KR101148004B1 - Method of fabricating coated particles - Google Patents

Method of fabricating coated particles Download PDF

Info

Publication number
KR101148004B1
KR101148004B1 KR1020090118204A KR20090118204A KR101148004B1 KR 101148004 B1 KR101148004 B1 KR 101148004B1 KR 1020090118204 A KR1020090118204 A KR 1020090118204A KR 20090118204 A KR20090118204 A KR 20090118204A KR 101148004 B1 KR101148004 B1 KR 101148004B1
Authority
KR
South Korea
Prior art keywords
particles
coated
coating
resultant
reactor
Prior art date
Application number
KR1020090118204A
Other languages
Korean (ko)
Other versions
KR20110061712A (en
Inventor
김재정
권오중
박경주
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020090118204A priority Critical patent/KR101148004B1/en
Publication of KR20110061712A publication Critical patent/KR20110061712A/en
Application granted granted Critical
Publication of KR101148004B1 publication Critical patent/KR101148004B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide

Abstract

반응 시간이 단축되고 균일한 크기 분포의 코팅 입자를 얻을 수 있는 코팅 입자 제조방법에 대해 개시한다. 본 발명의 코팅 입자 제조방법은, 코팅물질을 액체에 혼합하는 제1 단계와; 상기 제1 단계의 결과물에 코팅대상 입자를 혼합하는 제2 단계와; 상기 제2 단계의 결과물에 쿠에트-테일러 흐름을 형성시켜 상기 코팅대상 입자에 상기 코팅물질을 뭉침현상 없이 균일하게 코팅하는 제3 단계를 구비하는 것을 특징으로 한다. 본 발명에 따르면, 제조공정 동안 강하고 일정한 혼합강도를 유지함으로써 입자 표면을 고르게 코팅하고 뭉침 현상을 막아서 좁은 크기 분포를 가질 수 있으며 반응 시간을 단축시켜 우수한 품질의 코팅 입자를 제조할 수 있다.Disclosed is a method for preparing coated particles which can shorten the reaction time and obtain coated particles having a uniform size distribution. Method for producing a coated particle of the present invention, the first step of mixing the coating material in the liquid; A second step of mixing the particles to be coated with the resultant of the first step; And a third step of uniformly coating the coating material on the coating target particles without agglomeration by forming a cue-taylor flow in the resultant of the second step. According to the present invention, by maintaining a strong and constant mixing strength during the manufacturing process it can have a narrow size distribution by coating the particle surface evenly and prevent agglomeration phenomenon, it is possible to produce a coating particles of excellent quality by shortening the reaction time.

코팅, 입자, 나노, 전자종이, 마이크로캡슐, 쿠에트-테일러 흐름 Coating, Particles, Nano, Electronic Paper, Microcapsules, Kuet-Taylor Flow

Description

코팅 입자 제조방법 {Method of fabricating coated particles}Method of manufacturing coated particles {Method of fabricating coated particles}

본 발명은 코팅 입자 제조방법에 관한 것으로, 특히 전자종이(electronic paper; e-paper) 제조에 있어서 마이크로캡슐(microcapsule) 내의 안료로 쓰이는 고분자 코팅 나노 입자, 또는 연료전지 등에 쓰이는 촉매 제조, 화장품 산업, 약품 캡슐화(encapsulation) 등에 적용되는 코팅 입자를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a method for producing coated particles, and in particular, to manufacturing polymer coated nanoparticles used as pigments in microcapsules in electronic paper (e-paper), catalyst production for fuel cells, cosmetic industry, The present invention relates to a method for producing coated particles that is applied to drug encapsulation and the like.

전기 영동법을 이용하는 전자종이(e-paper)의 경우, 두 개의 투명한 기판 사이에 흑/백 또는 컬러 입자를 포함하고 있는 마이크로캡슐들이 들어있는 형태로 구성되어 있다. 흑/백의 전자종이에서, 흑색이 (+)전하를 띠고 있는 경우 (-)전압을 걸어주면 흑색 입자들이 (-)쪽으로 이동하고 흰색 입자들은 반대쪽으로 이동하면서 흑색 구현하며 반대의 경우도 같은 원리로 흰색을 구현한다.In the case of e-paper using electrophoresis, microcapsules containing black / white or color particles are formed between two transparent substrates. In black / white electronic paper, when black has a (+) charge, applying a negative voltage causes black particles to move toward (-) and white particles to move toward the opposite side, realizing black, and vice versa. Implement white.

