JP3313771B2 - Method for producing inorganic oxide particles - Google Patents

Method for producing inorganic oxide particles

Info

Publication number
JP3313771B2
JP3313771B2 JP22462292A JP22462292A JP3313771B2 JP 3313771 B2 JP3313771 B2 JP 3313771B2 JP 22462292 A JP22462292 A JP 22462292A JP 22462292 A JP22462292 A JP 22462292A JP 3313771 B2 JP3313771 B2 JP 3313771B2
Authority
JP
Japan
Prior art keywords
solution
particles
reaction
inorganic oxide
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22462292A
Other languages
Japanese (ja)
Other versions
JPH0656418A (en
Inventor
正史 前川
康雄 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP22462292A priority Critical patent/JP3313771B2/en
Publication of JPH0656418A publication Critical patent/JPH0656418A/en
Application granted granted Critical
Publication of JP3313771B2 publication Critical patent/JP3313771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒子径分布の極めて狭
い、すなわち単分散性の無機酸化物粒子の連続的な製造
方法に関する。本発明による製造方法により得られる単
分散無機酸化物粒子は、変動係数(平均粒子径を基準と
して、粒子径の標準偏差を百分率で表した値)が15%
以下であって粒子径分布が小さく、実質的に細孔がない
粒子であるという粒子構造の特徴を有する。このため高
い付加価値が要求される材料、例えばフィラー材料、医
科・歯科材料、化粧品材料、光拡散材料、精密研磨材料
等として利用し得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing inorganic oxide particles having an extremely narrow particle size distribution, that is, monodisperse inorganic oxide particles. The monodisperse inorganic oxide particles obtained by the production method according to the present invention have a coefficient of variation (a value obtained by expressing the standard deviation of the particle diameter in percentage based on the average particle diameter) of 15%.
The following is a characteristic of the particle structure that the particles have a small particle size distribution and substantially no pores. Therefore, it can be used as a material requiring high added value, for example, a filler material, a medical / dental material, a cosmetic material, a light diffusing material, a precision polishing material, and the like.

【0002】[0002]

【従来の技術】従来から、有機金属化合物を加水分解、
縮合反応させることにより、無機酸化物粒子を製造する
方法が種々知られている。例えば、球状シリカの製法が
その例である。この例をとって説明すると、シリコンと
エタノールが結合したエトキシシランをエタノールで希
釈した溶液にアンモニア水をpH調整しつつ加えると、
水によってエトキシシランが加水分解反応を受け、反応
液中にシリコンの水酸化物とエタノールができてこれら
が増し、水が減る。一方、このシリコンの水酸化物は、
平行してつぎつぎに脱水縮合反応を起こし、酸化物、す
なわち微細なシリカ粒子が発生し、球状に成長してい
く。これら全体の反応過程の様子を有機金属化合物の代
表例であるアルコキシドを用いて一般化して示すとつぎ
のとおりである。 加水分解反応;M(OR)X+XH2O→M(OH)X+XROH 縮合反応 ;M(OH)X→MOX/2+(X/2)H2O (ただし、Mは金属元素、Rはアルキル基を示す。)
2. Description of the Related Art Conventionally, an organic metal compound is hydrolyzed,
Various methods for producing inorganic oxide particles by a condensation reaction are known. For example, a method for producing spherical silica is an example. Taking this example as an example, if ammonia water is added to a solution obtained by diluting ethoxysilane in which silicon and ethanol are combined with ethanol while adjusting the pH,
The ethoxysilane undergoes a hydrolysis reaction with water, and silicon hydroxide and ethanol are formed in the reaction solution, which increase and reduce water. On the other hand, this silicon hydroxide
In parallel, a dehydration-condensation reaction occurs one after another, generating oxides, that is, fine silica particles, and growing in a spherical shape. The following is a generalized view of the overall reaction process using alkoxides, which are typical examples of organometallic compounds. Hydrolysis reaction; M (OR) x + XH 2 O → M (OH) x + XROH Condensation reaction; M (OH) X → MO X / 2 + (X / 2) H 2 O (where M is a metal element, R Represents an alkyl group.)

