JPH06287005A - Production of superfine particle - Google Patents

Production of superfine particle

Info

Publication number
JPH06287005A
JPH06287005A JP9489593A JP9489593A JPH06287005A JP H06287005 A JPH06287005 A JP H06287005A JP 9489593 A JP9489593 A JP 9489593A JP 9489593 A JP9489593 A JP 9489593A JP H06287005 A JPH06287005 A JP H06287005A
Authority
JP
Japan
Prior art keywords
couette
particles
vortex flow
hydrolysis
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9489593A
Other languages
Japanese (ja)
Inventor
Takashi Ogiwara
隆 荻原
Teruaki Yanagawa
昭明 柳川
Kenji Ogawa
賢治 小川
Norifumi Nagata
憲史 永田
Masahito Iguchi
真仁 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP9489593A priority Critical patent/JPH06287005A/en
Publication of JPH06287005A publication Critical patent/JPH06287005A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical

Abstract

PURPOSE:To produce simply dispersed superfine particles uniform in the particle shape and particle diameter at a low cost by performing a hydrolysis reaction and the growth of the produced particles after the hydrolysis in a Couette.Tiller vortex flow type reactor, when a metal alkoxide is hydrolyzed. CONSTITUTION:A Couette.Tiller vortex flow type reactor 5 comprising a coaxial double cylindrical reactor composed of an outer cylinder 7 and an inner cylinder 8 whose central axes are common is arranged. The metal alkoxide and other raw materials needed for the hydrolysis are received in raw material solution tanks 1 and 2, fed into a mixer 4 through constant volume pumps 3 respectively, and mixed with each other. The raw material mixture is fed into a space between the outer cylinder 7 and the inner cylinder 8 of the reactor 5. The outer cylinder 7 is made to stand still, and the inner cylinder 8 is rotated to form a Couette.Tiller vortex flow, thus hydrolyzing the metal alkoxide. After the hydrolysis reaction the produced particles are further allowed to grow in the reactor 5, and the produced superfine particles are recovered into a recovery container 6. The obtained superfine particles are suitable as a ceramic raw material, an adsorbent, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超微粒子の製造方法
に関するもので、特により詳細にはセラミックスの原料
や触媒担体、吸着材、研磨材、潤滑材、化粧品、薬品、
磁性材料、電子材料、光学材料、塗料、写真乳剤等に利
用される、粒径や組成が厳密に制御することができる超
微粒子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine particles, and more particularly, to a ceramic material, a catalyst carrier, an adsorbent, an abrasive, a lubricant, a cosmetic, a chemical,
The present invention relates to a method for producing ultrafine particles which are used in magnetic materials, electronic materials, optical materials, paints, photographic emulsions, etc. and whose particle diameter and composition can be strictly controlled.

【0002】[0002]

【従来の技術】超微粒子はセラミックスの原料を初めと
して、触媒担体、吸着材、研磨材、潤滑材、化粧品、薬
品、磁性材料、電子材料、光学材料、塗料、写真乳剤等
の種々の材料等の幅広い分野で活用が期待されている機
能性粉末であり、多くの実用化研究が成されている。
2. Description of the Related Art Ultrafine particles include various materials such as ceramic raw materials, catalyst carriers, adsorbents, abrasives, lubricants, cosmetics, chemicals, magnetic materials, electronic materials, optical materials, paints, photographic emulsions, etc. It is a functional powder that is expected to be used in a wide range of fields, and many practical studies have been made.

【0003】[0003]

【発明が解決しようとする課題】所で、この様な超微粒
子の製造方法として最もよく知られている方法の一つ
に、金属アルコキシドの加水分解法が挙げられる。この
加水分解法は、超微粒子を生成させる手段としては比較
的容易であり、また、生成する超微粒子の粒径制御が比
較的容易に行えるという利点を有するが、その反面、こ
の超微粒子製造プロセスは、ビーカースケールのバッチ
プロセスに依存しているために製造量の限界や、バッチ
間同士での粒径および粒度分布のばらつき等の問題を有
していた。
By the way, one of the most well-known methods for producing such ultrafine particles is the hydrolysis method of metal alkoxides. This hydrolysis method has the advantage that it is relatively easy as a means for producing ultrafine particles and that the particle size of the produced ultrafine particles can be controlled relatively easily. Has a problem in that it depends on the beaker scale batch process and therefore the production amount is limited and the particle size and particle size distribution vary between batches.