상기와 같은 구동 시스템에 있어서 빠른 응답속도와 쌍안정성(bistability)은 제품의 성능을 결정하는 데 있어서 가장 중요한 요소임과 동시에 개선의 여지가 많은 부분이다. 응답속도는 화면이 한 번 바뀌는 데 걸리는 시간으로 입자들의 운동성과 표면 전하의 절대값에 큰 영향을 받고, 쌍안정성은 한 번 화면을 구성하고 나서 이후의 외부 전력 공급 없이 화면을 오랜 시간 동안 안정하게 유지하기 위해 중요한 요소로 마이크로 캡슐을 구성하고 있는 안료입자들과 유전성 유체(dielectric fluid)가 유사한 밀도를 갖게 하는 것이 중요하다. 이러한 성질들은 마이크로캡슐 내 입자들의 표면을 고분자로 코팅, 계면활성제 첨가 등의 표면 개질을 통한 표면 전하조절 및 밀도 조절로 향상시킬 수 있다. In such a drive system, fast response speed and bistability are the most important factors in determining the performance of the product, and there is much room for improvement. The response speed is the time it takes for the screen to change once, which is greatly influenced by the particle's motility and the absolute value of the surface charge. An important factor to maintain is that the pigment particles constituting the microcapsules and the dielectric fluid have a similar density. These properties can be improved by surface charge control and density control through surface modification of the particles in the microcapsules with polymer coating, surfactant addition, and the like.

일반적으로 나노 입자를 코팅하는 방법에는 크게 건식 방법과 습식 방법으로 나눌 수 있다. 나노 입자가 들어 있는 고온의 챔버(chamber)에 코팅하고자 하는 물질과 코팅이 될 물질을 노즐로 분사시켜 반응을 유도하는 건식 방법의 경우 입자의 크기를 조절에는 용이한 점이 있으나, 코팅이 균일하게 되지 않을 확률이 높아 제조 수율이 낮다는 단점을 가지고 있다. 반면, 습식 방법 중 하나인 교반 방법은 나노 입자와 코팅시키고자 하는 물질을 함께 넣고 마그네틱 바를 이용하여 오랜 시간 일정한 속도로 교반 시켜 고분자를 코팅 하는 것이다. 이 방법은 교반이 마그네틱 바 또는 임펠러에 의존하고 이러한 교반체의 위치에 따른 흐름 영향이 크기 때문에 모든 담지체가 일정한 힘을 받지 못하게 되고 코팅된 입자들이 넓은 분포를 보인다. 또한, 교반 속도에 제약이 있기 때문에 입자들이 받는 전단 응력에도 한계가 존재하게 되고 코팅 시간을 길어지게 하는 원인이 된다. 또 다른 습식 방법 중 하나로써 에멀전 고분자 중합 반응에서는 일련의 연속식 탱크 반응기(series-CSTRs)이 널리 사용되는데, 이것은 교반 방법에 비해 큰 힘으로 혼합해 줄 수 있고 가장 처음에 있는 반응기가 입자성장의 씨앗을 제공해 줌으로써 비교적 균일한 마이크로 또는 나노 입자들을 얻을 수 있다. 하지만 반응물을 섞어주는 과도한 기계적인 힘 때문에 입자들의 뭉침 현상이 심하다는 단점이 있다.In general, the coating method of nanoparticles can be largely divided into a dry method and a wet method. In the dry method of inducing a reaction by injecting a material to be coated into a high temperature chamber containing nanoparticles and a material to be coated with a nozzle, it is easy to control the size of the particles, but the coating is not uniform. There is a disadvantage that the production yield is low because of the high probability. On the other hand, one of the wet methods, the stirring method is to put the nanoparticles and the material to be coated together and stir at a constant speed for a long time using a magnetic bar to coat the polymer. In this method, the stirring is dependent on the magnetic bar or the impeller, and the flow influence according to the position of the stirring body is large so that all the carriers are not subjected to a constant force and the coated particles have a wide distribution. In addition, since the stirring speed is limited, there is a limit in the shear stress received by the particles and causes a long coating time. As another wet method, a series of continuous tank reactors (series-CSTRs) are widely used in emulsion polymer polymerization reactions, which can be mixed with greater force than the stirring method. By providing seeds, relatively uniform micro or nano particles can be obtained. However, there is a disadvantage that the aggregation of particles is severe due to excessive mechanical force that mixes the reactants.

코팅된 나노 입자는 마이크로 캡슐 내에서 뭉치지 않으면서 좋은 운동성을 가져야 한다. 이러한 역할을 다하기 위하여 균일하게 고분자가 입혀지는 것이 중요하고, 제조하는데 있어서 짧은 반응 시간을 통해 높은 수율의 입자를 얻어야 하지만 현재 사용되는 상기 방법들로는 한계가 있다.The coated nanoparticles should have good mobility without clumping in the microcapsules. In order to fulfill this role, it is important to coat the polymer uniformly, and to produce a high yield of particles through a short reaction time in manufacturing, but there are limitations to the methods currently used.

