JP2000097774A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JP2000097774A
JP2000097774A JP10270795A JP27079598A JP2000097774A JP 2000097774 A JP2000097774 A JP 2000097774A JP 10270795 A JP10270795 A JP 10270795A JP 27079598 A JP27079598 A JP 27079598A JP 2000097774 A JP2000097774 A JP 2000097774A
Authority
JP
Japan
Prior art keywords
light
wavelength
data
measurement
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270795A
Other languages
Japanese (ja)
Inventor
Kasumi Yokota
佳澄 横田
Eichiyuu Ikeda
英柱 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10270795A priority Critical patent/JP2000097774A/en
Publication of JP2000097774A publication Critical patent/JP2000097774A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enlarge dynamic range of a photodetector substantially. SOLUTION: Spectroscopic measurement is performed a plurality of times for a standard white plate by changing the shutter speed of a CCD sensor 4 in advance and a relation between the shutter speed and the wavelength range causing no saturation of charge storage is determined and stored in a wavelength setting memory 12. Results of the plurality of times of spectroscopic measurement performed for the same sample while changing the shutter speed are stored temporarily in a data memory 11 and a data is selected for each wavelength range with reference to the data stored in the memory 12. A corrective operating section 14 performs multiplication of a specific data in order to correct difference of light receiving amount due to difference of the shutter speed. Consequently, a micro level receiving light can be detected even in a wavelength band where the emission intensity of a light source 1 is low.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は紫外・可視分光光度
計、赤外分光光度計などの分光光度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrophotometer such as an ultraviolet / visible spectrophotometer and an infrared spectrophotometer.

【0002】[0002]

【従来の技術】図4は、色彩測定などに利用される分光
光度計の光学系の概略構成図である。光源1から発した
光は試料2に照射され、試料2の表面からの反射光は回
折格子を備えた分光器3に導入される。分光器3は反射
光を波長方向に分散し、一次元方向に多数の微小受光素
子を配列して成る光検出器4へ送る。光検出器4の各微
小受光素子は、それぞれ異なる波長を有する単色光であ
る分散光を同時に検出する。この光検出器4の出力信号
を適宜に処理することにより、横軸に波長、縦軸に反射
率をとった反射スペクトルを作成することができる。光
検出器4としては、CCD受光素子を配列したCCDラ
インセンサやホトダイオードを配列したホトダイオード
アレイなどを利用することができる。
2. Description of the Related Art FIG. 4 is a schematic configuration diagram of an optical system of a spectrophotometer used for color measurement and the like. Light emitted from the light source 1 is applied to the sample 2, and light reflected from the surface of the sample 2 is introduced into a spectroscope 3 having a diffraction grating. The spectroscope 3 scatters the reflected light in the wavelength direction and sends it to a photodetector 4 in which a number of minute light receiving elements are arranged in a one-dimensional direction. Each minute light receiving element of the photodetector 4 simultaneously detects dispersed light that is monochromatic light having a different wavelength. By appropriately processing the output signal of the photodetector 4, a reflection spectrum having a wavelength on the horizontal axis and a reflectance on the vertical axis can be created. As the photodetector 4, a CCD line sensor in which CCD light receiving elements are arranged, a photodiode array in which photodiodes are arranged, or the like can be used.

【0003】一般に、これらの光検出器4は、所定の光
強度以上では入射光の光強度が増加しても出力の電気信
号が増加しない、いわゆる飽和特性を示す。一方、光源
1の発光強度は測定波長範囲内で均一ではない。そこ
で、分光測定を行うに先立って、測定波長範囲内で光検
出器4への入射光の光強度が最大になる波長に対しても
光検出器4の出力が飽和しないように、例えば標準試料
などを利用して入射光の強さを調整しておくことが好ま
しい。これによれば、光検出器4の出力が飽和してしま
うほどの強い光が受光面に到達することを避けることが
できる。
In general, these photodetectors 4 exhibit a so-called saturation characteristic in which the output electric signal does not increase even if the light intensity of the incident light increases above a predetermined light intensity. On the other hand, the emission intensity of the light source 1 is not uniform within the measurement wavelength range. Therefore, prior to performing the spectroscopic measurement, the output of the photodetector 4 is not saturated with respect to the wavelength at which the light intensity of the light incident on the photodetector 4 is maximized within the measurement wavelength range, for example, by using a standard sample. It is preferable to adjust the intensity of the incident light by utilizing such factors. According to this, it is possible to prevent such a strong light that the output of the photodetector 4 is saturated from reaching the light receiving surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、反面、
光源1の発光強度自体が低いような波長においては、光
検出器4の出力が飽和するような入射光の光強度よりも
遙かに低いレベルでもって受光光の検出を行うことにな
る。すなわち、このような波長帯域では光検出器4のダ
イナミックレンジが実質的に狭くなり、例えば僅かな反
射率の相違などの検出が困難であるという問題があっ
た。
However, on the other hand,
At a wavelength where the light emission intensity of the light source 1 itself is low, the received light is detected at a level much lower than the light intensity of the incident light at which the output of the photodetector 4 is saturated. That is, in such a wavelength band, there is a problem that the dynamic range of the photodetector 4 becomes substantially narrow, and it is difficult to detect, for example, a slight difference in reflectance.