【0003】上記シリカ粒子を製造するに当たっては、
回分方式によりアンモニアを触媒としてアルコール水溶
液中で有機珪素化合物であるアルコキシシランを加水分
解縮合して単分散球状粒子を合成する方法がW.Sto
ber等によって開示されている(J.Colloid
& Interface Sci.,26,62−6
9(1968)参照)。この方法は、1つの容器内で反
応を行わせるものであるが、小規模で実施する場合は単
分散性に優れた粒子が合成できるものの、工業的なレベ
ルにスケールアップした場合、原料有機溶液の混合操作
に際し、大量の溶液、その粘性および装置の攪拌効率の
限界等のため、混合均質化に時間を要し、得られる粒子
の単分散性は悪化しやすいものとなる。特に、平均粒径
がサブミクロン以上の大きなシリカ粒子を得る場合は、
単分散性に優れたものを得ることはできなかった。
[0003] In producing the above silica particles,
A method of synthesizing monodispersed spherical particles by hydrolytic condensation of alkoxysilane, which is an organosilicon compound, in an aqueous alcohol solution using ammonia as a catalyst in a batch method is disclosed in W. K. Sto
ber et al. (J. Colloid)
& Interface Sci. , 26, 62-6
9 (1968)). In this method, the reaction is carried out in a single vessel. When the reaction is carried out on a small scale, particles having excellent monodispersity can be synthesized. In the mixing operation described above, it takes a long time to homogenize the mixture due to a large amount of the solution, its viscosity, the limit of the stirring efficiency of the apparatus, and the like, and the monodispersity of the obtained particles tends to be deteriorated. In particular, when obtaining large silica particles having an average particle size of submicron or more,
No excellent monodispersity could be obtained.

【0004】また、無機酸化物粒子として、チタニア粒
子を回分方式によりアルコキシチタンを加水分解、縮合
反応させて製造する技術が、特開昭62−91418号
公報において知られている。しかし、反応液の混合均質
化には同様に時間を要するうえ、アルコキシチタンは、
極めて反応性に富み、大気中の水分と急速に加水分解反
応を生ずるため、気液界面においても所定外反応が介入
し易い。このため、溶液の各部にわたり反応過程が一段
と不均一になって、複雑な微小粒子を発生し、単分散性
に優れたチタニア粒子を得ることはできなかった。ま
た、上記の気液界面の反応を防止するためには、無水の
ガス雰囲気を設ける必要があり、操作が複雑化する。こ
のように従来の方法では、製造規模を大型化するときは
全て上記のような回分方式がとられてきた。
Japanese Patent Application Laid-Open No. 62-91418 discloses a technique for producing titania particles by subjecting titania particles to hydrolysis and condensation of alkoxytitanium in a batch system. However, the mixing and homogenization of the reaction solution similarly requires time, and the alkoxy titanium is
Since it is extremely reactive and rapidly undergoes a hydrolysis reaction with moisture in the atmosphere, an unspecified reaction easily intervenes at the gas-liquid interface. For this reason, the reaction process became more uneven over each part of the solution, generating complicated fine particles, and it was not possible to obtain titania particles having excellent monodispersibility. Further, in order to prevent the above reaction at the gas-liquid interface, it is necessary to provide an anhydrous gas atmosphere, which complicates the operation. As described above, in the conventional method, when the production scale is increased, the batch system as described above has been adopted.

【0005】一方、TiO2の単分散球状粒子の連続合
成方法が、T.Ogihara等によって開示されてい
る(J.Am.Cer.Soc.,72(9)1598
−1601(1989)参照)。この方法では、加水分
解可能な有機金属の有機溶液とpH調整水の有機溶液の
各原料溶液をスタティックミキサーで混合した後、長い
配管内を輸送して粒子を合成している。この方法は、混
合反応溶液の輸送中に、管の中央部と壁部で流速分布を
生じ、溶液の管内滞在時間に分布ができる。このため、
管内の輸送場所により化学反応の状態が変化して成長粒
子の大きさに差を生じ、合成される粒子の粒度分布が悪
くなる欠点がある。
On the other hand, a continuous synthesis method of monodispersed spherical particles of TiO 2 is disclosed in Ogihara et al. (J. Am. Cer. Soc., 72 (9) 1598).
1601 (1989)). In this method, each raw material solution of an organic solution of a hydrolyzable organic metal and an organic solution of pH-adjusted water is mixed by a static mixer, and then transported through a long pipe to synthesize particles. In this method, a flow velocity distribution is generated at the center and the wall of the tube during transportation of the mixed reaction solution, and the distribution of the solution in the tube can be distributed. For this reason,
There is a drawback that the state of the chemical reaction changes depending on the transport location in the tube, causing a difference in the size of the grown particles, and the particle size distribution of the synthesized particles is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来の
無機酸化物粒子の製造技術にみられる欠点を改善し、粒
度分布の一層良い単分散粒子を安定して連続的に製造す
る方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to a method for stably and continuously producing monodisperse particles having a better particle size distribution by improving the drawbacks of the conventional inorganic oxide particle production technology. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の目
的を達成するため鋭意試験検討した結果、反応管を使用
する無機酸化物の連続製造方法において、原料溶液混合
後の管内反応液の輸送速度を均等化する新規な手段を見
いだすことができ、また、これによって粒子径分布が一
段とシャープな粒子を容易に合成し得ることを見いだす
ことができた。本発明は、上記知見に基づいてなされた
ものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies and studies to achieve the above object, and as a result, in a method for continuously producing an inorganic oxide using a reaction tube, a reaction solution in a tube after mixing a raw material solution. A new means for equalizing the transport speed of the particles has been found, and it has been found that particles having a sharper particle size distribution can be easily synthesized. The present invention has been made based on the above findings.

