JPH0629032A - High polymer electrolyte film and its manufacture - Google Patents

High polymer electrolyte film and its manufacture

Info

Publication number
JPH0629032A
JPH0629032A JP4180977A JP18097792A JPH0629032A JP H0629032 A JPH0629032 A JP H0629032A JP 4180977 A JP4180977 A JP 4180977A JP 18097792 A JP18097792 A JP 18097792A JP H0629032 A JPH0629032 A JP H0629032A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
ion exchange
exchange resin
high polymer
electrolyte film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4180977A
Other languages
Japanese (ja)
Inventor
Yoshio Oka
良雄 岡
Takeshi Sakamoto
健 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4180977A priority Critical patent/JPH0629032A/en
Publication of JPH0629032A publication Critical patent/JPH0629032A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prolong the lifetime of a highpolymer electrolyte film and accordingly that of a solid high polymer fuel cell or an aqueous electrolyzing device, in which the electrolyte film is installed, by preventing breakage of the high polymer electrolyte film resulting from repetitive swelling and contraction of an ion exchange resin produced during operation of a device in which the high polymer electrolyte film is installed. CONSTITUTION:A high polymer electrolyte film concerned is formed from a high polymer porous film prepared by elongation and an ion exchange resin contained at least in the pores of the porous film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電
池、水電解装置などに用いる高分子電解質膜であって、
装置の運転状況の繰り返し変化に対する破損のない高分
子電解質膜及びその製造法に関する。
FIELD OF THE INVENTION The present invention relates to a polymer electrolyte membrane used in a polymer electrolyte fuel cell, a water electrolysis device, etc.
TECHNICAL FIELD The present invention relates to a polymer electrolyte membrane which is free from damage due to repeated changes in the operating conditions of an apparatus and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池及び水電解装置な
どに用いる高分子電解質膜は、エネルギー効率の改善が
求められており、そのためには高分子電解質膜の膜抵抗
を低減する必要があり、そこで膜厚の減少が図られてい
る。しかし、膜厚が薄くなると必然的に強度が低下する
ので、電解質膜を固体高分子型燃料電池や水電解装置に
組み込む際に破れたり、組み込んだ後に膜の両側の圧力
差によって膜が破裂したり、膜周辺の封止部分が裂けた
りすることがある。
2. Description of the Related Art Polymer electrolyte membranes used in polymer electrolyte fuel cells and water electrolysis devices are required to have improved energy efficiency. For that purpose, it is necessary to reduce the membrane resistance of the polymer electrolyte membrane. Therefore, the film thickness is being reduced. However, as the film thickness becomes thinner, the strength inevitably decreases, so it breaks when the electrolyte membrane is installed in a polymer electrolyte fuel cell or a water electrolysis device, and after the installation, the membrane ruptures due to the pressure difference between both sides of the membrane. Or, the sealing portion around the film may be torn.

【0003】このような損傷を防ぐため、高分子電解質
膜及びその製造技術として特公平1−57693号は、
イオン交換樹脂を繊布に埋め込む方法を提案している。
In order to prevent such damage, Japanese Patent Publication No. 1-57693 discloses a polymer electrolyte membrane and its manufacturing technique.
We propose a method of embedding ion-exchange resin in fiber cloth.

【0004】[0004]

【発明が解決しようとする課題】従来の織布などを補強
材として用いた高分子電解質膜は、織布の繊維とイオン
交換樹脂との界面にはがれが生じることがあり、その結
果、イオン交換樹脂の脱落によって高分子電解質膜に穴
があいてしまうなどの問題があった。
In a polymer electrolyte membrane using a conventional woven cloth or the like as a reinforcing material, peeling may occur at the interface between the fibers of the woven cloth and the ion exchange resin, resulting in ion exchange. There is a problem that the polymer electrolyte membrane has holes due to the resin falling off.