【0005】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、全測定波長範
囲に亘って光検出器のダイナミックレンジを充分に活用
することができる分光光度計を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a spectrophotometer capable of fully utilizing the dynamic range of a photodetector over the entire measurement wavelength range. To provide a total.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、分光器により波長分散された光を
複数の微小受光素子を有する光検出器でもって同時に検
出する、或いは分光器により取り出された単色光の波長
を走査しながら単一の光検出器で検出する分光光度計に
おいて、 a)光検出器の受光面に到達する測定光の光量を変化させ
る光量調節手段と、 b)該光量調節手段により測定光の光量を変えて所定波長
範囲に亘る複数回の測定を実行する制御手段と、 c)予め定められた波長毎に又は所定の波長範囲毎に、測
定光の光量の相違する分光測定の結果取得されたデータ
を選択するデータ選択手段と、 d)該選択されたデータに対して測定光の光量の相違を補
正する補正演算を行う補正手段と、 を備えることを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of detecting light dispersed in wavelength by a spectroscope simultaneously with a photodetector having a plurality of minute light receiving elements, A spectrophotometer that detects with a single photodetector while scanning the wavelength of the monochromatic light taken out by the detector, a) light quantity adjusting means for changing the quantity of measurement light reaching the light receiving surface of the photodetector, b) control means for performing a plurality of measurements over a predetermined wavelength range by changing the light quantity of the measurement light by the light quantity adjustment means, c) for each predetermined wavelength or for each predetermined wavelength range, Data selection means for selecting data obtained as a result of spectrometry having different light amounts, and d) correction means for performing a correction operation for correcting the difference in light amount of the measurement light with respect to the selected data. It is characterized by.

【0007】ここで、測定光の光量とは、分光測定を行
っているときに光検出器の受光面に達する光の積算量で
ある。
Here, the light quantity of the measurement light is an integrated quantity of light reaching the light receiving surface of the photodetector during the spectral measurement.

【0008】上記光量調節手段は種々の構成とすること
ができるが、例えば光源自体の発光強度を調節する手
段、光源から光検出器に至る光路中のいずれかの位置に
おいて光の一部を遮蔽する手段、或いは、光源から光検
出器に至る光路中のいずれかの位置において光の通過す
る時間を制限する手段などを用いることができる。
The light amount adjusting means may have various structures. For example, the light amount adjusting means may adjust light emission intensity of the light source itself, and may block a part of light at any position in an optical path from the light source to the photodetector. Or a means for limiting the time for light to pass at any position in the optical path from the light source to the photodetector.

【0009】[0009]

【発明の実施の形態】本発明に係る分光光度計では、例
えば、上記光量調節手段を用いて光量を変化させつつ標
準試料の分光測定を複数回行うことによって、光検出器
の出力が飽和しない範囲で極力大きな出力が得られるよ
うな光量と波長又は波長範囲との関係を予め調べて保持
しておく。上記標準試料は各波長において光の減衰が少
ないものであることが好ましく、反射型の測定では反射
率が高い試料、吸収型の測定では吸光度の小さい試料と
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a spectrophotometer according to the present invention, for example, the output of a photodetector is not saturated by performing spectroscopic measurement of a standard sample a plurality of times while changing the light amount using the light amount adjusting means. The relationship between the amount of light and the wavelength or the wavelength range at which an output as large as possible is obtained in the range is previously checked and held. The above-mentioned standard sample preferably has a small attenuation of light at each wavelength, and is a sample having a high reflectance in a reflection type measurement and a sample having a small absorbance in an absorption type measurement.