【0008】すなわち、本発明の無機酸化物粒子の製造
方法の特徴は、特許請求の範囲に記載のとおり、加水分
解可能な有機金属化合物を有機溶媒に溶解した溶液とp
H調整水を有機溶媒に溶解した溶液を混和し、上記調整
水の水によって加水分解反応を生じさせ、またその後の
縮合反応を行わせることにより無機酸化物粒子を製造す
る方法において、上記2つの溶液を反応管中に常時所定
比率で連続して注入、混合し、この混合溶液を反応管内
に気泡を間欠的に送り込むことにより個々の小容量に分
割して輸送しつつ、上記各反応を行わせるところにあ
る。
[0008] That is, the method of the present invention for producing inorganic oxide particles is characterized in that, as described in the claims, a solution in which a hydrolyzable organometallic compound is dissolved in an organic solvent is used.
In a method for producing inorganic oxide particles by mixing a solution in which H-adjusted water is dissolved in an organic solvent, causing a hydrolysis reaction with the water of the adjusted water, and performing a subsequent condensation reaction, The above-mentioned reactions are carried out while continuously injecting and mixing the solution at a predetermined ratio into the reaction tube and mixing and transporting the mixed solution into individual small volumes by intermittently sending bubbles into the reaction tube. Where to make it.

【0009】上記本発明の無機酸化物粒子の製造方法に
おいて、使用される加水分解可能な有機金属化合物とし
ては、上記の反応液中で加水分解と縮合反応を生じ、所
望の金属酸化物を合成するものであれば、周期律表の第
I族、第II族、第III族、第IV族および第V族の
1種以上の公知の金属化合物が何等制限なく採用され得
る。金属アルコキシド化合物(M(OR)X)は好適例
であるが、この他アルコキシド基(OR)をカルボニル
基(CO)またはβジカルボニル基で置換したもの、あ
るいは金属セッケン(M(RCOO)n)およびキレー
ト化合物のように有機基が酸素を介して金属と結合して
いるものも使用し得る。シリカ粒子を合成する場合の代
表例を示すと、一般式Si(OR)4またはSiR′
n(OR)4nで示されるアルコキシシラン等の有機シ
リコン化合物またはこれら有機シリコン化合物を部分的
に加水分解して得られる低縮合物が工業的に入手し易
く、その1種または2種以上の混合物は、単分散性に優
れたシリカ粒子を得るため、好ましく使用される。なお
上記一般式においてRおよびR′はアルキル基であり、
例えばメチル基、エチル基、イソプロピル基、ブチル基
等の低級アルキル基が好適である。nは1〜3の整数で
ある。
In the method for producing inorganic oxide particles of the present invention, the hydrolyzable organometallic compound to be used undergoes hydrolysis and condensation reaction in the reaction solution to synthesize a desired metal oxide. If it does, at least one known metal compound of Group I, Group II, Group III, Group IV and Group V of the periodic table may be employed without any limitation. The metal alkoxide compound (M (OR) x ) is a preferred example. In addition, a metal alkoxide group (OR) substituted with a carbonyl group (CO) or β-dicarbonyl group, or a metal soap (M (RCOO) n ) And those in which an organic group is bonded to a metal via oxygen, such as a chelate compound, can also be used. A typical example of the synthesis of silica particles is represented by the general formula Si (OR) 4 or SiR ′.
An organosilicon compound such as an alkoxysilane represented by n (OR) 4 -n or a low condensate obtained by partially hydrolyzing the organosilicon compound is easily available industrially, and one or two or more thereof are obtained. Is preferably used in order to obtain silica particles having excellent monodispersibility. In the above general formula, R and R 'are alkyl groups,
For example, a lower alkyl group such as a methyl group, an ethyl group, an isopropyl group, and a butyl group is preferable. n is an integer of 1 to 3.