【0004】従って、この様なバッチプロセスに対し
て、本発明者らは、金属アルコキシドをベースに、超微
粒子の連続した製造プロセスの開発に取り組み、連続合
成装置を開発した。この連続合成装置については、例え
ば1991年、11月16日に開催された日本化学会近
畿支部の北陸地区講演で明らかにされているが、例え
ば、この講演に従って当該連続合成装置を説明すると以
下の通りである。
Therefore, in response to such a batch process, the present inventors have worked on the development of a continuous production process of ultrafine particles based on a metal alkoxide, and have developed a continuous synthesis apparatus. This continuous synthesizer has been clarified, for example, in a lecture at the Hokuriku district of the Kinki Branch of the Chemical Society of Japan held on November 16, 1991. For example, the continuous synthesizer will be described below according to this lecture. On the street.

【0005】すなわち、この連続合成装置は、原料ホッ
パー、原料溶液を混合する撹拌槽、生成粒子の成長を行
う熟成室、回収容器から構成されており、この連続合成
装置によって超微粒子の連続製造を可能とした。この様
な連続合成装置は、超微粒子の連続製造を可能とした点
において画期的とも言えるが、超微粒子の製造量に対し
て連続合成装置自体の容量が極めて大きくなると言った
問題が有った。特に、容積が嵩む工程は、生成粒子の成
長を行うための熟成室である。この様な熟成室は、例え
ば細径のテフロンチューブ等が好適であるが、時間当た
り50グラム程度の製造量を確保するためには直径4m
mのテフロンチューブで250〜300mの長さが必要
である。当然、これだけの長さのテフロンチューブを収
納しようとすると巨大な容積が必要とされるので、出来
るだけ小さなスペースで処置できる様に、例えば、テフ
ロンチューブを支柱に巻き付けたりする方法が考えられ
るが、この様な方法でも熟成室の寸法は50cm×50
cm×200cm程度の大きさが必要である。また、こ
の熟成室はテフロンチューブの入口から出口までの反応
温度を一定に保つ為に、厳密な温度制御が必要であるこ
とから、温度制御のための制御装置等の費用が嵩むと言
った問題を有していた。
That is, this continuous synthesizing apparatus comprises a raw material hopper, a stirring tank for mixing raw material solutions, an aging chamber for growing the produced particles, and a recovery container. The continuous synthesizing apparatus is used for continuous production of ultrafine particles. Made possible It can be said that such a continuous synthesizer is epoch-making in that it enables continuous production of ultrafine particles, but there is a problem that the capacity of the continuous synthesizer itself becomes extremely large with respect to the production amount of ultrafine particles. It was In particular, the step of increasing the volume is a maturing chamber for growing the generated particles. For such an aging chamber, for example, a small diameter Teflon tube is suitable, but in order to secure a production amount of about 50 grams per hour, the diameter is 4 m.
m Teflon tube requires a length of 250-300 m. Naturally, if you try to store a Teflon tube of this length, a huge volume is required, so you can consider, for example, winding the Teflon tube around the column so that you can treat it in the smallest space possible. Even with this method, the size of the aging chamber is 50 cm x 50
A size of about cm × 200 cm is necessary. In addition, since this aging chamber requires strict temperature control in order to keep the reaction temperature from the inlet to the outlet of the Teflon tube constant, the cost of the control device for temperature control increases. Had.

【0006】今日までに開発されてきたこの様な超微粒
子の製造方法は、上述の様な問題が有り、工業化に結び
付けるにはまだ多くの技術的課題を抱えており、生産性
が高く、コスト的にも安価に製造できる超微粒子に対す
る要求は極めて高いものとなっている。
The above-described method for producing ultrafine particles, which has been developed up to the present day, has the above-mentioned problems, and still has many technical problems in connection with industrialization. Also, the demand for ultrafine particles that can be manufactured at low cost is extremely high.