【0010】目的とする試料の測定に際して、制御手段
は先の測定と同様に測定光の光量を変化させつつ複数回
の分光測定を実行し、光検出器により測定波長範囲に対
応する複数組のデータを取得する。データ選択手段は予
め調べておいた上記情報に基づいて、各波長毎又は所定
波長範囲の区分毎に、複数組のデータの中から適切なデ
ータを選択する。すなわち、光源の発光強度が低い波長
に対しては測定光の光量を相対的に大きくした分光測定
によるデータを選択し、一方、光源の発光強度が高い波
長に対しては測定光の光量を相対的に小さくした分光測
定によるデータを選択する。そして補正手段は、いずれ
かの分光測定を基準とし、他の分光測定により得られた
データに光量差に応じた所定値を乗じる或いは該データ
を所定値で除することにより、測定光の光量差を補正す
る。
At the time of measuring the target sample, the control means executes a plurality of spectroscopic measurements while changing the amount of the measuring light in the same manner as in the previous measurement, and sets a plurality of sets corresponding to the measuring wavelength range by the photodetector. Get the data. The data selection means selects appropriate data from a plurality of sets of data for each wavelength or for each section of the predetermined wavelength range based on the information checked in advance. In other words, for wavelengths where the light emission intensity of the light source is low, data obtained by spectrometry in which the light intensity of the measurement light is relatively large is selected. Select the data from the spectroscopic measurement that was reduced in size. The correcting means multiplies the data obtained by the other spectroscopic measurement by a predetermined value corresponding to the light amount difference or divides the data by the predetermined value, based on one of the spectroscopic measurements, thereby obtaining the light amount difference of the measurement light. Is corrected.

【0011】[0011]

【発明の効果】本発明に係る分光光度計によれば、特に
光源の発光強度自体が低いような波長帯域では光量が増
加されて分光測定がなされるので、従来は検出すること
ができなかったような小レベルの受光光も確実に検出す
ることができる。すなわち、このような波長帯域におい
ても光検出器のダイナミックレンジを充分に活用するこ
とが可能となる。
According to the spectrophotometer according to the present invention, in particular, in a wavelength band where the luminous intensity of the light source itself is low, the amount of light is increased and the spectrophotometry is performed. Such a small level of received light can be reliably detected. That is, even in such a wavelength band, the dynamic range of the photodetector can be fully utilized.

【0012】[0012]

【実施例】以下、本発明に係る分光光度計の一実施例に
ついて図を参照して説明する。本実施例の分光光度計の
光学系は、分光器により波長分散された光を複数の微小
受光素子を有する光検出器でもって同時に検出する構成
であるが、分光器により取り出された単色光の波長を走
査しながら唯一の光検出器で検出する構成においても本
発明が適用可能であることは明らかである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the spectrophotometer according to the present invention will be described below with reference to the drawings. The optical system of the spectrophotometer according to the present embodiment has a configuration in which the light wavelength-dispersed by the spectroscope is simultaneously detected by the photodetector having a plurality of minute light receiving elements. It is clear that the present invention is applicable to a configuration in which the wavelength is scanned by a single photodetector.

【0013】図1は本実施例による反射測定型の分光光
度計の要部の構成図である。光源1から発せられた光は
試料2に照射され、試料2からの反射光が回折格子を備
えた分光器3に導入される。分光器3はその光を波長方
向に分散し、微小受光素子が一次元状に配列されたCC
Dラインセンサ4へと送る。このCCDラインセンサ4
は電子的に受光面を遮蔽するシャッタ5を備えており、
制御部7から与えられるシャッタ開閉制御信号Scにて
指示された開放時間に応じて、各CCD受光素子の受光
面に到達する光量を調節できるようになっている。
FIG. 1 is a configuration diagram of a main part of a reflection measurement type spectrophotometer according to this embodiment. The light emitted from the light source 1 is applied to the sample 2, and the reflected light from the sample 2 is introduced into the spectroscope 3 having the diffraction grating. The spectroscope 3 disperses the light in the wavelength direction, and the CC in which the minute light receiving elements are arranged one-dimensionally.
Send to D line sensor 4. This CCD line sensor 4
Has a shutter 5 for electronically shielding the light receiving surface,
The amount of light reaching the light receiving surface of each CCD light receiving element can be adjusted according to the opening time specified by the shutter opening / closing control signal Sc given from the control unit 7.

