力としていた。このため積分時間は測定すべ
きスペクトルの一番強いピークに対する光検出器の素子
の積分出力が飽和しない範囲に設定する必要があり、ス
ペクトルの光強度の弱い部分では感度が不足すると云う
問題があった。即ち光電的な測光法では光電流をそのま
ゝ測光出力とするより、適当時間光電流を積分する方が
S/N比が向上し高感度が得られる。光電的な測光法で
積分時間は受光素子の露光時間として設定され、制御さ
れるものである。他方積分機能を有する光検出器は、光
電変換部と光電流積分部とで構成されているが、積分部
には出力可能な最大積分値があって、積分出力がその値
に達すると、以後積分を継続しても出力が増加しないと
云う飽和現象がある。このため測光に当っては積分出力
が飽和しない範囲に納まるように露光時間を決める必要
がある。従来はこのため多チャンネル光検出器の各素子
のうち最大強度の光を受光している素子の積分出力が飽
和しないように、多チャンネル光検出器全体に対する露
光時間を決めていたので、光の弱い所では感度不足と云
うことが起っていた。
2. Description of the Related Art In a multi-wavelength spectrophotometer using a multi-channel photodetector, a spectrum to be measured is projected onto the multi-channel photodetector, exposed for a certain period of time, and a photoelectric output is provided for each element of the photodetector. Was integrated for a certain period of time and used as the measurement output of each element. Therefore, it is necessary to set the integration time within the range where the integrated output of the photodetector element with respect to the strongest peak of the spectrum to be measured is not saturated, and there is a problem that the sensitivity is insufficient in the weak light portion of the spectrum. It was That is, in the photoelectric photometric method, the S / N ratio is improved and high sensitivity can be obtained by integrating the photocurrent for an appropriate time rather than using the photocurrent as the photometric output. In photoelectric photometry, the integration time is set and controlled as the exposure time of the light receiving element. On the other hand, a photodetector having an integration function is composed of a photoelectric conversion unit and a photocurrent integration unit, but the integration unit has a maximum integrated value that can be output, and when the integrated output reaches that value, There is a saturation phenomenon that the output does not increase even if the integration is continued. Therefore, in photometry, it is necessary to determine the exposure time so that the integrated output does not fall within the saturated range. For this reason, conventionally, the exposure time for the entire multi-channel photodetector is determined so that the integrated output of the element receiving the maximum intensity light of each element of the multi-channel photodetector is not saturated. There was a lack of sensitivity in weak places.

【0003】[0003]

【発明が解決しようとする課題】本発明は多チャンネル
型光検出器を用いた多波長分光光度計で、上述したよう
に積分時間を光検出器の各素子に対して一律に設定して
いたことによるスペクトルの光強度の低い部分の感度不
足と云う問題を解決しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a multi-wavelength spectrophotometer using a multi-channel photodetector, and the integration time is set uniformly for each element of the photodetector as described above. This is intended to solve the problem of insufficient sensitivity in the portion of the spectrum where the light intensity is low.

【0004】[0004]

【課題を解決するための手段】多チャンネル光検出器と
してランダムアドレス型マルチチャンネル光検出器を用
い、2段階の露光を行って、第1段の露光は全素子同一
時間露光とし、この露光による各素子の出力の大小に基
づき、出力の大きな素子程短い積分時間を設定し、第2
段の露光において、上記設定した積分時間に従い、露光
開始を基準にして積分時間の到来した素子から順に出力
を取出して行くようにした。
A random address type multichannel photodetector is used as a multichannel photodetector, two stages of exposure are performed, and the first stage exposure is performed for all elements at the same time. Based on the magnitude of the output of each element, the shorter the integration time is set for the element with the larger output, the second
In the stepwise exposure, according to the integration time set above, the output is taken out in order from the element where the integration time has arrived with reference to the exposure start.