【0005】その原因は以下の様に考えられる。イオン
交換樹脂は水分の含有量の変化により膨潤及び収縮を起
こす。一方、高分子電解質膜の補強材として用いられる
織布は、このイオン交換樹脂の膨潤、収縮に対して、こ
れを抑制する働きをし、織布の繊維とイオン交換樹脂の
界面に応力が加わる。従って、水電解装置および固体高
分子型燃料電池などのように、運転状況(出力など)が
繰り返し変動する装置内では、上記応力の繰り返し発生
により、界面に剥離が生ずるものと考えられる。
The cause is considered as follows. The ion exchange resin causes swelling and contraction depending on the change in water content. On the other hand, the woven fabric used as a reinforcing material for the polymer electrolyte membrane acts to suppress the swelling and shrinkage of the ion exchange resin, and stress is applied to the interface between the fiber of the woven fabric and the ion exchange resin. . Therefore, in a device such as a water electrolysis device and a polymer electrolyte fuel cell in which the operating conditions (output, etc.) repeatedly fluctuate, it is considered that peeling occurs at the interface due to the repeated generation of the stress.

【0006】[0006]

【課題を解決するための手段】本発明者らは、たとえイ
オン交換樹脂の含水量の変化が繰り返し生じても破損し
ない高分子電解質膜を開発すべく検討を続けた結果、本
発明を完成するに至った。本発明の要旨は、延伸により
作製された高分子多孔膜と該多孔膜の少なくとも孔内に
含有されたイオン交換樹脂とからなる高分子電解質膜、
および延伸により作製された高分子多孔膜にイオン交換
樹脂の溶液を含浸させ、次いで溶媒を除去することを特
徴とする高分子電解質膜の製造方法にある。
Means for Solving the Problems The present inventors have completed the present invention as a result of continuing studies to develop a polymer electrolyte membrane that is not damaged even if the water content of an ion exchange resin is repeatedly changed. Came to. The gist of the present invention is a polymer electrolyte membrane comprising a polymer porous membrane produced by stretching and an ion exchange resin contained in at least the pores of the porous membrane,
And a method for producing a polymer electrolyte membrane, which comprises impregnating a solution of an ion exchange resin into a polymer porous membrane produced by stretching and then removing a solvent.

【0007】本発明において用いる高分子多孔膜は以下
の様にして作製されたものである。フッ素樹脂(たとえ
ば、ポリテトラフルオロエチレンなど)またはその他の
樹脂(たとえば、ポリプロピレン、ポリエチレンなど)
を特公昭42−13560号や特公昭51−18991
号の様に結晶融点以下の温度で少なくとも一軸方向に延
伸し、次いで延伸状態のまま結晶融点以上に加熱するこ
とにより3次元の網目構造の、本発明で用いる高分子多
孔質とする。本発明の高分子電解質膜に用いる多孔質膜
の好ましい膜厚は、10〜200μm、好ましい平均孔
径は、0.1〜10μm、好ましい気孔率は、50〜95
%である。
The polymer porous membrane used in the present invention is produced as follows. Fluorine resin (eg polytetrafluoroethylene) or other resin (eg polypropylene, polyethylene etc.)
Japanese Patent Publication No. 42-13560 and Japanese Patent Publication No. 51-18991
As described in No. 3, it is stretched at least uniaxially at a temperature below the crystal melting point, and then heated to the crystal melting point or higher in the stretched state to obtain a polymer porous material having a three-dimensional network structure and used in the present invention. The preferable thickness of the porous membrane used for the polymer electrolyte membrane of the present invention is 10 to 200 µm, the preferable average pore diameter is 0.1 to 10 µm, and the preferable porosity is 50 to 95 µm.
%.

【0008】[0008]

【作用】延伸により作製された高分子多孔膜と該多孔膜
の少なくとも孔内に含有されたイオン交換樹脂とからな
る高分子電解質膜は、装置運転中の運転状況の繰り返し
変化などに起因して生じる高分子電解質膜の破損を防ぐ
ことができる。その理由は、必ずしも明らかでないが以
下の通りであると考えられる。
[Function] A polymer electrolyte membrane comprising a polymer porous membrane produced by stretching and an ion exchange resin contained in at least the pores of the porous membrane is caused by repeated changes in operating conditions during operation of the apparatus. The resulting damage to the polymer electrolyte membrane can be prevented. The reason for this is not clear, but it is considered as follows.