【0014】上記CCDラインセンサ4の出力信号Cd
は、A/D変換器(A/D)6を介してデータ処理部1
0へと入力される。データ処理部10は、データメモリ
11、波長設定メモリ12、データ選択部13、補正演
算部14、スペクトル作成部15などを機能的に含んで
構成されており、データ処理部10と上記制御部7とは
周知のパーソナルコンピュータ(パソコン)8などによ
って具現化される。このパソコン8には、キーボードな
どの入力部16と、ディスプレイモニタなどの表示部1
7とが接続されている。なお、データ処理部10や制御
部7は必ずしもパソコン8で構成する必要はなく、専用
のハードウエアでもって構成してもよい。
The output signal Cd of the CCD line sensor 4
Is a data processing unit 1 via an A / D converter (A / D) 6.
It is input to 0. The data processing unit 10 functionally includes a data memory 11, a wavelength setting memory 12, a data selection unit 13, a correction operation unit 14, a spectrum creation unit 15, and the like. Is realized by a well-known personal computer (PC) 8 or the like. The personal computer 8 includes an input unit 16 such as a keyboard and a display unit 1 such as a display monitor.
7 are connected. Note that the data processing unit 10 and the control unit 7 do not necessarily need to be constituted by the personal computer 8, but may be constituted by dedicated hardware.

【0015】この分光光度計では、波長方向に分散され
た光がCCDラインセンサ4の各CCD受光素子に同時
に入射するから、1回の分光測定において、CCDライ
ンセンサ4を構成するCCD受光素子の数(例えば51
2、1024など)に相当する数のデータが取得され
る。データメモリ11は、少なくとも2回の分光測定に
よって取得されるデータを蓄積可能な容量を有してい
る。
In this spectrophotometer, the light dispersed in the wavelength direction is simultaneously incident on each CCD light receiving element of the CCD line sensor 4, so that the light of the CCD light receiving element constituting the CCD line sensor 4 is measured in one spectral measurement. Number (eg 51
2, 1024). The data memory 11 has a capacity capable of storing data acquired by at least two spectroscopic measurements.

【0016】一方、波長設定メモリ12の記憶容量は遙
かに少量であって、次のような測定によって予め(例え
ば当該装置の工場出荷前に)算出された波長データが格
納される。この波長データの算出方法について図2を参
照して説明する。
On the other hand, the storage capacity of the wavelength setting memory 12 is much smaller, and wavelength data calculated in advance (for example, before shipment of the apparatus) from the following measurement is stored. The method of calculating the wavelength data will be described with reference to FIG.

【0017】試料2として所定の測定位置に標準白板が
載置されると、制御部7はシャッタ開放速度を「高速」
に設定して1回目の分光測定を実行する。この「高速」
のシャッタ開放速度は後記「低速」のシャッタ開放速度
よりも4倍速いものとする。このため、CCDラインセ
ンサ4の各CCD受光素子の受光面に到達する光量(つ
まり各CCD受光素子での電荷蓄積量)は「低速」のシ
ャッタ開放速度である場合に比べて4分の1になる。こ
の1回目の分光測定の結果、例えば図2(a)に示すス
ペクトルに対応したデータが取得される。
When a standard white board is placed at a predetermined measurement position as the sample 2, the control unit 7 sets the shutter opening speed to "high speed".
And the first spectral measurement is performed. This "fast"
Is four times faster than the "low speed" shutter opening speed described later. For this reason, the amount of light reaching the light receiving surface of each CCD light receiving element of the CCD line sensor 4 (that is, the amount of charge stored in each CCD light receiving element) is reduced to one fourth as compared with the case where the shutter opening speed is "low". Become. As a result of the first spectral measurement, for example, data corresponding to the spectrum shown in FIG.

【0018】次に、制御部7はシャッタ開放速度を「低
速」に設定した上で、1回目の分光測定と同様に2回目
の分光測定を実行する。このとき、CCDラインセンサ
4の各CCD受光素子の受光面に到達する光量は上記
「高速」シャッタ開放速度の場合の4倍になり、例えば
図2(b)に示すスペクトルに対応するデータが取得さ
れる。図2(b)に明らかなように、元来、光の強度が
相対的に高い波長帯域では、対応するCCD受光素子へ
の入射光の総量が該CCD受光素子の最大電荷蓄積量を
越えてしまうため、その出力信号は最大電荷蓄積量に対
応した飽和強度Is近傍で飽和してしまう。
Next, the control unit 7 sets the shutter opening speed to "low speed" and executes the second spectral measurement in the same manner as the first spectral measurement. At this time, the amount of light that reaches the light receiving surface of each CCD light receiving element of the CCD line sensor 4 is four times that in the case of the above “high speed” shutter opening speed, and for example, data corresponding to the spectrum shown in FIG. Is done. As apparent from FIG. 2B, in the wavelength band where the light intensity is relatively high, the total amount of light incident on the corresponding CCD light receiving element exceeds the maximum charge accumulation amount of the CCD light receiving element. Therefore, the output signal is saturated near the saturation intensity Is corresponding to the maximum charge accumulation amount.