【0005】[0005]

【作用】ランダムアドレス型のマルチチャンネル光検出
器では任意のアドレスを指定して指定したアドレスの素
子の出力(積分出力)を取出すことができる。2段階露
光の第1段は全素子同じ露光時間であるから、そのとき
の各素子の出力は光検出器に投射されたスペクトルの強
度分布を示している。この第1段の露光は第2段露光に
おける各素子の積分時間を決めるためのもので、測定す
べきスペクトル上の光の強い部分ほど積分時間は短く、
弱い所ほど積分時間は長く設定されることになるから、
飽和と云う現象を回避しつゝ、光強度の弱い部分では充
分長い積分時間をとって、S/N比の向上、感度の向上
を得ることができ、スペクトルの全体を感度精度共に良
く測定することができる。
In the random address type multi-channel photodetector, the output (integrated output) of the element at the designated address can be taken out by designating an arbitrary address. Since the first stage of the two-step exposure has the same exposure time for all the elements, the output of each element at that time indicates the intensity distribution of the spectrum projected on the photodetector. This first-stage exposure is for determining the integration time of each element in the second-stage exposure, and the integration time is shorter for the stronger light portion on the spectrum to be measured.
The weaker the area, the longer the integration time will be set.
While avoiding the phenomenon called saturation, it is possible to obtain a sufficiently long integration time in a portion where the light intensity is weak to improve the S / N ratio and the sensitivity, and to measure the entire spectrum with good sensitivity accuracy. be able to.

【0006】[0006]

【実施例】図1に本発明の一実施例を示す。1は光源、
2は試料を入れた試料セル、3はシャッタ、4は分光器
の入口スリット、5は分光器の分光素子で、6がランダ
ムアドレス型マルチチャンネル光検出器である。分光素
子5によってこの光検出器の受光面上にスペクトル像が
投射される。7は装置全体を制御し、データ処理を行う
制御およびデータ処理装置で、8はスペクトル測定結果
等を表示する表示装置である。制御およびデータ処理装
置(以下単に制御装置と云う)はシャッタ3の開閉を行
って光検出器6への露光制御を行い、光検出器6の各素
子のアドレスを指定して、そのアドレスの素子の出力を
読み出し、取込んでデータ処理を行う。
FIG. 1 shows an embodiment of the present invention. 1 is the light source,
Reference numeral 2 is a sample cell containing a sample, 3 is a shutter, 4 is an entrance slit of a spectroscope, 5 is a spectroscopic element of the spectroscope, and 6 is a random address type multi-channel photodetector. The spectroscopic element 5 projects a spectral image on the light receiving surface of the photodetector. Reference numeral 7 is a control and data processing device for controlling the entire device and performing data processing, and 8 is a display device for displaying spectrum measurement results and the like. A control and data processing device (hereinafter simply referred to as a control device) opens and closes the shutter 3 to control the exposure of the photodetector 6, designates the address of each element of the photodetector 6, and designates the element of that address. The output is read out, and the data is processed by capturing it.

【0007】図2は制御装置7の測定動作のフローチャ
ートである。制御装置には予め第1段の露光時の光検出
器6の各素子の出力の大きさと積分時間の対応表が用意
されている。この対応表は例えば素子出力を8段階にラ
ンク分けし、第1ランク(一番強いランク)の積分時間
を基準にして、ランクが下がるに従い、積分時間を2
倍,4倍,8倍,…128倍と云うように決めてある。
このような表は測定すべきスペクトルのダイナミックレ
ンジに応じて何種類が用意しておく。分析を行う者が予
め、試料の性質により何れの表を用いるか選択してお
く。測定動作は、暗電流データ採取段階と、第1露光お
よび積分時間設定段階と、第2段露光およびスペクトル
データ演算段階の3段階になっている。
FIG. 2 is a flowchart of the measuring operation of the control device 7. The control device is prepared in advance with a correspondence table of the magnitude of the output of each element of the photodetector 6 and the integration time during the first exposure. In this correspondence table, for example, the element output is divided into eight ranks, and the integration time is set to 2 as the rank decreases with reference to the integration time of the first rank (strongest rank).
It is decided to say that it is double, 4 times, 8 times, ... 128 times.
Several kinds of such tables are prepared according to the dynamic range of the spectrum to be measured. The person performing the analysis selects in advance which table to use depending on the properties of the sample. The measurement operation has three stages: a dark current data collection stage, a first exposure and integration time setting stage, and a second exposure and spectrum data calculation stage.