위에서는 전자종이 제조에 있어서 마이크로캡슐 내의 안료로 쓰이는 고분자 코팅 나노 입자의 제조에 대해서만 설명하였지만, 그 외에도 연료전지 등에 쓰이는 촉매 제조, 화장품 산업, 약품 캡슐화 등에 적용되는 코팅 입자를 제조함에 있어서도 불균일한 코팅, 입자들 간의 뭉침 현상, 긴 반응시간의 소요 등이 문제점으로 지적되고 있다.In the above, only the production of polymer coated nanoparticles used as pigments in microcapsules for electronic paper production has been described, but in addition, non-uniform coatings are also used for preparing coated particles for catalyst production, cosmetic industry, and drug encapsulation for fuel cells. Problems such as agglomeration between particles and long reaction time are pointed out as problems.

따라서 본 발명이 해결하고자 하는 과제는, 반응 시간 동안 강하고 일정한 혼합강도를 유지함으로써 입자 표면을 고르게 코팅하고 뭉침 현상을 막아서 좁은 크기 분포를 가질 수 있으며 반응 시간단축을 이룰 수 있는 코팅 입자 제조방법을 제공하는 것이다.Therefore, the problem to be solved by the present invention is to provide a method for producing coated particles that can have a narrow size distribution and to achieve a reaction time shortened by coating the surface of the particles evenly and preventing aggregation by maintaining a strong and constant mixing strength during the reaction time It is.

상기 과제를 달성하기 위한 본 발명에 따른 코팅 입자 제조방법은, 코팅물질을 액체에 혼합하는 제1 단계와; 상기 제1 단계의 결과물에 코팅대상 입자를 혼합하는 제2 단계와; 상기 제2 단계의 결과물에 쿠에트-테일러 흐름(Couette-Taylor flow)을 형성시켜 상기 코팅대상 입자에 상기 코팅물질을 뭉침현상 없이 균일하게 코팅하는 제3 단계를 구비하는 것을 특징으로 한다.Method for producing a coated particle according to the present invention for achieving the above object is a first step of mixing the coating material in the liquid; A second step of mixing the particles to be coated with the resultant of the first step; And a third step of forming a Couette-Taylor flow on the resultant of the second step to uniformly coat the coating material on the particles to be coated without aggregation.

여기서, 상기 제3 단계의 결과물을 원심 분리하는 제4 단계와; 상기 제4 단계의 결과물을 건조시킨 후 분쇄 처리하는 제5 단계와; 상기 제5 단계의 결과로 크기가 작아진 입자를 분산매질 내에서 분산시키는 제6 단계를 더 거치도록 할 수도 있다.A fourth step of centrifuging the resultant of the third step; A fifth step of drying and drying the resultant product of the fourth step; The sixth step of dispersing the particles having a smaller size as a result of the fifth step in the dispersion medium may be further performed.

상기 코팅대상 입자가 나노 입자일 경우, 이 나노 입자가, Polyethylene, P(styrene-co-divinylbenzene), Polyacrylamide, P(MMA-co-EGDMA-co-MAA), Natural wax (Montan Wax )로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; TiO2, CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것이 바람직하다.When the particles to be coated are nanoparticles, the nanoparticles are composed of polyethylene, P (styrene-co-divinylbenzene), Polyacrylamide, P (MMA-co-EGDMA-co-MAA), and natural wax (Montan Wax Wa). ; Metal consisting of Pt, Pd, Cu; Metal oxides composed of TiO 2, CeO 2, Al 2 O 3; And at least one selected from the group consisting of graphite.

또한, 상기 코팅대상 입자가 전자종이에 적용되는 나노 입자일 경우, 이 나노 입자는 위에 언급된 나노 입자 구성물질 모두를 이용하여 만들어질 수 있으며, 특히 컬러 전자종이의 경우에는 코팅대상 나노 입자가 benzidine Yellow, DPI Solution Ind., PB 15:3, phthalocyanine blue BGS (β-CuPc)로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것이 바람직하다.In addition, when the particles to be coated are nanoparticles applied to the electronic paper, the nanoparticles may be made using all of the above-mentioned nanoparticle constituents. It is preferably made by at least one selected from the group consisting of Yellow, DPI Solution Ind., PB 15: 3, phthalocyanine blue BGS (β-CuPc).

한편, 코팅물질은 Polyethylene, P(styrene-co-divinylbenzene, Polyacrylamide, P(MMA-co-EGDMA-co-MAA)로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; TiO2, CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것이 바람직하다.On the other hand, the coating material is a polymer composed of polyethylene, P (styrene-co-divinylbenzene, Polyacrylamide, P (MMA-co-EGDMA-co-MAA); metal consisting of Pt, Pd, Cu; TiO 2 , CeO 2 , Al 2 It is preferably made by at least one selected from the group consisting of metal oxides consisting of O 3 and graphite.