【0019】このようなスペクトル波形を基にして出力
が飽和する波長帯域を調べることができるので、飽和が
生じない範囲において極力大きな出力が得られるような
波長範囲とシャッタ開放速度との対応関係を決定する。
例えば図2に示した例では、波長λb以下及び波長λc以
上の範囲では「低速」シャッタ開放速度が適当であり、
λb〜λcなる波長範囲では「高速」シャッタ開放速度が
適当である。そこで、このような情報を波長データとし
て波長設定メモリ12に格納しておく。
Since the wavelength band in which the output is saturated can be examined based on such a spectrum waveform, the correspondence between the wavelength range in which the maximum output can be obtained in a range where saturation does not occur and the shutter opening speed is determined. decide.
For example, in the example shown in FIG. 2, a “low” shutter opening speed is appropriate in the range of the wavelength λb or less and the wavelength λc or more,
In the wavelength range λb to λc, a “high” shutter opening speed is appropriate. Therefore, such information is stored in the wavelength setting memory 12 as wavelength data.

【0020】なお、このような判断は人間が行ってもよ
いし、自動的に行えるようにしてもよい。光路構成が同
一であって、光源1やCCDラインセンサ4の特性が揃
っている場合には、複数の分光光度計に対して個別に上
述のような測定を行う必要はなく、任意の分光光度計に
おいて求めた波長データを他の分光光度計に適用するこ
とができる。
Note that such a determination may be made by a human or may be made automatically. When the light path configuration is the same and the characteristics of the light source 1 and the CCD line sensor 4 are uniform, it is not necessary to perform the above-described measurement individually for a plurality of spectrophotometers. The wavelength data obtained by the meter can be applied to other spectrophotometers.

【0021】次に、本実施例の分光光度計により目的試
料の分光測定を行う際の動作を、図3を参照しつつ説明
する。測定者が試料2を所定位置に載置して入力部16
を介し測定の開始を指示すると、制御部7はまずシャッ
タ開放速度を「高速」に設定し1回目の分光測定を実行
する。このときにはシャッタ5の開放時間が短いため、
CCDラインセンサ4の各CCD受光素子で蓄積される
電荷量は相対的に少ない。この各CCD受光素子で得ら
れた信号はそれぞれA/D変換器6にてデジタルデータ
に変換され、データメモリ11に蓄積される。その結
果、データメモリ11には、例えば図3(a)に示すス
ペクトルに対応するデータD1が蓄積される。なお、一
般に測定する試料の反射率は標準白板の反射率より小さ
いため、図3(a)のスペクトル曲線のレベルは図2
(a)のスペクトル曲線のレベル以下となる。
Next, the operation of the spectrophotometer of this embodiment for performing spectrophotometry of a target sample will be described with reference to FIG. The measurer places the sample 2 at a predetermined position, and
When the start of measurement is instructed through the control unit 7, the control unit 7 first sets the shutter opening speed to "high speed" and executes the first spectral measurement. At this time, since the opening time of the shutter 5 is short,
The amount of charge stored in each CCD light receiving element of the CCD line sensor 4 is relatively small. The signals obtained by the respective CCD light receiving elements are converted into digital data by the A / D converter 6 and stored in the data memory 11. As a result, in the data memory 11, for example, data D1 corresponding to the spectrum shown in FIG. Since the reflectance of a sample to be measured is generally smaller than the reflectance of a standard white plate, the level of the spectrum curve in FIG.
It is below the level of the spectrum curve of (a).

【0022】制御部7は引き続いてシャッタ開放速度を
「低速」に設定し、1回目の分光測定と同様にして2回
目の分光測定を実行する。このときにCCDラインセン
サ4の各CCD受光素子で得られた信号も、デジタルデ
ータに変換されてデータメモリ11に蓄積される。デー
タメモリ11には、例えば図3(b)に示すスペクトル
に対応するデータD2が蓄積される。
Subsequently, the control section 7 sets the shutter opening speed to "low speed" and executes the second spectral measurement in the same manner as the first spectral measurement. At this time, signals obtained by the respective CCD light receiving elements of the CCD line sensor 4 are also converted into digital data and stored in the data memory 11. In the data memory 11, for example, data D2 corresponding to the spectrum shown in FIG.