【0008】暗電流データ採取段階ではまずシャッタを
閉じ(イ)、一定の積分時間の後各素子の出力を取出す
と云う動作を積分時間を変えて2回(3回以上でも可)
行い、夫々の場合の各素子の出力を記憶し、素子毎に積
分時間tと出力Iとの関係 I=at+b における定数a,bを算出してメモリに記憶させる。
(ロ)。暗電流は室温によって異るから、この動作は測
定の度に行うのがよいが、室温による暗電流変化が無視
できる場合は一度行ってデータを記憶させたら後はその
データを採用して測定毎に暗電流データ採取動作は行わ
ないようにしてもよい。
In the dark current data sampling stage, the shutter is first closed (a), and the operation of extracting the output of each element after a certain integration time is performed twice by changing the integration time (three times or more is also possible).
Then, the output of each element in each case is stored, and the constants a and b in the relation I = at + b between the integration time t and the output I are calculated for each element and stored in the memory.
(B). Since the dark current differs depending on the room temperature, this operation should be performed every time measurement is performed, but if the dark current change due to room temperature can be ignored, it should be performed once and the data should be stored after that. Moreover, the dark current data collection operation may not be performed.

【0009】積分時間設定段階では、シャッタを一定時
間開き(ハ)、スペクトル像を光検出器6上に投射し、
所定積分時間後、各素子の出力を読込み(ニ)、前述し
た出力積分時間対応表により、各素子毎にその出力に応
じた積分時間を決め(ホ)、出力の一番大きい素子から
順にそのアドレスと積分時間を併記した表を作ってメモ
リに格納(ヘ)する。
In the integration time setting stage, the shutter is opened for a certain period of time (C), a spectrum image is projected on the photodetector 6, and
After a predetermined integration time, the output of each element is read (d), and the integration time corresponding to the output is determined for each element from the output integration time correspondence table described above (e). A table in which the address and the integration time are written together is created and stored (f) in the memory.

【0010】最後の第2段露光およびスペクトルデータ
演算段階では、再びシャッタを開き、計時動作をスター
トさせ(ト)、(ヘ)のステップで作成した表に従い、
表のトップ欄から順に記載された積分時間到来毎にその
欄に記載されたアドレスを指定して光検出器6の各素子
の出力を読み出し、積分時間と共にメモリに記入する
(チ)。読み出されたデータはシャッタ開時から出力読
み出し時までの積分結果になっている。積分時間は光検
出器に入射している光の強度ランクによって決められて
おり、同じランクに属する素子については同じ積分時間
が設定されているから、同じ積分時間の素子が複数ある
が、積分時間に比し、複数素子の読み出しに要する時間
が短いから、その一群の素子の積分時間は同一とみなせ
る。もちろん各素子毎に出力を読み出した時の実時間を
出力データと共にメモリに記入するようにしてもよい。
上述のようにして採取された光検出器6の各素子の出力
から前述(ロ)のステップで決定されている定数a,b
と各素子の積分時間とから素子毎の暗電流積分値を計算
して引算し、その答を夫々の積分時間で割算すること
で、各素子毎の入射光強度が求められる(リ)。このよ
うにして求められた入射光強度を素子のアドレス順に並
べて表示装置に出力(ヌ)すると、測定すべきスペクト
ルの表示が得られる。割算の代わりに、一番積分時間の
長いランク(光の弱いランク)を基準して光が強いラン
クに向い、順に倍数を掛けて行くようにしてもよい。上
例のように積分時間は2倍,4倍と云うようにしてある
ときはこの掛算は2進数の扱いで単に各素子の出力に所
定数だけ0を付加するだけでよく、甚だ簡単である。
At the final second stage exposure and spectrum data calculation stage, the shutter is opened again to start the timing operation (g), according to the table prepared in the step (f),
Every time when the integration time is entered in order from the top column of the table, the address described in that column is designated to read the output of each element of the photodetector 6 and write it in the memory together with the integration time (h). The read data is the integration result from when the shutter is opened to when the output is read. The integration time is determined by the intensity rank of the light incident on the photodetector. Since the same integration time is set for the elements belonging to the same rank, there are multiple elements with the same integration time. In contrast, since the time required to read out a plurality of elements is short, the integration times of the group of elements can be regarded as the same. Of course, the actual time when the output is read for each element may be written in the memory together with the output data.
From the output of each element of the photodetector 6 sampled as described above, the constants a and b determined in the above step (b)
The incident light intensity for each element can be obtained by calculating and subtracting the dark current integration value for each element from and the integration time of each element, and dividing the answer by each integration time. . By arranging the incident light intensities thus obtained in the order of the address of the device and outputting them to the display device, a spectrum to be measured can be displayed. Instead of division, the rank with the longest integration time (rank with weak light) may be used as a reference for the rank with strong light, and a multiple may be applied in order. When the integration time is doubled or quadrupled as in the above example, this multiplication is handled as a binary number and it is only necessary to add a predetermined number of 0s to the output of each element, which is very simple. .