【0009】延伸により作製された高分子多孔膜は、3
次元的な網目構造を有するため、どの方向に対しても伸
縮性がある。従って延伸により作製された高分子多孔膜
と該多孔膜の少なくとも孔内に含有されたイオン交換樹
脂とからなる高分子電解質膜は、イオン交換樹脂の膨
潤、収縮に応じて伸縮するので、イオン交換樹脂と高分
子多孔膜の界面でのはがれが生じにくくなり、高分子電
解質膜の破損が防止される。
The polymeric porous film produced by stretching has 3
Since it has a dimensional mesh structure, it has elasticity in any direction. Therefore, the polymer electrolyte membrane composed of the polymer porous membrane produced by stretching and the ion exchange resin contained in at least the pores of the porous membrane expands and contracts in accordance with the swelling and shrinking of the ion exchange resin, so that the ion exchange Peeling is less likely to occur at the interface between the resin and the porous polymer membrane, and damage to the polymer electrolyte membrane is prevented.

【0010】また、2軸延伸により作製した多孔膜を用
いると、3次元的な網目構造がさらに発達しているた
め、2軸延伸により作製された高分子多孔膜と該多孔膜
の少なくとも孔内に含有されたイオン交換樹脂とからな
る高分子多孔膜はイオン交換樹脂の膨潤、収縮に応じて
より大きく伸縮するから、イオン交換樹脂と高分子多孔
膜の界面でのはがれが一層生じくくなり、高分子電解質
膜の破損を防止する効果が増大する。
When a porous membrane produced by biaxial stretching is used, a three-dimensional network structure is further developed, so that the polymeric porous membrane produced by biaxial stretching and at least the inside of the pores of the porous membrane. Since the polymer porous membrane made of the ion exchange resin contained in swells and stretches more greatly in response to the swelling and shrinkage of the ion exchange resin, peeling at the interface between the ion exchange resin and the polymer porous membrane becomes more difficult to occur. The effect of preventing damage to the polymer electrolyte membrane is increased.

【0011】本発明の高分子電解膜は、好ましくはイオ
ン交換樹脂の溶液を高分子多孔膜に含浸させ、その後乾
燥させ、イオン交換樹脂を高分子多孔膜に定着させて製
造する。溶剤は、イオン交換樹脂の種類に応じて選択す
ればよく、たとえば実施例で使用したパーフルオロカー
ボンスルホン酸の場合、イソプロパノールなどの溶剤が
好ましく用いられる。
The polymer electrolyte membrane of the present invention is preferably produced by impregnating a polymer porous membrane with a solution of an ion exchange resin and then drying it to fix the ion exchange resin to the polymer porous membrane. The solvent may be selected according to the type of ion exchange resin. For example, in the case of the perfluorocarbon sulfonic acid used in the examples, a solvent such as isopropanol is preferably used.

【0012】溶剤中のイオン交換樹脂の濃度は、通常1
〜5%である。あまり濃度が低いと、必要な量のイオン
交換樹脂を高分子多孔質膜に含有させるのに、含浸、乾
燥工程を繰り返さなければならず、一方濃度が高すぎる
と、溶液の粘度が高くなって、含浸操作が面倒になり、
あるいは、多孔質膜の内部まで溶液が十分浸透しない。
The concentration of the ion exchange resin in the solvent is usually 1
~ 5%. If the concentration is too low, the impregnation and drying steps must be repeated in order to contain the required amount of ion exchange resin in the polymer porous membrane, while if the concentration is too high, the viscosity of the solution will increase. , The impregnation operation becomes troublesome,
Alternatively, the solution does not sufficiently penetrate into the inside of the porous membrane.

【0013】乾燥温度も溶剤の種類に応じて適宜選択す
ればよく、必要なら減圧で乾燥してもよい。
The drying temperature may be appropriately selected according to the type of solvent, and may be dried under reduced pressure if necessary.

【0014】乾燥後の高分子多孔質膜中のイオン交換樹
脂の量は、多孔質膜1g当たり1〜100g、好ましく
は10〜40gである。
The amount of the ion exchange resin in the dried porous polymer membrane is 1 to 100 g, preferably 10 to 40 g per 1 g of the porous membrane.