【0007】従って、この発明の目的は上述のような従
来における技術的な課題を解決するために、且つ上記の
趣旨からも明らかな様に、セラミックスの原料粉末とし
て、また研磨材や化粧品、電子材料等として利用できる
粒子形状と粒径が均一で、単分散した超微粒子を、連続
的に且つ低コストで製造する方法を提供することにあ
る。
Therefore, the object of the present invention is to solve the above-mentioned conventional technical problems, and as is clear from the above point, as a raw material powder of ceramics, abrasives, cosmetics, and electronic materials. An object of the present invention is to provide a method for continuously and inexpensively producing monodispersed ultrafine particles having a uniform particle shape and particle diameter that can be used as a material and the like.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明に従った超微粒子の製造方法は、金属ア
ルコキシドの加水分解によって超微粒子を連続的に製造
する際、加水分解と加水分解後の粒子成長をクエット・
テイラー渦流れ型反応容器中で行うことを特徴とするも
のである。
In order to achieve the above object, a method for producing ultrafine particles according to the present invention is a method for producing ultrafine particles by continuously hydrolyzing a metal alkoxide. Couette particle growth after decomposition
It is characterized in that it is carried out in a Taylor vortex flow type reaction vessel.

【0009】本発明者らは、上記の要求を満足する超微
粒子の製造方法の開発を目指し、種々研究を重ねた結
果、金属アルコキシドの加水分解によって超微粒子を連
続的に製造する際、加水分解と加水分解後の粒子成長を
クエット・テイラー渦流れ型反応容器中で行うことによ
って粒子形状と粒径が均一で、単分散した超微粒子が、
安定して連続的に且つ低コストで得られることを見出
し、本発明を完成するに至ったものである。
The inventors of the present invention have conducted various studies aiming at development of a method for producing ultrafine particles satisfying the above-mentioned requirements, and as a result, as a result of hydrolysis of metal alkoxide to produce ultrafine particles continuously, By performing particle growth after hydrolysis in a Couette-Taylor vortex flow type reaction vessel, monodisperse ultrafine particles with uniform particle shape and size,
The present inventors have completed the present invention by finding that they can be obtained stably, continuously and at low cost.

【0010】[0010]

【作用】すなわち、この発明においては、金属アルコキ
シドの加水分解と加水分解により生成した微粒子の粒子
成長に、クエット・テイラー渦流れ型反応容器を用いる
ことが必須条件の1つである。このクエット・テイラー
渦流れ型反応容器は、原料溶液に対して、クエット・テ
イラー渦流れを発生させ、このクエット・テイラー渦流
れ型反応容器中で金属アルコキシドを加水分解し、均一
核生成と、粒子の成長を同時に行って単分散粒子を合成
するものである。この様なこの発明の超微粒子の製造方
法を実施するための製造装置を解り易く説明するため
に、以下に添付図面を参照して詳細に説明する。
That is, in the present invention, it is an essential condition to use the Couette-Taylor vortex flow type reaction vessel for the hydrolysis of the metal alkoxide and the particle growth of the fine particles produced by the hydrolysis. This Couette-Taylor vortex flow type reaction vessel generates a Couette-Taylor vortex flow in a raw material solution, hydrolyzes a metal alkoxide in the Couette-Taylor vortex flow type reaction vessel, and produces uniform nucleation and particles. Are simultaneously grown to synthesize monodisperse particles. In order to easily understand the manufacturing apparatus for carrying out the method for manufacturing ultrafine particles according to the present invention, a detailed description will be given below with reference to the accompanying drawings.