【0011】上述(チ)のステップで読み出されたデー
タをそのまゝアドレス順に並べた結果は或る程度の凸凹
はあるものの、略水平になり、(リ)の演算によって真
のスペクトルデータが得られる。(チ)のステップで得
られるデータが全て略等しくなるので、その値が光検出
器の積分出力の飽和直前近くになるようにしておくと、
各素子とも最も効率的に使用できることになる。
The result of arranging the data read out in the above step (H) in the order of address is almost horizontal although there is some unevenness, and the true spectrum data is obtained by the operation (L). can get. Since all the data obtained in step (h) are almost equal, if the value is set to be near the saturation of the integrated output of the photodetector,
Each element can be used most efficiently.

【0012】[0012]

【発明の効果】本発明によればマルチチャンネル光検出
器の各素子が全て同程度の積分出力を出させるように素
子毎の積分時間が設定されるので、スペクトルの光強度
の強い所でも積分出力が飽和せず、弱い所では充分な積
分時間が採れてS/N比が向上し、感度,精度の優れた
多波長分光光度計が得られる。
According to the present invention, since the integration time for each element is set so that all the elements of the multi-channel photodetector output the same integrated output, the integration is performed even in a place where the light intensity of the spectrum is strong. When the output is not saturated and a weak place, a sufficient integration time is taken, the S / N ratio is improved, and a multi-wavelength spectrophotometer having excellent sensitivity and accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例分光光度計の構成を示すブロ
ック図
FIG. 1 is a block diagram showing the configuration of a spectrophotometer according to an embodiment of the present invention.

【図2】上記実施例装置の動作を示すフローチャートFIG. 2 is a flowchart showing the operation of the apparatus of the above embodiment.

【符号の説明】[Explanation of symbols]

1 光源 2 試料セル 3 シャッタ 4 スリット 5 分光素子 6 ランダムアドレス型マルチチャンネル光検出器 7 制御およびデータ処理装置 8 表示装置 1 light source 2 sample cell 3 shutter 4 slit 5 spectroscopic element 6 random address type multi-channel photodetector 7 control and data processing device 8 display device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分光器のスペクトル像面にランダムアド
レス型マルチチャンネル光検出器を配置し、一定の積分
時間で上記光検出器の各素子の積分出力を読み出し、こ
の読み出したデータにより、上記出力の大なる素子には
短い積分時間を設定し、小さい素子には長い積分時間を
設定する動作段階と、上記設定した積分時間が到来した
素子から順にアドレスを指定してその積分出力を読み出
し、その積分時間で割算して上記光検出器上のスペクト
ル像の測光出力を得る動作段階を設けてなる多波長分光
光度計。
1. A random address type multi-channel photodetector is arranged on a spectrum image plane of a spectroscope, and an integrated output of each element of the photodetector is read out at a constant integration time, and the output is obtained by the read data. Of a large element, a short integration time is set, and a small element is set a long integration time, and the integrated output is read by designating an address in order from the element when the set integration time has arrived. A multi-wavelength spectrophotometer provided with an operation stage for obtaining a photometric output of a spectrum image on the photodetector by dividing by an integration time.
JP11781393A 1993-04-21 1993-04-21 Multiwavelength spectrophotometer Pending JPH06307933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11781393A JPH06307933A (en) 1993-04-21 1993-04-21 Multiwavelength spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11781393A JPH06307933A (en) 1993-04-21 1993-04-21 Multiwavelength spectrophotometer