【0015】[0015]

【実施例】実施例1 (I)ポリテトラフルオロエチレンを延伸して作製した多
孔膜(平均孔径1μm、膜厚50μm、多孔率90%)
に、パーフルオロカーボンスルホン酸[ナフィオン(N
afion、登録商標)、デュポン(DuPont)社]のイソ
プロピルアルコール5重量%溶液(アルドリッチ・ケミ
カル(Aldrich Chemical)社)を含浸させ、60℃で
乾燥させた。(II)この後、140℃で5分間、膜を熱処
理した。ピンホールがなくなるまで(I)と(II)の操作を
繰り返した(5回)。
Example 1 (I) Porous membrane prepared by stretching polytetrafluoroethylene (average pore diameter 1 μm, film thickness 50 μm, porosity 90%)
Perfluorocarbon sulfonic acid [Nafion (N
afion®, DuPont] was impregnated with a 5 wt% solution of isopropyl alcohol (Aldrich Chemical) and dried at 60 ° C. (II) Then, the film was heat-treated at 140 ° C. for 5 minutes. The operations (I) and (II) were repeated until the pinhole disappeared (5 times).

【0016】次に、この膜を1N硫酸中に60〜70℃
で1時間浸漬した後、60〜70℃で純水中に1時間浸
漬して、イオン交換樹脂の側鎖の末端基を−SO3Hに
変換した。
Next, this film was immersed in 1N sulfuric acid at 60 to 70 ° C.
After dipping for 1 hour in 60 ° C. to 70 ° C. in pure water for 1 hour, the terminal group of the side chain of the ion exchange resin was converted to —SO 3 H.

【0017】比較例1 補強用織布として、200デニールのポリテトラフロロ
エチレンマルチフィラメントを横糸とし、200デニー
ルのポリテトラフロロエチレンマルチフィラメントを縦
糸として25メッシュに絡み織りしたものを用いた。こ
の補強用織布に、(I)5重量%のナフィオン溶液(アル
ドリッチ・ケミカル社製)を含浸させ、60℃で乾燥さ
せた。(II)この後、140℃で5分間熱処理した。ピン
ホールがなくなるまで(I)と(II)の操作を、膜厚が50
μmになるまで繰り返した(5回)。ピンホールは見ら
れなかった。
Comparative Example 1 As a reinforcing woven fabric, a weft-woven 200 denier polytetrafluoroethylene multifilament was used as a weft, and a 200 denier polytetrafluoroethylene multifilament was used as a warp and woven in a 25 mesh mesh. This reinforcing woven fabric was impregnated with a 5% by weight Nafion solution (I) (manufactured by Aldrich Chemical Co.) and dried at 60 ° C. (II) After that, heat treatment was performed at 140 ° C. for 5 minutes. Repeat steps (I) and (II) until the pinhole disappears until the film thickness reaches 50.
Repeated until the size became μm (5 times). No pinhole was seen.

【0018】次に、この膜を1N硫酸中に60〜70℃
で1時間浸漬した後、60〜70℃で純水中に1時間浸
漬し、イオン交換樹脂の側鎖の末端基を−SO3Hに変
換した。
Next, this film was immersed in 1N sulfuric acid at 60 to 70 ° C.
After dipping for 1 hour in 60 ° C. to 70 ° C. in pure water for 1 hour, the terminal group of the side chain of the ion exchange resin was converted to —SO 3 H.

【0019】実施例1及び比較例1で得られた膜それぞ
れを、「膨潤サイクルテスト」に付した。その結果、実
施例1ではテスト後ピンホールは見られなかったが、比
較例1の膜では20%にピンホールが発生した。
Each of the membranes obtained in Example 1 and Comparative Example 1 was subjected to a "swelling cycle test". As a result, in Example 1, no pinhole was observed after the test, but in the film of Comparative Example 1, 20% of pinholes were generated.