【0011】図1は、この発明の超微粒子の製造方法を
実施するために使用するクエット・テイラー渦流れ型反
応容器の基本的構造を示す概要図である。いま、図1に
従って説明すると、製造装置は原料溶液槽1、2と原料
供給器(定量ポンプ)3と混合器4とクエット・テイラ
ー渦流れ型反応容器5と回収容器6とから主に構成され
ている。このクエット・テイラー渦流れ型反応容器5
は、共軸2重円筒製の反応容器であって、通常、中心軸
を共有するガラス製外円筒7と塩化ビニル製等の内円筒
8で構成されている。外円筒7と内円筒8の間に流体を
満たし、内円筒8を回転し、外円筒7を静止すると、流
体は内円筒8の回転による粘性摩擦力に引きずられて層
流の回転流を形成する。この流れをクエット・テイラー
渦流れと呼ぶが、このクエット・テイラー渦流れに一定
流量の軸流れを与えると、局所的に混合が良くなり、且
つ反応容器5内で押し出し流れになる。次に、内円筒8
の回転によって、反応容器5内では互いに孤立した数十
層の渦が発生する。このために、各渦がバッチの反応槽
の役割を成していることになる。すなわち、一つ一つの
渦が、前記したテフロンチューブの役割を果たすので、
反応容器5自体の容積は極めて小さくすることが出来
る。更に、この様な反応容器5の容積の減少は、例え
ば、上述したテフロン製チューブの反応容器を用いた連
続製造装置(装置寸法:50cm×50cm×200c
m)と同等の製造能力(50g/時間)を持たせるため
には、この様なクエット・テイラー渦流れ型反応容器を
用いたこの発明の連続製造装置では外円筒7の直径が8
cm、長さが40cm程度の装置寸法で対応することが
出来る。
FIG. 1 is a schematic diagram showing the basic structure of a Couette-Taylor vortex flow type reaction vessel used for carrying out the method for producing ultrafine particles of the present invention. Now, referring to FIG. 1, the manufacturing apparatus mainly includes raw material solution tanks 1 and 2, a raw material supply device (quantitative pump) 3, a mixer 4, a Couette-Taylor vortex flow type reaction container 5 and a recovery container 6. ing. This Couette-Taylor vortex flow type reaction vessel 5
Is a coaxial double-cylinder reaction container, which is usually composed of a glass outer cylinder 7 and a vinyl chloride inner cylinder 8 that share a central axis. When the space between the outer cylinder 7 and the inner cylinder 8 is filled with fluid, the inner cylinder 8 is rotated, and the outer cylinder 7 is stationary, the fluid is dragged by viscous frictional force due to the rotation of the inner cylinder 8 to form a laminar rotating flow. To do. This flow is called a Couette-Taylor vortex flow. When a constant flow rate of an axial flow is applied to the Couette-Taylor vortex flow, mixing is locally improved and the flow becomes an extruded flow in the reaction vessel 5. Next, the inner cylinder 8
Due to the rotation of, the vortices of dozens of layers isolated from each other are generated in the reaction container 5. Therefore, each vortex plays the role of a batch reaction tank. That is, since each vortex plays the role of the Teflon tube described above,
The volume of the reaction container 5 itself can be made extremely small. Furthermore, such a reduction in the volume of the reaction vessel 5 can be achieved by, for example, a continuous production apparatus (apparatus size: 50 cm × 50 cm × 200 c) using the above-mentioned Teflon tube reaction vessel.
In order to have a production capacity (50 g / hour) equivalent to that of m), the diameter of the outer cylinder 7 is 8 in the continuous production apparatus of the present invention using such a Couette-Taylor vortex flow type reaction vessel.
A device size of about 40 cm and a length of about 40 cm can be used.

【0012】このクエット・テイラー渦流れ型反応容器
5は、前述した様な渦の発生によって反応が生じる訳で
あるが、この際に、単分散されずに凝集した粒子が生成
した場合には、この凝集した粒子は反応容器5の底部に
沈降し、製品と分離される、所謂、分級作用も有してい
る点も大きな特徴の1つと言える。尚、渦の形成のし易
さを促すために、クエット・テイラー渦流れ型反応容器
5の内円筒8と外円筒7の直径の差は大きいほど好まし
い。
In the Couette-Taylor vortex flow type reaction vessel 5, a reaction occurs due to the generation of the vortex as described above. At this time, when aggregated particles are generated without being monodispersed, It can be said that one of the major characteristics is that the agglomerated particles also have a so-called classification function of settling at the bottom of the reaction vessel 5 and separating from the product. In order to facilitate the formation of vortices, it is preferable that the difference in diameter between the inner cylinder 8 and the outer cylinder 7 of the Couette-Taylor vortex flow type reaction vessel 5 is large.