또한, 상기 제3 단계에서 쿠에트-테일러 흐름을 형성시키는 것이, 연속적인 반응이 가능한 회분식 반응기에서 이루어지며, 상기 반응기가 내부 원통 및 각각 온도 제어되는 외벽과 내벽을 가지며, 상기 내부 원통의 회전 속도가 조절되는 것이 바람직하다.Further, in the third step, the forming of the Kuet-Taylor flow is performed in a batch reactor capable of continuously reacting, the reactor having an inner cylinder and an outer wall and an inner wall respectively temperature controlled, and the rotational speed of the inner cylinder. Is preferably adjusted.

이 경우, 상기 반응기에서 이루어지는 공정의 온도는 -10~200℃이며, 상기 내부 원통의 회전 속도는 0~10000 rpm 까지 조절 가능한 것이 바람직하며, 상기 반응기의 용량은 30~10000㎖인 것이 바람직하다.In this case, the temperature of the process performed in the reactor is -10 ~ 200 ℃, the rotational speed of the inner cylinder is preferably adjustable to 0 to 10,000 rpm, the capacity of the reactor is preferably 30 to 10000 ml.

본 발명에 의하면, 코팅 입자를 제조함에 있어서 반응 시간이 단축되고 균일한 크기 분포의 코팅 입자를 얻을 수 있기 때문에, 우수한 제품을 높은 생산성으로 제조할 수 있다.According to the present invention, in the production of the coated particles, the reaction time is shortened and the coated particles having a uniform size distribution can be obtained, so that an excellent product can be produced with high productivity.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. The following embodiments are merely provided to understand the contents of the present invention, and those skilled in the art will be able to make many modifications within the technical scope of the present invention. The scope of the invention should not be construed as limited to these examples.

일반적으로 쿠에트-테일러(Couette-Taylor) 볼텍스(Vortex) 흐름을 형성하는 반응기는 개략적으로, 도 1에 도시한 바와 같이, 중심축이 같은 외부 원통(110)과 내부 원통(120), 주입구(140), 방출구(150), 그리고 반응기(100) 내의 내부 원 통(120)의 회전을 결정해주는 모터(130)를 포함하는 시스템으로 이루어져 있다. 도 1은 쿠에트-테일러 반응기의 개략적 단면도이다. 반응하고자 하는 물질들의 혼합물을 주입구(140)를 통하여 두 개의 원통(110, 120) 사이에 넣고 내부 원통(120)을 회전시키면 흐름이 생기게 된다. 내부 원통(120)의 각속도가 느린 경우 라미나(laminar) 상태의 쿠에트 흐름이 생성되는 반면, 각속도가 증가함에 따라 유체들이 외부 원통 방향으로 나가려는 경향 때문에 유체가 불안정해지고 특정 임계 속도 이상에서 테일러 와류가 생기게 된다. 테일러 와류는 축방향으로 매우 규칙적인 고리모양으로 배열되어 있고, 서로 반대방향으로 회전하기 때문에 축방향으로는 섞이지 않아 균일한 혼합을 유도할 수 있다. 이러한 반응은 나노 입자 표면의 고분자 물질의 코팅과 중합반응을 포함하고 코팅 물질에는 고분자, 금속, 산화금속 등으로 적용에 제한을 두지 않고 널리 적용될 수 있다. 한편, 이 반응은 전자종이의 구성요소 중 하나인 마이크로 캡슐 내의 안료 입자의 코팅에 대해서도 적용되지만 그외에도 연료전지 등에 쓰이는 촉매 제조, 화장품 산업, 약품 캡슐화(encapsulation)에 있어서 입자를 코팅하는 데 적용할 수 있다. 반응기(100) 내부의 회전속도의 조절이 용이하여 반응시간 동안 반응물에 가해주는 전단응력을 조절하여 입자의 크기 조절이 용이하고, 교반의 방법에 비해 고속 회전이 가능하기 때문에 큰 전단응력을 전달할 수 있어 반응시간을 단축시킬 수 있다. 또한, 교반기의 영향을 배제시킬 수 있으므로 다른 방법에 비해 균일하게 코팅된 입자를 얻을 수 있을 뿐 만 아니라 좁은 크기 분포를 얻어냄으로써 수율의 증대로 기대할 수 있다.In general, the reactor forming the Couette-Taylor Vortex flow is schematically, as shown in Figure 1, the outer cylinder 110, the inner cylinder 120, the inlet ( 140), a discharge port 150, and a system including a motor 130 to determine the rotation of the inner cylinder 120 in the reactor 100. 1 is a schematic cross-sectional view of a Kuet-Taylor reactor. A mixture of substances to be reacted is inserted between the two cylinders 110 and 120 through the inlet 140, and the inner cylinder 120 is rotated to generate a flow. If the angular velocity of the inner cylinder 120 is slow, a Laminar Kuet flow is generated, whereas as the angular velocity increases, the fluid tends to exit in the direction of the outer cylinder, causing the fluid to become unstable and Taylor above a certain critical velocity. Vortex occurs. Taylor vortices are arranged in a very regular annular shape in the axial direction and rotate in opposite directions so that they do not mix in the axial direction, leading to uniform mixing. Such a reaction may include coating and polymerization of a polymer material on the surface of the nanoparticle, and the coating material may be widely applied without limiting its application to polymers, metals, metal oxides, and the like. The reaction also applies to the coating of pigment particles in microcapsules, one of the components of electronic paper, but also to coating particles in the production of catalysts used in fuel cells, the cosmetics industry, and pharmaceutical encapsulation. Can be. It is easy to control the rotation speed inside the reactor 100 to control the shear stress applied to the reactants during the reaction time is easy to control the size of the particles, it is possible to transfer a large shear stress because the high-speed rotation is possible compared to the stirring method The reaction time can be shortened. In addition, since the influence of the stirrer can be eliminated, not only can be uniformly coated particles compared to other methods, but also can be expected to increase the yield by obtaining a narrow size distribution.