【0023】その後、データ選択部13は波長設定メモ
リ12に格納されている波長データを基に、2回の分光
測定で取得されたデータD1、D2を適宜選択的に読み出
す。すなわち、λa(測定下限波長)〜λb、及びλc〜
λd(測定上限波長)の波長範囲では2回目の分光測定
に対応するデータD2を読み出し、λb〜λcの波長範囲
では1回目の分光測定に対応するデータD1を読み出し
て補正演算部14へ送る。
Thereafter, the data selector 13 selectively reads out the data D1 and D2 obtained by the two spectroscopic measurements as appropriate based on the wavelength data stored in the wavelength setting memory 12. That is, λa (measurement lower limit wavelength) to λb and λc
In the wavelength range of λd (measurement upper limit wavelength), the data D2 corresponding to the second spectral measurement is read, and in the wavelength range of λb to λc, the data D1 corresponding to the first spectral measurement is read and sent to the correction operation unit 14.

【0024】1回目の分光測定時の光量は2回目の分光
測定時の光量の4分の1であるから、この差を補正する
ため、補正演算部14はλb〜λcの波長範囲に対応して
読み出された1回目の分光測定による各データに4を乗
じ、一方、2回目の分光測定による各データはそのまま
スペクトル作成部15へと送る。
Since the amount of light at the time of the first spectral measurement is one-fourth of the amount of light at the time of the second spectral measurement, the correction operation unit 14 corresponds to the wavelength range of λb to λc to correct this difference. The data read out and multiplied by the first spectroscopic measurement are multiplied by 4, while the data obtained by the second spectroscopic measurement are sent to the spectrum creating section 15 as they are.

【0025】スペクトル作成部15は、補正演算を施さ
れたデータとそれ以外のデータとを波長に沿って並べ、
図3(c)に示すようなスペクトル曲線を作成する。そ
して、このスペクトルを基に各波長毎の反射率を計算
し、反射率スペクトルを作成する。勿論、このようなス
ペクトル作成の過程では、例えばノイズ成分の低減や波
長ずれの補正などを目的として従来行われている各種デ
ータ処理を行い、正確なスペクトルを作成することが望
ましい。
The spectrum creating section 15 arranges the data subjected to the correction operation and the other data along the wavelength,
A spectrum curve as shown in FIG. Then, the reflectance for each wavelength is calculated based on this spectrum, and a reflectance spectrum is created. Of course, in the process of creating such a spectrum, it is desirable to perform various types of data processing conventionally performed for the purpose of, for example, reducing a noise component or correcting a wavelength shift to create an accurate spectrum.

【0026】このようにして、光源1の発光強度が低い
λa〜λb及びλc〜λdの波長範囲では長い電荷蓄積時間
に対応したデータが選択され、一方光源1の発光強度が
高いλb〜λcの波長範囲では短い電荷蓄積時間に対応し
たデータが選択される。したがって、λa〜λb及びλc
〜λdの波長範囲では実質的にダイナミックレンジが拡
大されたこととなり、より微小レベルの受光光を検出し
てスペクトルに反映させることが可能となる。
In this manner, data corresponding to a long charge accumulation time is selected in the wavelength ranges of λa to λb and λc to λd where the light emission intensity of the light source 1 is low, while data of λb to λc where the light emission intensity of the light source 1 is high are selected. In the wavelength range, data corresponding to a short charge accumulation time is selected. Therefore, λa-λb and λc
In the wavelength range of ~ λd, the dynamic range is substantially expanded, and it becomes possible to detect a received light at a finer level and reflect it on the spectrum.

【0027】なお、上記実施例ではCCDラインセンサ
4により検出された全てのデータを一旦データメモリ1
1に蓄積していたが、CCDラインセンサ4の各CCD
受光素子と波長との対応付けは予めわかっているので、
必要な波長範囲に相当する受光素子から得られたデータ
を取捨選択しながらデータメモリ11に書き込むような
構成としてもよい。
In the above embodiment, all data detected by the CCD line sensor 4 is temporarily stored in the data memory 1.
1, each CCD of the CCD line sensor 4
Since the correspondence between the light receiving element and the wavelength is known in advance,
A configuration in which data obtained from the light receiving element corresponding to a necessary wavelength range is written to the data memory 11 while selecting and removing the data may be adopted.