【0010】また、上記有機金属化合物とpH調整水を
溶解する有機溶媒は、メタノール、エタノール、プロパ
ノール等のアルコール類、アセトン等のケトン類等、上
記有機金属化合物と水を溶解する物質で上記有機金属化
合物を分解しない物質ならば如何なる物質でも良く、特
にメタノール、エタノール、プロパノールは、一般的な
入手し易い材料であり好適である。
The organic solvent for dissolving the above-mentioned organometallic compound and pH-adjusted water is a substance which dissolves the above-mentioned organometallic compound and water, such as alcohols such as methanol, ethanol and propanol, and ketones such as acetone. Any substance may be used as long as it does not decompose the metal compound. In particular, methanol, ethanol, and propanol are generally easily available materials and are suitable.

【0011】上記の有機溶液に混合するpH調整水のp
H値は、有機金属化合物の種類により適宜選ばれるが、
アルカリ性とする場合のアルカリ原料としては、アンモ
ニア、アルカリ金属水酸化物およびこれらの混合物等を
適宜使用し得る。また、酸性水の場合は公知の無機酸や
有機酸を適宜使用し得る。本発明の方法においては、上
記2つの有機溶液を常時所定比率で連続して反応管中に
注入し、混合するが、注入後直ちに気泡を管内に間欠送
入し、注入液を区分化することが好ましい。反応管内に
間欠送入する気体は、乾燥空気、アルゴン、窒素、酸
素、ヘリウム等溶液の反応状態を不均一化させない物質
であれば如何なるものも使用可能であるが、一般的に乾
燥空気を使用することができる。この区分化された反応
溶液は、管内で拡散混合するので、通常、特別な攪拌操
作を要しないが、必要に応じ気体送入前にこの溶液を攪
拌しても良い。
The pH-adjusted water mixed with the organic solution
The H value is appropriately selected depending on the type of the organometallic compound.
Ammonia, alkali metal hydroxides, mixtures thereof, and the like can be used as appropriate as the alkali raw material in the case of making it alkaline. In the case of acidic water, a known inorganic acid or organic acid can be appropriately used. In the method of the present invention, the two organic solutions are always continuously injected into the reaction tube at a predetermined ratio and mixed, but immediately after the injection, bubbles are intermittently fed into the tube to separate the injected solution. Is preferred. As the gas intermittently fed into the reaction tube, any substance can be used as long as it does not make the reaction state of the solution nonuniform, such as dry air, argon, nitrogen, oxygen, and helium. can do. Since the partitioned reaction solution is diffused and mixed in the tube, a special stirring operation is not usually required. However, if necessary, the solution may be stirred before the gas is introduced.

【0012】本発明の方法において使用する反応管は、
間欠的に送入する気体により区分化した個々の液を所定
の反応期間中、相互に混ざり合うことなく安定して輸送
し得るものであれば何れの構造のものでも良い。例え
ば、管内断面積が約0.05〜2cm2であり所要長さ
を有する管を螺旋形縦型構造とし、反応液を下部から上
部へ輸送するようにすると良い。この際、管内は気泡部
と溶液部が交互に並び規則正しい行列模様を呈するが、
これら各部の長さは何れも数mm〜数cmとするのが良
い。また、反応管は、反応溶液の濡れが悪く、反応溶液
により侵食しない材質のものを用いることが好ましく、
例えば熱可塑性樹脂(フッ素樹脂、ナイロン)性のもの
は好適に使用し得る。反応終了後、溶液はスラリー状
で、反応管出口から流出するのでこれを固液分離や遠心
分離の後、乾燥等の処理を行い製品粒子を得る。
The reaction tube used in the method of the present invention comprises:
Any structure may be used as long as the individual liquids separated by the intermittently supplied gas can be transported stably without being mixed with each other during a predetermined reaction period. For example, it is preferable that a tube having a required length and a cross-sectional area of approximately 0.05 to 2 cm 2 in a tube has a helical vertical structure and the reaction solution is transported from a lower portion to an upper portion. At this time, the bubble section and the solution section are arranged alternately in the tube and exhibit a regular matrix pattern,
The length of each of these parts is preferably several mm to several cm. Further, the reaction tube is preferably made of a material that does not wet the reaction solution badly and is not eroded by the reaction solution.
For example, a thermoplastic resin (fluororesin, nylon) can be suitably used. After completion of the reaction, the solution is in the form of a slurry and flows out from the outlet of the reaction tube. After solid-liquid separation or centrifugation, the solution is subjected to a treatment such as drying to obtain product particles.