이러한 쿠에트-테일러 흐름을 형성시키는 것으로서, 연속적인 반응이 가능한 회분식 반응기를 사용할 경우, 반응기가 내부 원통 및 각각 온도 제어되는 외벽과 내벽을 가질 수 있으며, 내부 원통의 회전 속도가 당연히 조절되는데, 반응기에서 이루어지는 공정의 온도는 -10~200℃이며, 상기 내부 원통의 회전 속도는 0~10000 rpm 까지 조절 가능한 것이 바람직하다.In forming such a Kuet-Taylor flow, when using a batch reactor capable of continuous reaction, the reactor may have an inner cylinder and a temperature controlled outer wall and an inner wall, and the rotational speed of the inner cylinder is naturally controlled. It is preferable that the temperature of the process made in is -10-200 degreeC, and the rotation speed of the said inner cylinder can be adjusted to 0-10000 rpm.

또한, 반응기의 용량이 30~10000㎖ 정도인 것을 사용하면, 대량생산에도 적용이 가능하다.If the reactor has a capacity of about 30 to 10000 ml, it can be applied to mass production.

[실시예][Example]

코팅물질인 폴리에틸렌(polyethylene) 0.8g을 100㎖의 사이클로헥산(cyclohexane)에 넣고 80℃에서 폴리에틸렌이 완전히 녹을 때까지 혼합해 주었다. 제조된 용액에 코팅대상 입자인 TiO2 입자 0.4g을 입자들이 분산되도록 10분 간 소니케이팅(sonicating)하였다. 이후 쿠에트-테일러 볼텍스 흐름을 이용한 반응기에 넣고 2시간 동안 1000 rpm의 속도로 혼합해 준 뒤 3000 rpm으로 5분간 원심 분리하였다. 원심 분리로 얻어진 결과물을 24시간 동안 오븐에 건조한 후, 볼분쇄기(ball mill)를 사용하여 상기 물질을 5분간 볼분쇄 처리를 하였다. 그 다음, 크기가 작아진 입자 50mg을 100㎖의 테트라클로로에틸렌(tetrachloroethylene)에 혼합한 뒤 200 ul의 Span85를 첨가하여 분산시켰다.0.8 g of polyethylene, a coating material, was added to 100 ml of cyclohexane and mixed at 80 ° C. until the polyethylene was completely dissolved. 0.4 g of TiO 2 particles, which are the coating target particles, were sonicated for 10 minutes to disperse the particles in the prepared solution. Then, the mixture was put into a reactor using a cue-taylor vortex flow, mixed at a speed of 1000 rpm for 2 hours, and centrifuged at 3000 rpm for 5 minutes. The resultant obtained by centrifugation was dried in an oven for 24 hours, and then the material was subjected to ball milling for 5 minutes using a ball mill. Then, 50 mg of the smaller particles were mixed in 100 ml of tetrachloroethylene and 200 ul of Span85 was added and dispersed.

[비교예][Comparative Example]

코팅물질인 폴리에틸렌(polyethylene) 0.8g을 100㎖의 사이클로헥 산(cyclohexane)에 넣고 80℃에서 폴리에틸렌이 완전히 녹을 때까지 혼합해 주었다. 제조된 용액에 코팅대상 입자인 TiO2 입자 0.4g을 입자들이 분산되도록 10분 간 소니케이팅(sonicating)하였다. 이후 마그네틱 바(magnetic bar)를 이용하여 24시간 동안 교반기로 혼합해 준 뒤 3000 rpm으로 5분간 원심 분리하였다. 24시간 동안 오븐 건조를 한 후 볼분쇄기(ball mill)를 사용하여 상기 물질을 5분간 분쇄하여 크기를 작게 만들었다. 이 결과물 50㎖을 100㎖의 테트라클로로에틸렌(tetrachloroethylene)에 혼합한 뒤 200 ul의 Span85를 첨가하여 분산시켰다.0.8 g of polyethylene, a coating material, was added to 100 ml of cyclohexane and mixed at 80 ° C. until the polyethylene was completely dissolved. 0.4 g of TiO 2 particles, which are the coating target particles, were sonicated for 10 minutes to disperse the particles in the prepared solution. After mixing with a stirrer for 24 hours using a magnetic bar (magnetic bar) was centrifuged for 5 minutes at 3000 rpm. After oven drying for 24 hours, the material was ground for 5 minutes using a ball mill to reduce the size. 50 mL of the resultant was mixed with 100 mL of tetrachloroethylene, and then dispersed by adding 200 ul of Span85.