【0020】「膨潤サイクルテスト」は以下のように行
う。高分子電解質膜を直径6cmの円形に切り、外周部
(直径5cm)のところにO−リングを乗せ、ドーナツ状
押え具で上下から挟み、押え具の6箇所をボルト/ナッ
トで固定し、90℃の純水中に5分間浸漬した後に取り
出し、100℃で5分間乾燥させる。この浸漬乾燥工程
をを10回繰り返した後、イオン交換樹脂の脱落による
穴の有無を目視により観察し、かつ膜の一方の面より加
圧した場合の他方の面への空気のもれの有無を観察し
て、ピンホールの有無を評価する。
The "swelling cycle test" is carried out as follows. Cut the polymer electrolyte membrane into a circle with a diameter of 6 cm, place an O-ring on the outer peripheral part (diameter 5 cm), sandwich it with a donut-shaped retainer from the top and bottom, and fix the retainer at 6 points with bolts / nuts. After immersing in pure water at ℃ for 5 minutes, it is taken out and dried at 100 ℃ for 5 minutes. After repeating this immersion drying step 10 times, the presence or absence of holes due to the dropping of the ion exchange resin is visually observed, and the presence or absence of air leakage to the other surface when pressure is applied from one surface of the membrane. Are observed to evaluate the presence or absence of pinholes.

【0021】[0021]

【発明の効果】本発明の高分子電解質膜は、それを取り
付けた装置の運転中に生じるイオン交換樹脂の膨潤、収
縮の繰り返しに起因する高分子電解質膜の破損を防止す
る効果がある。従って、固体高分子型燃料電池や水電解
装置などの分野で利用すると効果的である。
The polymer electrolyte membrane of the present invention has the effect of preventing damage to the polymer electrolyte membrane due to repeated swelling and shrinking of the ion exchange resin that occurs during the operation of the apparatus to which it is attached. Therefore, it is effective when used in the fields of polymer electrolyte fuel cells and water electrolysis devices.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 延伸により作製された高分子多孔膜と該
多孔膜の少なくとも孔内に含有されたイオン交換樹脂と
からなる高分子電解質膜。
1. A polymer electrolyte membrane comprising a polymer porous membrane produced by stretching and an ion exchange resin contained in at least the pores of the porous membrane.
【請求項2】 延伸により作製された高分子多孔膜にイ
オン交換樹脂の溶液を含浸させ、次いで溶媒を除去する
ことを特徴とする高分子電解質膜の製造法。
2. A method for producing a polymer electrolyte membrane, which comprises impregnating a polymer porous membrane produced by stretching with a solution of an ion exchange resin and then removing the solvent.
JP4180977A 1992-07-08 1992-07-08 High polymer electrolyte film and its manufacture Pending JPH0629032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180977A JPH0629032A (en) 1992-07-08 1992-07-08 High polymer electrolyte film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180977A JPH0629032A (en) 1992-07-08 1992-07-08 High polymer electrolyte film and its manufacture

Publications (1)

Publication Number Publication Date
JPH0629032A true JPH0629032A (en) 1994-02-04

Family

ID=16092592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180977A Pending JPH0629032A (en) 1992-07-08 1992-07-08 High polymer electrolyte film and its manufacture

Country Status (1)