【0013】尚、テイラー渦流れ型反応容器5で反応を
完結し、回収容器中に回収された超微粒子は、そのまゝ
スラリーの状態で使用することも出来るし、乾燥あるい
は焼成することによって乾粉として使用してもよい。こ
の時の乾燥および焼成には、どのような方法を採用して
も良いが、単分散状態が維持される様に出来るだけ流動
状態で乾燥あるいは焼成するのが良い。
The ultrafine particles which have been subjected to the reaction in the Taylor vortex flow type reaction vessel 5 and recovered in the recovery vessel can be used as they are in the form of a slurry, or can be dried or calcined to obtain a dry powder. May be used as. Any method may be adopted for drying and firing at this time, but it is preferable to dry or fire in a fluidized state as much as possible so that the monodispersed state is maintained.

【0014】[0014]

【実施例】以下に、この発明を実施例によって更に説明
するが、下記の実施例はこの発明を何等制限するもので
はなく、前後の趣旨に徴して設計変更することはいずれ
もこの発明の技術的範囲に含まれるものである。
EXAMPLES The present invention will be further described below with reference to examples, but the following examples do not limit the present invention in any way, and any modification of the design according to the spirit of the invention is a technique of the present invention. It is included in the target range.

【0015】(実施例1)図1に示す製造装置を用い
て、単分散アルミナ微粒子の合成を行った。先ず、アル
ミニウムセカンダリーブトキシド{Al(sec−OC
493}を60℃でオクタノールに溶解し、0.05m
ol/l濃度に調製した。これに0.2g/lのHPC
/オクタノール溶液およびアセトニトリルを添加して、
総量250mlにした。こゝでオクタノールとアセトニ
トリル溶媒の体積比は60:40とした。次いで、両者
を定量ポンプを用いて、等速度(25ml/min)
で、T字型混合器に送り込んだ。数秒混合した後、内円
筒の直径が5cm、外円筒の直径が8cm、長さが40
cmのクエット・テイラー渦流れ型反応容器内に送り込
み、加水分解反応を行った。容器内の回転数は70rp
mとし、5cm/minの速度で反応溶液を上方へ押し
上げた。反応温度は25℃とした。反応終了後に、生成
粒子は溶液と共にタンクに回収した。その後、遠心分離
機で粒子と溶液を分離し、流動式乾燥・焼成炉にて単分
散アルミナの超微粒子を得た。この超微粒子は、図2に
示すように、単分散した球状粒子であり、且つ、図3に
示す如く、平均粒子径が0.347μm、σg=1.14
0の極めて粒度分布がシャープな超微粒子であった。
Example 1 Monodisperse alumina fine particles were synthesized using the manufacturing apparatus shown in FIG. First, aluminum secondary butoxide {Al (sec-OC
4 H 9 ) 3 } is dissolved in octanol at 60 ° C to give 0.05 m
The concentration was adjusted to ol / l. HPC of 0.2g / l
/ Add octanol solution and acetonitrile,
The total volume was 250 ml. Here, the volume ratio of the octanol and the acetonitrile solvent was 60:40. Then, using a metering pump for both, at a constant speed (25 ml / min)
Then, it was sent to the T-shaped mixer. After mixing for a few seconds, the diameter of the inner cylinder is 5 cm, the diameter of the outer cylinder is 8 cm, and the length is 40 cm.
It was sent into a Couette-Taylor vortex flow type reaction vessel of cm to carry out the hydrolysis reaction. Rotation speed in the container is 70 rp
m, and the reaction solution was pushed upward at a speed of 5 cm / min. The reaction temperature was 25 ° C. After the reaction was completed, the produced particles were collected in a tank together with the solution. Then, the particles were separated from the solution by a centrifuge, and ultrafine particles of monodispersed alumina were obtained in a fluidized drying / firing furnace. The ultrafine particles are monodispersed spherical particles as shown in FIG. 2, and have an average particle diameter of 0.347 μm and σg = 1.14 as shown in FIG.
The ultrafine particles having an extremely sharp particle size distribution of 0 were obtained.