도 2는 상기 실시예와 비교예에 따라 폴리에틸렌으로 TiO2를 코팅한 후 입자의 코팅 성분을 FT-IR로 분석하여 비교한 그래프이다. 도 2를 참조하면, 쿠에트-테일러 볼텍스 흐름을 사용한 경우에 폴리에틸렌 피크(peak)의 강도(intensity)가 증가한 것을 알 수 있다.2 is a graph comparing TiO 2 with polyethylene according to the above Examples and Comparative Examples and analyzing the coating components of the particles by FT-IR. Referring to FIG. 2, it can be seen that the intensity of the polyethylene peak is increased when the Cuet-Taylor vortex flow is used.

도 3은 상기 실시예에 의해 제조된 입자의 표면을 TEM으로 관찰하여 나타낸 사진이다. 도 3을 참조하면, 본 발명에 의할 경우 쿠에트-테일러 볼텍스 흐름을 이용하였기 때문에 2시간의 짧은 반응 시간으로도 고르게 폴리에틸렌이 코팅되었음을 알 수 있다.Figure 3 is a photograph showing the observation of the surface of the particles prepared by the above Example by TEM. Referring to FIG. 3, it can be seen that the polyethylene was evenly coated even with a short reaction time of 2 hours because the Kuet-Taylor vortex flow was used according to the present invention.

본 발명의 실시예에서는 코팅물질로서 폴리에틸렌을 선택하고, 코팅대상 입자로서 TiO2 입자를 선택하였지만, 반드시 이에 제한되는 것은 아니다. 따라서, 코팅대상 입자가 나노 입자일 경우, 이 나노 입자가, 폴리에틸렌 이외에도, P(styrene-co-divinylbenzene), Polyacrylamide, P(MMA-co-EGDMA-co-MAA), Natural wax (Montan Wax )로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; TiO2, CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어지도록 하여도 좋다.In the exemplary embodiment of the present invention, polyethylene is selected as the coating material and TiO 2 particles are selected as the coating target particles, but are not necessarily limited thereto. Therefore, when the particles to be coated are nanoparticles, the nanoparticles may be P (styrene-co-divinylbenzene), Polyacrylamide, P (MMA-co-EGDMA-co-MAA), or natural wax (Montan Wax) in addition to polyethylene. Composed polymer; Metal consisting of Pt, Pd, Cu; Metal oxides composed of TiO 2, CeO 2, Al 2 O 3; And at least one selected from the group consisting of graphite.

또한, 상기 코팅대상 입자가 전자종이에 적용되는 나노 입자일 경우, 이 나노 입자는 위에 언급된 나노 입자 구성물질 모두를 이용하여 만들어질 수 있으며, 특히 컬러 전자종이의 경우에는 코팅대상 나노 입자가 benzidine Yellow, DPI Solution Ind., PB 15:3, phthalocyanine blue BGS (β-CuPc)로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것이 바람직하다.In addition, when the particles to be coated are nanoparticles applied to the electronic paper, the nanoparticles may be made using all of the above-mentioned nanoparticle constituents. It is preferably made by at least one selected from the group consisting of Yellow, DPI Solution Ind., PB 15: 3, phthalocyanine blue BGS (β-CuPc).

그리고, 코팅물질은 TiO2 이외에도 Polyethylene, P(styrene-co-divinylbenzene, Polyacrylamide, P(MMA-co-EGDMA-co-MAA)로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어지는 것이 바람직하다.The coating material is a polymer composed of polyethylene, P (styrene-co-divinylbenzene, Polyacrylamide, P (MMA-co-EGDMA-co-MAA) in addition to TiO 2 ; a metal composed of Pt, Pd, and Cu; CeO 2 , Al 2 It is preferably made by at least one selected from the group consisting of metal oxides consisting of O 3 and graphite.