【0013】上記本発明の酸化物粒子の製造方法は、従
来の方法に比較し、一段と単分散性に優れた無機酸化物
粒子を連続的に製造することができるが、有機金属化合
物として、有機珪素化合物を用い、アルカリ性水の存在
下でシリカ粒子を連続合成する場合、平均粒径約0.0
5〜2μmの単分散性に優れた球状粒子を特に安定して
得ることができるので、好適である。また、同様に酸性
水の存在下でシリカ粒子を連続合成する場合は、平均粒
径約0.001〜0.5μmの単分散性に優れた多面体
ないし球状の粒子を安定して得ることができるので好適
である。これらのシリカ粒子の平均粒径は、アルコキシ
シランやアンモニアの濃度、反応温度および時間等によ
って制御し得る。
The method for producing oxide particles according to the present invention can continuously produce inorganic oxide particles having more excellent monodispersity as compared with the conventional method. When using a silicon compound and continuously synthesizing silica particles in the presence of alkaline water, an average particle size of about 0.0
It is preferable because spherical particles having excellent monodispersity of 5 to 2 μm can be obtained particularly stably. Similarly, when silica particles are continuously synthesized in the presence of acidic water, polyhedral or spherical particles having an average particle diameter of about 0.001 to 0.5 μm and excellent in monodispersity can be stably obtained. This is preferable. The average particle size of these silica particles can be controlled by the concentration of alkoxysilane or ammonia, reaction temperature, time, and the like.

【0014】[0014]

【実施例】本発明の無機酸化物粒子の製造方法にかかる
実施例をシリカ粒子を製造する場合について、比較例と
ともに説明する。 実施例1;加水分解可能な有機金属化合物であるテトラ
エトキシシラン630gをエタノール溶媒9500ml
中に溶解、混合した有機溶液とpH12.5に調整した
アンモニア水4800mlをエタノール溶媒5000m
l中に溶解、混合した有機溶液を何れも23℃に保持す
る温度調節装置付きタンク内に用意し、これらのタンク
内溶液を液体定量輸送ポンプを用いて、それぞれ常時3
0ml/minの流量で螺旋形縦型(直径1m、高さ約
65cm)に巻き付けた内径4mmφ、長さ300mの
ポリエチレン製反応パイプの下部に連結したT字管を介
して注入する。T字管により上記両液は合流し混合する
が、合流点近傍のパイプ内に直ちにエアーコンプレッサ
ーから脱水塔を経て供給される乾燥空気を電磁開閉弁を
用いて0.5秒毎に約0.3ml吹き込んで、溶液を約
0.3mlの容量に分割する。パイプ内の気泡部と溶液
部の長さはそれぞれ約2.4cmであるが、これらは交
互に規則正しい配列模様を形成し、送入ガスの圧力によ
りパイプの上部へ順次輸送される。この間、溶液を同様
に23℃に保持する。
Examples Examples of the method for producing inorganic oxide particles of the present invention will be described with reference to comparative examples in which silica particles are produced. Example 1 630 g of tetraethoxysilane, which is a hydrolyzable organometallic compound, was added to 9500 ml of an ethanol solvent.
The organic solution dissolved and mixed in the solution and 4800 ml of ammonia water adjusted to pH 12.5 were mixed with ethanol solvent 5000 m
Each of the organic solutions dissolved and mixed in the solution was prepared in a tank equipped with a temperature controller for maintaining the temperature of the solution at 23 ° C., and the solution in the tank was constantly transferred to each of the tanks using a liquid quantitative transport pump.
Injection is performed at a flow rate of 0 ml / min through a T-tube connected to the lower part of a polyethylene reaction pipe having an inner diameter of 4 mm and a length of 300 m wound around a spiral vertical type (diameter 1 m, height about 65 cm). The two liquids are merged and mixed by a T-shaped tube, and the dry air supplied from the air compressor via the dehydration tower immediately into the pipe near the merge point using a solenoid on-off valve is used for about 0.5 second every about 0.5 second. Blow 3 ml and divide the solution into approximately 0.3 ml volumes. The length of the bubble section and the solution section in the pipe is about 2.4 cm, respectively, and they alternately form a regular array pattern, and are sequentially transported to the top of the pipe by the pressure of the supplied gas. During this time, the solution is also kept at 23 ° C.