Publications (1)

Publication Number Publication Date
JPH06307933A true JPH06307933A (en) 1994-11-04

Family

ID=14720902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11781393A Pending JPH06307933A (en) 1993-04-21 1993-04-21 Multiwavelength spectrophotometer

Country Status (1)

Country Link
JP (1) JPH06307933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406838B1 (en) * 2001-06-22 2003-11-19 주식회사 파이맥스 Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP2006300728A (en) * 2005-04-20 2006-11-02 Hamamatsu Photonics Kk Photodetection circuit and photodetector
JP2008102068A (en) * 2006-10-20 2008-05-01 Nippon Instrument Kk Mercury analyzer and mercury analysis method
JP2008128982A (en) * 2006-11-24 2008-06-05 Hamamatsu Photonics Kk Fluorescence detector, fluorescence detection method, and fluorescence detection program
JP2012026730A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Spectrophotometer and absorbance measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406838B1 (en) * 2001-06-22 2003-11-19 주식회사 파이맥스 Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP2006300728A (en) * 2005-04-20 2006-11-02 Hamamatsu Photonics Kk Photodetection circuit and photodetector
JP2008102068A (en) * 2006-10-20 2008-05-01 Nippon Instrument Kk Mercury analyzer and mercury analysis method
JP2008128982A (en) * 2006-11-24 2008-06-05 Hamamatsu Photonics Kk Fluorescence detector, fluorescence detection method, and fluorescence detection program
JP2012026730A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Spectrophotometer and absorbance measuring method

Similar Documents

Publication Publication Date Title
US6151073A (en) Intelligent camera flash system
US20030169345A1 (en) Stray light correction method for imaging light and color measurement system
RU2007135874A (en) HAIR COLORING SYSTEM
JP2006189445A (en) Color measurement of ambient light
JPS61193032A (en) Instantaneous reading multichannel polychromatic spectrophotometry and device thereof
US4330209A (en) Spectrophotometer receiving a variable quantity of light
JPS6111622A (en) Spectrophotometer
JPH0290026A (en) Spectral spectrum detector
JPH06307933A (en) Multiwavelength spectrophotometer
JPH043492B2 (en)
Kariyappa et al. Contribution of chromospheric features to UV irradiance variability from spatially-resolved Ca II K spectroheliograms: I. A new method of analysis and preliminary results
JPH01155221A (en) Wavelength scanning method of spectrophotometer
JPS6140928B2 (en)
JPS5920665Y2 (en) Atomic absorption spectrometer
GB2070765A (en) Spectrophotometry
US5049736A (en) Apparatus for measurement of geological age by measuring zirconium color
JP2683407B2 (en) Photoelectric colorimeter
JPH09145478A (en) Multichannel type spectrophotometer
WO2001020308A1 (en) A glossmeter
JPS63315923A (en) Signal processor for multichannel detector
JP2000097774A (en) Spectrophotometer
RU2094779C1 (en) Analog processor for optical spectral analysis
JPS5992318A (en) Spectrometry method
Kerr The ISO definition of the dynamic range of a digital still camera
JP3783446B2 (en) SPECTRAL CHARACTERISTIC CHARACTERISTIC ESTIMATION METHOD, SPECTRUM CHARACTERISTIC ESTIMATION DEVICE, AND INFORMATION RECORDING MEDIUM CONTAINING SPECTRAL CHARACTERISTIC ESTIMATION PROGRAM