도 1은 쿠에트-테일러 반응기의 개략적 단면도;1 is a schematic cross-sectional view of a Kuet-Taylor reactor;

도 2는 본 발명의 실시예와 비교예에 따라 폴리에틸렌으로 TiO2를 코팅한 후 입자의 코팅 성분을 FT-IR로 분석하여 비교한 그래프; 및FIG. 2 is a graph comparing TiO 2 with polyethylene according to an embodiment of the present invention and analyzing the coating component of the particle by FT-IR; And

도 3은 본 발명의 실시예에 따라 폴리에틸렌으로 TiO2를 코팅한 후 입자의 표면을 TEM으로 관찰하여 나타낸 사진이다.Figure 3 is a photograph showing the observation of the surface of the particle TEM after coating TiO 2 with polyethylene according to an embodiment of the present invention.

* 도면 중의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

100: 반응기100: reactor

110: 외부 원통110: outer cylinder

120: 내부 원통120: inner cylinder

130: 모터130: motor

140: 주입구140: injection hole

150: 방출구150: discharge port

Claims (8)

코팅물질을 액체에 혼합하는 제1 단계와;Mixing the coating material with the liquid; 상기 제1 단계의 결과물에 코팅대상 입자를 혼합하는 제2 단계와;A second step of mixing the particles to be coated with the resultant of the first step; 상기 제2 단계의 결과물에 쿠에트-테일러 흐름을 형성시켜 상기 코팅대상 입자에 상기 코팅물질을 뭉침현상 없이 균일하게 코팅하는 제3 단계;Forming a Kuet-Tayr flow on the resultant of the second step to uniformly coat the coating material on the particles to be coated without aggregation; 를 구비하는 코팅 입자 제조방법.Coating particles manufacturing method comprising a. 제1항에 있어서, 상기 제3 단계의 결과물을 원심 분리하는 제4 단계와;The method of claim 1, further comprising: a fourth step of centrifuging the resultant of the third step; 상기 제4 단계의 결과물을 건조시킨 후 분쇄 처리하는 제5 단계와;A fifth step of drying and drying the resultant product of the fourth step; 상기 제5 단계의 결과로 크기가 작아진 입자를 분산매질 내에서 분산시키는 제6 단계;A sixth step of dispersing the particles having a smaller size as a result of the fifth step in a dispersion medium; 를 더 거치는 것을 특징으로 하는 코팅 입자 제조방법.Method for producing a coated particle, characterized in that further through. 제1항에 있어서, 상기 코팅대상 입자가 나노 입자이며, 이 나노 입자가, Polyethylene, P(styrene-co-divinylbenzene), Polyacrylamide, P(MMA-co-EGDMA-co-MAA), Natural wax (Montan Wax)로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; TiO2, CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것을 특징으로 하는 코팅 입자 제조방법.The method of claim 1, wherein the particles to be coated are nanoparticles, the nanoparticles are polyethylene, P (styrene-co-divinylbenzene), Polyacrylamide, P (MMA-co-EGDMA-co-MAA), Natural wax (Montan A polymer composed of Wax); Metal consisting of Pt, Pd, Cu; Metal oxides composed of TiO 2, CeO 2, Al 2 O 3; And at least one selected from the group consisting of graphite. 삭제delete 제1항에 있어서, 코팅물질이 Polyethylene, P(styrene-co-divinylbenzene, Polyacrylamide, P(MMA-co-EGDMA-co-MAA)로 구성된 고분자; Pt, Pd, Cu로 구성된 금속; TiO2, CeO2, Al2O3로 구성된 산화 금속; 및 흑연으로 구성된 군으로부터 선택된 적어도 하나에 의해 만들어진 것을 특징으로 하는 코팅 입자 제조방법.The method of claim 1, wherein the coating material is a polymer consisting of polyethylene, P (styrene-co-divinylbenzene, Polyacrylamide, P (MMA-co-EGDMA-co-MAA); metal consisting of Pt, Pd, Cu; TiO 2 , CeO 2 , a metal oxide composed of Al 2 O 3 , and at least one selected from the group consisting of graphite. 제1항에 있어서, 상기 제3 단계에서 쿠에트-테일러 흐름을 형성시키는 것이, 연속적인 반응이 가능한 회분식 반응기에서 이루어지며, 상기 반응기가 내부 원통 및 각각 온도 제어되는 외벽과 내벽을 가지며, 상기 내부 원통의 회전 속도가 조절되는 것을 특징으로 하는 코팅 입자 제조방법.The method of claim 1, wherein forming the Kuet-Taylor flow in the third step is carried out in a batch reactor capable of continuous reaction, the reactor having an inner cylinder and a temperature controlled outer wall and an inner wall, respectively, Method for producing a coated particle, characterized in that the rotational speed of the cylinder is controlled. 제6항에 있어서, 상기 반응기에서 이루어지는 공정의 온도는 -10~200℃이며, 상기 내부 원통의 회전 속도는 0~10000 rpm 까지 조절 가능한 것을 특징으로 하는 코팅 입자 제조방법.The method according to claim 6, wherein the temperature of the process in the reactor is -10 ~ 200 ℃, the rotational speed of the inner cylinder is adjustable to 0 ~ 10,000 rpm. 제6항에 있어서, 상기 반응기의 용량이 30~10000㎖인 것을 특징으로 하는 코팅 입자 제조방법.The method of claim 6, wherein the reactor has a capacity of 30 to 10000 ml.
KR1020090118204A 2009-12-02 2009-12-02 Method of fabricating coated particles KR101148004B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090118204A KR101148004B1 (en) 2009-12-02 2009-12-02 Method of fabricating coated particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090118204A KR101148004B1 (en) 2009-12-02 2009-12-02 Method of fabricating coated particles