【0015】上記両液の合流、混合後、溶液はすぐに加
水分解反応および縮合反応を生じ、白濁してシリカ粒子
が生成し、次第に成長していく。パイプの上部出口から
流出したスラリーを固液分離した後、乾燥してシリカ粒
子を得た。この間、時間毎にスラリーをサンプリング
し、同様にして得たシリカ粒子について走査型電子顕微
鏡(日本電子株式会社製JXA−840A型)を用いて
観察し、得られた写真より粒子径分布を求めた。その結
果、シリカ粒子の平均径は、時間毎の平均値が0.43
μm、変動係数は9〜11%の範囲にあり、単分散性に
優れた球状のシリカ粒子を容易かつ安定して得られるこ
とが分かった。このシリカ粒子は、比重および比表面積
の測定結果と無細孔シリカのデータとの比較から、実質
的に気孔がないことが確かめられ、その形状寸法特性か
らフィラー材等の使用に適している。
After the two liquids are combined and mixed, the solution immediately undergoes a hydrolysis reaction and a condensation reaction, becomes cloudy, and silica particles are formed and gradually grow. The slurry flowing out from the upper outlet of the pipe was subjected to solid-liquid separation and then dried to obtain silica particles. During this time, the slurry was sampled every hour, and the silica particles obtained in the same manner were observed using a scanning electron microscope (JXA-840A manufactured by JEOL Ltd.), and the particle size distribution was determined from the obtained photographs. . As a result, the average value of the silica particles was 0.43 per hour.
μm, the coefficient of variation was in the range of 9 to 11%, and it was found that spherical silica particles having excellent monodispersity could be easily and stably obtained. The comparison between the measurement results of the specific gravity and the specific surface area and the data of the non-porous silica confirms that the silica particles have substantially no pores, and is suitable for use as a filler material or the like due to its shape and dimensional characteristics.

【0016】実施例2;実施例1における製造条件を一
部変え、有機金属化合物としてテトラメトキシシランを
458g用い、アンモニア水のpH値を11.8に調整
し、また内径6mm、全長135mの反応パイプを用
い、さらにパイプ内分割液の量を約0.6ml(パイプ
内液の長さ約2.1cm)乾燥空気の間欠送入量約1m
l(パイプ内気泡長さ約3.5cm)とし、同様にして
シリカ粒子を製造し、観察した。その結果、この粒子の
平均径は時間毎の平均値が0.15μm、変動係数は1
2〜14%であり、単分散性に優れた球状シリカ粒子を
容易かつ安定して得られることが分かった。このシリカ
粒子は、実質的に気孔がなく、その形状寸法特性から精
密研磨材等の使用に適している。
Example 2 The production conditions in Example 1 were partially changed, 458 g of tetramethoxysilane was used as the organometallic compound, the pH value of aqueous ammonia was adjusted to 11.8, and the reaction was performed with an inner diameter of 6 mm and a total length of 135 m. Using a pipe, the amount of liquid split in the pipe is about 0.6 ml (the length of the liquid in the pipe is about 2.1 cm).
1 (bubble length in the pipe is about 3.5 cm), and silica particles were produced and observed in the same manner. As a result, the average diameter of the particles was 0.15 μm every hour, and the variation coefficient was 1
It was 2 to 14%, and it was found that spherical silica particles having excellent monodispersibility could be easily and stably obtained. These silica particles have substantially no pores and are suitable for use as precision abrasives or the like because of their shape and dimensional characteristics.