【0028】また、上記実施例は光検出器としてCCD
ラインセンサを用いているので、光量調節手段として電
子式のシャッタを用いるのが便利であるが、光量調節手
段はそれ以外の種々の方法を採ることができる。例え
ば、光検出器としてホトダイオードアレイなどを用いる
場合には、光量調節手段として光路中にNDフィルタを
挿入・退避する機構を利用するとよい。また、光源の発
光光量自体を制御可能な場合には、これを制御して光量
を調節してもよい。
In the above embodiment, a CCD is used as a photodetector.
Since a line sensor is used, it is convenient to use an electronic shutter as the light amount adjusting means, but the light amount adjusting means can employ various other methods. For example, when a photodiode array or the like is used as the photodetector, a mechanism for inserting and retracting an ND filter in the optical path may be used as the light amount adjusting means. If the light emission amount of the light source itself can be controlled, this may be controlled to adjust the light amount.

【0029】また、上記実施例では「高速」又は「低
速」の二段階にシャッタ開放速度を変える構成としてい
たが、より細かいステップで他段階にシャッタ開放速度
を変える構成とすれば、各波長に対してより適切にダイ
ナミックレンジ拡大の効果を得ることができる。
In the above embodiment, the shutter opening speed is changed in two stages of "high speed" or "slow speed". However, if the shutter opening speed is changed in other stages in finer steps, each wavelength can be changed. On the other hand, the effect of expanding the dynamic range can be obtained more appropriately.

【0030】更に本発明は、一次元状の試料像に対応し
た光を分光器により該試料像に直交する方向に波長分散
し、この二次元状に広がりを有する光をCCDイメージ
センサなどの面状の光検出器で検出する構成にも適用可
能である。
Further, according to the present invention, light corresponding to a one-dimensional sample image is wavelength-dispersed by a spectroscope in a direction orthogonal to the sample image, and the two-dimensionally spread light is applied to a surface such as a CCD image sensor. The present invention is also applicable to a configuration in which detection is performed by a photodetector having a rectangular shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による分光光度計の要部の
構成図。
FIG. 1 is a configuration diagram of a main part of a spectrophotometer according to an embodiment of the present invention.

【図2】 波長データ決定時の処理動作を説明するため
の図。
FIG. 2 is a diagram for explaining a processing operation when determining wavelength data.

【図3】 目的試料測定時の処理動作を説明するための
図。
FIG. 3 is a diagram for explaining a processing operation when measuring a target sample.

【図4】 反射測定型の分光光度計の光学系の概略構成
図。
FIG. 4 is a schematic configuration diagram of an optical system of a reflection measurement type spectrophotometer.

【符号の説明】[Explanation of symbols]

1…光源 2…試料 3…分光器 4…CCDラインセンサ 5…シャッタ 6…A/D変換器(A/D) 7…制御部 8…パーソナルコンピュータ(パソコン) 10…データ処理部 11…データメモリ 12…波長設定メモリ 13…データ選択部 14…補正演算部 15…スペクトル作成部 16…入力部 17…表示部 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Sample 3 ... Spectroscope 4 ... CCD line sensor 5 ... Shutter 6 ... A / D converter (A / D) 7 ... Control unit 8 ... Personal computer (PC) 10 ... Data processing unit 11 ... Data memory 12 wavelength setting memory 13 data selection unit 14 correction calculation unit 15 spectrum creation unit 16 input unit 17 display unit

フロントページの続き Fターム(参考) 2G020 CA02 CB04 CB21 CB42 CB43 CC02 CC13 CC31 CC48 CD03 CD12 CD24 CD31 CD32 CD34 CD37 CD38 CD39 CD51 Continued on the front page F-term (reference) 2G020 CA02 CB04 CB21 CB42 CB43 CC02 CC13 CC31 CC48 CD03 CD12 CD24 CD31 CD32 CD34 CD37 CD38 CD39 CD51