Publications (2)

Publication Number Publication Date
KR20110061712A KR20110061712A (en) 2011-06-10
KR101148004B1 true KR101148004B1 (en) 2012-05-24

Family

ID=44396007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090118204A KR101148004B1 (en) 2009-12-02 2009-12-02 Method of fabricating coated particles

Country Status (1)

Country Link
KR (1) KR101148004B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347913B2 (en) * 2014-10-14 2019-07-09 Lg Chem, Ltd. Method for preparing core-shell structured particle by using continuous Couette-Taylor crystallizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101824433B1 (en) 2011-06-24 2018-03-14 엘지이노텍 주식회사 display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287005A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Production of superfine particle
KR20020018673A (en) * 1999-05-25 2002-03-08 베른하르트 클루트 ; 옌스 피셔 ; 한드룽스베볼매크티그테르 프로쿠리스트 Coating material containing a mixture of silicic acids and urea and/or urea derivatives
KR20060130521A (en) * 2006-07-20 2006-12-19 케이엔디티앤아이 주식회사 The method of separating operation on crystallization over continuous drowning-out
KR20080083695A (en) * 2006-01-12 2008-09-18 바스프 코팅스 악티엔게젤샤프트 Powder coating suspensions (powder slurries) and powder coatings, process for producing them and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287005A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Production of superfine particle
KR20020018673A (en) * 1999-05-25 2002-03-08 베른하르트 클루트 ; 옌스 피셔 ; 한드룽스베볼매크티그테르 프로쿠리스트 Coating material containing a mixture of silicic acids and urea and/or urea derivatives
KR20080083695A (en) * 2006-01-12 2008-09-18 바스프 코팅스 악티엔게젤샤프트 Powder coating suspensions (powder slurries) and powder coatings, process for producing them and their use
KR20060130521A (en) * 2006-07-20 2006-12-19 케이엔디티앤아이 주식회사 The method of separating operation on crystallization over continuous drowning-out

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347913B2 (en) * 2014-10-14 2019-07-09 Lg Chem, Ltd. Method for preparing core-shell structured particle by using continuous Couette-Taylor crystallizer

Also Published As

Publication number Publication date
KR20110061712A (en) 2011-06-10

Similar Documents

Publication Publication Date Title
AU704674B2 (en) Gloss emulsion paints
EP0554776B1 (en) Novel flaky pigments
AU643191B2 (en) Coloured powder coating compositions
Agbo et al. A review on the mechanism of pigment dispersion
CN102719145B (en) Disperse dye nanocapsule for thermal sublimation digital printing ink-jet ink and preparation method of disperse dye nanocapsule
EP2709752A2 (en) Microcapsules comprising black pigments
KR101148004B1 (en) Method of fabricating coated particles
EP3012019B1 (en) Particle production device and particle production method using same
CN107312116A (en) A kind of preparation method of macromolecule Janus microsphere particles
Tawiah et al. An overview of the science and art of encapsulated pigments: Preparation, performance and application
US3944144A (en) Method and apparatus for dispersing suspensions
Hao et al. Utilizing cellulase as dispersant to prepare stable nano-pigment suspension and investigating its coloring performance on cotton fabrics
EP0459048A1 (en) Coloured powder coating compositions
US20120116006A1 (en) Polymer Encapsulation Of Particles
US20050106310A1 (en) Designed particle agglomeration
CN109321001A (en) A kind of serialization nano-TiO2The method of surface treatment
JP3400836B2 (en) Pigment dispersion method
CN111151203B (en) Method for preparing oil core nano capsule carrier by one-step method
CN105776306A (en) Surface modification method of sub-10 nanometer NaGdF4 nanocrystalline and application of method to nuclear magnetic resonance
JP7280629B2 (en) Inorganic pigments used in liquid crystal devices
Tang et al. An integrated microreaction system for controllable continuous synthesis of polysilsesquioxane microspheres
KR102116444B1 (en) New method of preparing spherical bead
CN108753274B (en) Preparation method of pigment yellow fluorescent nanoparticles coated by crosslinked acrylic resin polymer
CN110790956B (en) Preparation method of superfine fluororesin powder
WO2021105971A1 (en) Reactor and method for producing a formulation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 8