Country Link
JP (1) JPH0629032A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828973A (en) * 1995-03-17 1998-10-27 Nippondenso Co., Ltd. Electric power steering apparatus
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US6054230A (en) * 1994-12-07 2000-04-25 Japan Gore-Tex, Inc. Ion exchange and electrode assembly for an electrochemical cell
US6242135B1 (en) 1996-09-13 2001-06-05 Japan Gore-Tex, Inc. Solid electrolyte composite for electrochemical reaction apparatus
US6254978B1 (en) 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37656E1 (en) 1995-03-15 2002-04-16 W.L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2003528420A (en) * 1998-08-28 2003-09-24 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
US6689501B2 (en) 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
WO2004019439A1 (en) * 2002-07-25 2004-03-04 Matsushita Electric Industrial Co., Ltd. Electrolyte membrane, membrane electrode assembly using this and fuel cell
WO2004030132A1 (en) * 2002-09-30 2004-04-08 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
JP2004185882A (en) * 2002-11-29 2004-07-02 Sanyo Electric Co Ltd Solid polymer electrolyte film, and fuel cell using it
WO2004088678A1 (en) * 2003-03-28 2004-10-14 Sumitomo Chemical Company, Limited Continuous process for producing polymer electrolyte membrane and apparatus therefor
JP2005209465A (en) * 2004-01-22 2005-08-04 Ube Ind Ltd Method of manufacturing polyelectrolyte film, polyelectrolyte film, film-electrode connector for fuel cell and fuel cell
US6926984B2 (en) 2001-01-19 2005-08-09 Honda Giken Kabushiki Kaisha Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same
US6933068B2 (en) 2001-01-19 2005-08-23 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and solid polymer electrolyte fuel cell using same
JP2005302612A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Solid electrolyte membrane
US6981668B2 (en) 2003-05-15 2006-01-03 Shimano Inc. Drag adjustment knob for a spinning reel
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
KR100709219B1 (en) * 2005-11-18 2007-04-18 삼성에스디아이 주식회사 Method of preparing polymer membrane
JP2008084576A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Manufacturing method of porous membrane for fuel cell electrolyte membrane
JP2008293737A (en) * 2007-05-23 2008-12-04 Toyota Central R&D Labs Inc Solid polymer fuel cell
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell
JP2009283468A (en) * 1996-11-06 2009-12-03 Dsm Ip Assets Bv Electrolytic membrane, usage thereof, and battery including the same
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode
US8273498B2 (en) 2006-08-31 2012-09-25 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
US8785060B2 (en) 2006-11-02 2014-07-22 Hyundai Motor Company Method of manufacturing multilayer electrolyte reinforced composite membrane
WO2019088299A1 (en) 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
JP2019220466A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437011B2 (en) 1993-09-21 2002-08-20 Ballard Power Systems Inc. α,β, β-trifluorostyrene-based composite membranes
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US5985942A (en) * 1993-09-21 1999-11-16 Ballard Power Systems Inc. α, β, β-trifluorostyrene-based composite membranes
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6254978B1 (en) 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6054230A (en) * 1994-12-07 2000-04-25 Japan Gore-Tex, Inc. Ion exchange and electrode assembly for an electrochemical cell
USRE37656E1 (en) 1995-03-15 2002-04-16 W.L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
US5828973A (en) * 1995-03-17 1998-10-27 Nippondenso Co., Ltd. Electric power steering apparatus
US6242135B1 (en) 1996-09-13 2001-06-05 Japan Gore-Tex, Inc. Solid electrolyte composite for electrochemical reaction apparatus
JP2009283468A (en) * 1996-11-06 2009-12-03 Dsm Ip Assets Bv Electrolytic membrane, usage thereof, and battery including the same
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode
JP2003528420A (en) * 1998-08-28 2003-09-24 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6933068B2 (en) 2001-01-19 2005-08-23 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and solid polymer electrolyte fuel cell using same
US6926984B2 (en) 2001-01-19 2005-08-09 Honda Giken Kabushiki Kaisha Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same
US7749630B2 (en) 2001-01-19 2010-07-06 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and polymer electrolyte fuel cell comprising same
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
US6689501B2 (en) 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell
WO2004019439A1 (en) * 2002-07-25 2004-03-04 Matsushita Electric Industrial Co., Ltd. Electrolyte membrane, membrane electrode assembly using this and fuel cell
US7604887B2 (en) 2002-07-25 2009-10-20 Panasonic Corporation Electrolyte membrane, membrane electrode assembly using this and fuel cell
JP4857560B2 (en) * 2002-09-30 2012-01-18 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
WO2004030132A1 (en) * 2002-09-30 2004-04-08 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
US7749629B2 (en) 2002-09-30 2010-07-06 Asahi Glass Company, Limited Electrolyte membrane, process for its production and polymer electrolyte fuel cell
JPWO2004030132A1 (en) * 2002-09-30 2006-01-26 旭硝子株式会社 ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND POLYMER POLYMER FUEL CELL
JP2004185882A (en) * 2002-11-29 2004-07-02 Sanyo Electric Co Ltd Solid polymer electrolyte film, and fuel cell using it
US7862921B2 (en) 2003-03-28 2011-01-04 Sumitomo Chemical Company, Limited Process for continuously producing polymer electrolyte membrane and producing apparatus therefor
WO2004088678A1 (en) * 2003-03-28 2004-10-14 Sumitomo Chemical Company, Limited Continuous process for producing polymer electrolyte membrane and apparatus therefor
US6981668B2 (en) 2003-05-15 2006-01-03 Shimano Inc. Drag adjustment knob for a spinning reel
JP2005209465A (en) * 2004-01-22 2005-08-04 Ube Ind Ltd Method of manufacturing polyelectrolyte film, polyelectrolyte film, film-electrode connector for fuel cell and fuel cell
JP2005302612A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Solid electrolyte membrane
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
US7803495B2 (en) 2005-01-26 2010-09-28 Samsung Sdi Co., Ltd. Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
KR100709219B1 (en) * 2005-11-18 2007-04-18 삼성에스디아이 주식회사 Method of preparing polymer membrane
US8273498B2 (en) 2006-08-31 2012-09-25 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
JP2008084576A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Manufacturing method of porous membrane for fuel cell electrolyte membrane
US8785060B2 (en) 2006-11-02 2014-07-22 Hyundai Motor Company Method of manufacturing multilayer electrolyte reinforced composite membrane
JP2008293737A (en) * 2007-05-23 2008-12-04 Toyota Central R&D Labs Inc Solid polymer fuel cell
WO2019088299A1 (en) 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
CN111316380A (en) * 2017-11-06 2020-06-19 Agc株式会社 Solid polymer electrolyte membrane, membrane electrode assembly, and water electrolysis device
JPWO2019088299A1 (en) * 2017-11-06 2020-12-17 Agc株式会社 Solid polymer electrolyte membrane, membrane electrode assembly and water electrolyzer
CN111316380B (en) * 2017-11-06 2022-05-24 Agc株式会社 Solid polymer electrolyte membrane, membrane electrode assembly, and water electrolysis device
US11742507B2 (en) 2017-11-06 2023-08-29 AGC Inc. Polymer electrolyte membrane, membrane electrode assembly and water electrolyzer
JP2019220466A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell