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分光器により波長分散された光を複数の
微小受光素子を有する光検出器でもって同時に検出す
る、或いは分光器により取り出された単色光の波長を走
査しながら単一の光検出器で検出する分光光度計におい
て、 a)光検出器の受光面に到達する測定光の光量を変化させ
る光量調節手段と、 b)該光量調節手段により測定光の光量を変えて所定波長
範囲に亘る複数回の測定を実行する制御手段と、 c)予め定められた波長毎に又は所定の波長範囲毎に、測
定光の光量の相違する分光測定の結果取得されたデータ
を選択するデータ選択手段と、 d)該選択されたデータに対して測定光の光量の相違を補
正する補正演算を行う補正手段と、 を備えることを特徴とする分光光度計。
1. A method for detecting light wavelength-dispersed by a spectroscope at the same time by a photodetector having a plurality of minute light receiving elements, or detecting a single light while scanning the wavelength of monochromatic light extracted by the spectroscope. A) a light amount adjusting means for changing the light amount of the measuring light reaching the light receiving surface of the light detector; andb) changing the light amount of the measuring light by the light amount adjusting means to a predetermined wavelength range. Control means for performing a plurality of measurements over a plurality of times; c) data selection means for selecting data obtained as a result of spectrometry having different amounts of measurement light at predetermined wavelengths or at predetermined wavelength ranges. And d) correction means for performing a correction operation for correcting the difference in the amount of measurement light with respect to the selected data.
JP10270795A 1998-09-25 1998-09-25 Spectrophotometer Pending JP2000097774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270795A JP2000097774A (en) 1998-09-25 1998-09-25 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270795A JP2000097774A (en) 1998-09-25 1998-09-25 Spectrophotometer

Publications (1)

Publication Number Publication Date
JP2000097774A true JP2000097774A (en) 2000-04-07

Family

ID=17491124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270795A Pending JP2000097774A (en) 1998-09-25 1998-09-25 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2000097774A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081952B2 (en) 2002-11-23 2006-07-25 Samsung Electronics Co., Ltd. Method and apparatus for obtaining an image using a selective combination of wavelengths of light
CN100416239C (en) * 2001-07-06 2008-09-03 普莱克斯技术有限公司 Emission spectrometer having charge coupled device detector
JP2009505067A (en) * 2005-08-08 2009-02-05 コーニング インコーポレイテッド Method for increasing the readout speed of a CCD detector
US10728399B2 (en) 2017-12-08 2020-07-28 Canon Kabushiki Kaisha Spectral colorimetry apparatus and image forming apparatus to control the number of detection times
KR20210110998A (en) * 2020-03-02 2021-09-10 주식회사 더웨이브톡 Detecting microorganisms system, apparatus and method using this

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416239C (en) * 2001-07-06 2008-09-03 普莱克斯技术有限公司 Emission spectrometer having charge coupled device detector
US7081952B2 (en) 2002-11-23 2006-07-25 Samsung Electronics Co., Ltd. Method and apparatus for obtaining an image using a selective combination of wavelengths of light
JP2009505067A (en) * 2005-08-08 2009-02-05 コーニング インコーポレイテッド Method for increasing the readout speed of a CCD detector
US10728399B2 (en) 2017-12-08 2020-07-28 Canon Kabushiki Kaisha Spectral colorimetry apparatus and image forming apparatus to control the number of detection times
KR20210110998A (en) * 2020-03-02 2021-09-10 주식회사 더웨이브톡 Detecting microorganisms system, apparatus and method using this
KR102309613B1 (en) 2020-03-02 2021-10-07 주식회사 더웨이브톡 Detecting microorganisms system, apparatus and method using this

Similar Documents

Publication Publication Date Title
CA2368940C (en) Radiation filter, spectrometer and imager using a micro-mirror array
TWI468654B (en) Optical characteristic measurement device and optical characteristic measurement method suitable for spectrum measurement
US6046808A (en) Radiation filter, spectrometer and imager using a micro-mirror array
US7564547B2 (en) Spectroscopy system
EP0543160B1 (en) Optical spectrum analyzer
CA2065668A1 (en) Spectroscopically correlated light scanning microscopy
JPS6218859B2 (en)
JP3098768B2 (en) Spectrophotometer and its photometric method
US4225233A (en) Rapid scan spectrophotometer
WO2020153070A1 (en) Spectrometric device and spectrometric method
US6801309B1 (en) Detector array with scattered light correction
US6643011B2 (en) SNR calculation method and optical spectrum measurement apparatus
WO2000052990A1 (en) Method for determining properties of plant seeds
JP2000097774A (en) Spectrophotometer
JPH043492B2 (en)
US5825484A (en) Optical spectrum measuring device
Firago et al. Diffuse Reflectance Spectrophotometers Based on C12880MA and C11708MA Mini-Spectrometers Hamamatsu
KR20190104298A (en) Breast milk analyzer
KR20050077695A (en) Spectrometer using 2-dimensional image sensor and beam intensity filter
JP2989459B2 (en) Spectrometer
JP3593559B2 (en) High-speed spectrometer
JP3402524B2 (en) 3D spectrophotometer
JPS5946332B2 (en) Spectrometer
JP2000121438A (en) Color image measuring apparatus
RU2580896C1 (en) Dispersion spectrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131116