【0016】[0016]

【発明の効果】この発明の超微粒子の製造方法に依れ
ば、上述した構成の製造装置を採用することによって、
セラミックスの原料や種々の機能性粉末として活用でき
る、粒子形状と粒径が均一で、単分散した超微粒子を安
定、連続して且つ低コストで提供することが出来る。
According to the method for producing ultrafine particles of the present invention, by employing the production apparatus having the above-mentioned structure,
It is possible to provide stable, continuous, and low-cost monodispersed ultrafine particles having a uniform particle shape and particle size, which can be utilized as a raw material for ceramics and various functional powders.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の超微粒子の製造方法を実施するため
に用いるクエット・テイラー渦流れ型反応容器の構造図
である。
FIG. 1 is a structural diagram of a Couette-Taylor vortex flow type reaction vessel used for carrying out the method for producing ultrafine particles of the present invention.

【図2】実施例1で得られたアルミナ粉末の電子顕微鏡
写真である。
2 is an electron micrograph of the alumina powder obtained in Example 1. FIG.

【図3】実施例1で得られたアルミナ粉末の粒度分布図
である。
3 is a particle size distribution chart of the alumina powder obtained in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 原料溶液槽 2 原料溶液槽 3 原料供給器(定量ポンプ) 4 混合器 5 クエット・テイラー渦流れ型反応容器 6 回収容器 7 外円筒 8 内円筒 1 raw material solution tank 2 raw material solution tank 3 raw material supply device (quantitative pump) 4 mixer 5 Couette-Taylor vortex flow type reaction vessel 6 recovery vessel 7 outer cylinder 8 inner cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 賢治 千葉県佐倉市大作2丁目4番2号 小野田 セメント株式会社中央研究所内 (72)発明者 永田 憲史 千葉県佐倉市大作2丁目4番2号 小野田 セメント株式会社中央研究所内 (72)発明者 井口 真仁 千葉県佐倉市大作2丁目4番2号 小野田 セメント株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kenji Ogawa 2-4 Daisaku, Sakura City, Chiba Prefecture Central Research Laboratory, Onoda Cement Co., Ltd. (72) Kenji Nagata 2-4-2 Daisaku Sakura City, Chiba Prefecture Onoda Cement Co., Ltd. Central Research Institute (72) Inventor Shin Iguchi, 2-4-2 Daisaku Sakura, Chiba Prefecture Onoda Cement Co., Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属アルコキシドの加水分解によって超
微粒子を連続的に製造する方法であって、加水分解およ
び加水分解後の粒子成長をクエット・テイラー渦流れ型
反応容器中で行うことを特徴とする超微粒子の製造方
法。
1. A method for continuously producing ultrafine particles by hydrolysis of a metal alkoxide, characterized in that hydrolysis and particle growth after hydrolysis are carried out in a Couette-Taylor vortex flow type reaction vessel. Method for producing ultrafine particles.
JP9489593A 1993-03-31 1993-03-31 Production of superfine particle Pending JPH06287005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9489593A JPH06287005A (en) 1993-03-31 1993-03-31 Production of superfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9489593A JPH06287005A (en) 1993-03-31 1993-03-31 Production of superfine particle

Publications (1)

Publication Number Publication Date
JPH06287005A true JPH06287005A (en) 1994-10-11

Family

ID=14122776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9489593A Pending JPH06287005A (en) 1993-03-31 1993-03-31 Production of superfine particle

Country Status (1)