Similar Documents

Publication Publication Date Title
JPH0629032A (en) High polymer electrolyte film and its manufacture
KR100511153B1 (en) Process for producing fabrics of polybenzimidazole fibers for use in fuel cells
JP4975951B2 (en) Ion-conducting diaphragm with high hardness and dimensional stability
AU2016234205B2 (en) Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis
JPH09194609A (en) Ion-exchange membrane and its preparation
JP3369569B2 (en) Method for producing reinforced ion exchange membrane
US5795668A (en) Fuel cell incorporating a reinforced membrane
KR20000048799A (en) Process for producing polymeric films for use as fuel cells
CN87100195A (en) The remodeling iontophoretic injection barrier film of electrolyzer
US8114511B2 (en) Composite porous membrane and method for producing the same
KR100712393B1 (en) PROCESS FOR PRODUCTION OF POLYm-PHENYLENEISOPHTHAL- AMIDE POROUS HOLLOW FIBER MEMBRANE
JP4827781B2 (en) Polymer electrolyte membrane
KR20220105566A (en) Nafion-based composite membrane for a proton exchange membrane, a method for manufacturing the same, a proton exchange membrane comprising the composite membrane, a fuel cell and water electrolyzer comprising the proton exchange membrane
EP3079191B1 (en) Composite film for electrochemical element
CN106816617B (en) Preparation method of polymer composite electrolyte membrane
CN211530098U (en) Composite proton exchange membrane and fuel cell
JP2005285549A (en) Electrolyte film for solid polymer fuel cell
JP2007018972A (en) Method of manufacturing ion exchange membrane for fuel cell
WO1998051733A1 (en) Process for making composite ion exchange membranes
US9457324B2 (en) Active components and membranes for electrochemical compression
CN115584046B (en) Perfluorinated sulfonic acid/ketohexose composite ion exchange membrane for vanadium redox battery and preparation method thereof
CN113861502B (en) Preparation method of porous framework for proton exchange membrane and composite proton exchange membrane
CN114583200B (en) High-performance ultrathin porous membrane for flow battery and preparation and application thereof
AU2022314187A1 (en) Improved durability of diaphragm for higher temperature electrolysis
CN117747866A (en) Proton exchange membrane and preparation method thereof