Country Link
JP (1) JPH06287005A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034456B3 (en) * 2005-07-23 2006-11-02 Zimmer Ag Device, useful for melting polycondensation of polymers under distance gaseous cleavage products in lying cylindrical reactor with agitating chamber, comprises inlet, outlet, gas channel, and outer- and inner rotor that are in chamber
JP2008024524A (en) * 2006-07-18 2008-02-07 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle, metal nanoparticle, treated metal nanoparticle, and use of the same
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2009274909A (en) * 2008-05-14 2009-11-26 Dainippon Printing Co Ltd Apparatus and method for producing hydrolyzate of metal alkoxide
JP2011147907A (en) * 2010-01-25 2011-08-04 Tomotaka Marui Process apparatus having minute bubble generator
KR101148004B1 (en) * 2009-12-02 2012-05-24 서울대학교산학협력단 Method of fabricating coated particles
JP2014015654A (en) * 2012-07-06 2014-01-30 Applied Nanoparticle Laboratory Corp Method for producing nanoparticle, production device therefor and automatic production device therefor
KR101399057B1 (en) * 2012-11-27 2014-05-27 주식회사 라미나 Solid - liquid substances mixed reaction apparatus
WO2014084547A1 (en) * 2012-11-27 2014-06-05 (주)라미나 Reaction device for mixing and manufacturing method using the reaction device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
DE102005034456B3 (en) * 2005-07-23 2006-11-02 Zimmer Ag Device, useful for melting polycondensation of polymers under distance gaseous cleavage products in lying cylindrical reactor with agitating chamber, comprises inlet, outlet, gas channel, and outer- and inner rotor that are in chamber
JP2008024524A (en) * 2006-07-18 2008-02-07 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle, metal nanoparticle, treated metal nanoparticle, and use of the same
JP2009274909A (en) * 2008-05-14 2009-11-26 Dainippon Printing Co Ltd Apparatus and method for producing hydrolyzate of metal alkoxide
KR101148004B1 (en) * 2009-12-02 2012-05-24 서울대학교산학협력단 Method of fabricating coated particles
JP2011147907A (en) * 2010-01-25 2011-08-04 Tomotaka Marui Process apparatus having minute bubble generator
JP2014015654A (en) * 2012-07-06 2014-01-30 Applied Nanoparticle Laboratory Corp Method for producing nanoparticle, production device therefor and automatic production device therefor
KR101399057B1 (en) * 2012-11-27 2014-05-27 주식회사 라미나 Solid - liquid substances mixed reaction apparatus
WO2014084547A1 (en) * 2012-11-27 2014-06-05 (주)라미나 Reaction device for mixing and manufacturing method using the reaction device
JP2016501705A (en) * 2012-11-27 2016-01-21 ラミナー カンパニー,リミテッド Reactor for mixing and production method using the reactor
US10201797B2 (en) 2012-11-27 2019-02-12 Laminar Co., Ltd. Reaction device for mixing and manufacturing method using the reaction device

Similar Documents

Publication Publication Date Title
Chang et al. Precipitation of microsize organic particles from supercritical fluids
Giesche Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process
CN103435096B (en) Method for preparing size controllable nano stannic oxide
WO1991007349A1 (en) Process for forming highly uniform silica spheres
JPH06287005A (en) Production of superfine particle
CN101492164A (en) Method of manufacturing monodisperse silicon dioxide microsphere
CN109923069B (en) Halloysite powder and method for producing halloysite powder
CN107866577B (en) Method for preparing monodisperse silver powder by instant micro-flow reactor
CN108529674A (en) A kind of preparation method of high dispersion nanometer oxide zirconium particle and its transparent dispersion
JPH0781931A (en) Spherical calcite type calcium carbonate flocculate and production thereof
CN108862273A (en) The preparation method and Nano diamond twice dispersing method of Nano diamond colloid
US4840975A (en) Spherical grains of polyamino acid and production method thereof
Cai et al. Effect of Ammonia on the SiO2 Colloidal Particles Synthesized by the Stöber Method
CN112156730B (en) Preparation method of high-purity monodisperse porous silicon oxide spheres
CN105271264A (en) Preparation method of mono-dispersed hollow silica beads
JP2512835B2 (en) Method for producing silica fine particles
JPH0687608A (en) Production of monodispersive spherical silica
JP3313771B2 (en) Method for producing inorganic oxide particles
US4524016A (en) Process for spheroidal BaFCl:Eu phosphor particles
Ogihara et al. Preparation of monodispersed, spherical ferric oxide particles by hydrolysis of metal alkoxides using a continuous tube-type reactor
CN105129812A (en) Preparation method for rapidly synthesizing DD3R molecular sieve
JPH0132169B2 (en)
JPH05201724A (en) Ethylene glycol dispersion of crystalline calcium carbonate and crystalline calcium carbonate
Ogihara et al. Continuous Synthesis of Monodispersed Alumina Particles by the Hydrolysis of Metal Alkoxide Using a Taylor Vortex [Translated]
CN112608335B (en) Synthesis method of chiral europium sulfide nanoparticles