【0017】実施例3;実施例1における製造条件を一
部変え、有機金属化合物として、テトラプロポキシシラ
ンを1600g用い、アンモニア水のpH値を13.0
に調整し、また反応前後の各溶液の温度を全て50℃に
保持し、同様にしてシリカ粒子を製造し、観察した。そ
の結果、得られたシリカ粒子の平均径は、時間毎の平均
値が0.68μm、変動係数は10〜11%であり、単
分散性に優れた球状シリカ粒子を容易かつ安定して得ら
れることが分かった。このシリカ粒子は実質的に気孔が
なく、その形状寸法特性からフィラー材等の使用に適し
ている。
Example 3 The production conditions in Example 1 were partially changed, and 1600 g of tetrapropoxysilane was used as the organometallic compound, and the pH value of aqueous ammonia was 13.0.
The temperature of each solution before and after the reaction was all kept at 50 ° C., and silica particles were produced and observed in the same manner. As a result, the average particle diameter of the obtained silica particles is 0.68 μm per hour, the coefficient of variation is 10 to 11%, and spherical silica particles excellent in monodispersity can be easily and stably obtained. I understood that. The silica particles have substantially no pores and are suitable for use as a filler material or the like because of their shape and dimensional characteristics.

【0018】比較例;乾燥空気の送入を行わない以外
は、上記実施例1と同一の条件でシリカ粒子を製造し、
得られた粒子を同様に観察した。その結果、この粒子の
平均粒径は、時間毎の平均値が0.41μm、変動係数
は、25〜40%であって、単分散性は非常に悪く、前
記回分方式を大規模で行なう場合と同程度であった。
Comparative Example: Silica particles were produced under the same conditions as in Example 1 except that dry air was not introduced.
Obtained particles were similarly observed. As a result, the average particle size of the particles is 0.41 μm per hour, the coefficient of variation is 25 to 40%, and the monodispersity is very poor. Was about the same.

【0019】なお、上記各実施例において得られる粒子
は、何れもパイプへの反応液の輸送速度やパイプの長さ
等を変えることによっても、その平均粒径を増大または
減少させることができる。また、上記各実施例において
得られた粒子は、種粒子法により、シリカ種粒子の粒径
を数μm〜数10μmに成長させて、液晶表示板のスペ
ーサー材料などに利用する場合の種粒子として用いるこ
とができる。
The average particle diameter of the particles obtained in each of the above embodiments can be increased or decreased by changing the transport speed of the reaction solution to the pipe, the length of the pipe, and the like. In addition, the particles obtained in each of the above examples are grown as seed particles by a seed particle method so that the particle diameter of the silica seed particles is increased to several μm to several tens of μm, and used as a spacer material for a liquid crystal display panel. Can be used.

【0020】本発明の無機酸化物粒子の製造方法は、上
記実施例のシリカ粒子に限定されず、周期律表第I族〜
第V族の金属酸化物粒子、例えば、Fe、Ga、Cr、
Al、Zr、Ti、NbおよびTa等の1種または2種
以上からなる酸化物粒子を同様に製造することができ
る。
The method for producing the inorganic oxide particles of the present invention is not limited to the silica particles of the above examples, but may be any of the groups I to I of the periodic table.
Group V metal oxide particles, for example, Fe, Ga, Cr,
Oxide particles composed of one or more of Al, Zr, Ti, Nb and Ta can be similarly produced.

【0021】[0021]

【発明の効果】以上に述べたとおり、本発明の無機酸化
物粒子の製造方法は、前述の2つの有機溶液を混合さ
せ、加水分解反応と縮合反応を生じさせることにより無
機酸化物粒子を製造するに際し、混合した溶液を反応管
内で送入ガスにより小容量の個々の溶液に分割して順次
輸送し、反応を行わせるものであるから、管内反応液の
流速分布の差異による粒子の生成、成長にバラツキを生
ずることがなく、従来の製造方法よりも一段と粒径分布
がシャープであり、単分散性に優れた初期の酸化物粒子
を連続的に安定して製造することができる。
As described above, according to the method for producing inorganic oxide particles of the present invention, the above-mentioned two organic solutions are mixed, and a hydrolysis reaction and a condensation reaction are caused to produce the inorganic oxide particles. In doing so, the mixed solution is divided into small volumes of individual solutions by the feed gas in the reaction tube and sequentially transported, and the reaction is performed, so that the generation of particles due to the difference in the flow velocity distribution of the reaction solution in the tube, It is possible to continuously and stably produce initial oxide particles having no sharpness in growth, a sharper particle size distribution than conventional production methods, and excellent monodispersity.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加水分解可能な有機金属化合物を有機溶
媒に溶解した溶液とpH調整水を有機溶媒に溶解した溶
液を混合し、加水分解反応および縮合反応を行わせるこ
とにより無機酸化物粒子を製造する方法において、上記
の2つの溶液を反応管中に常時所定比率で連続して注
入、混合し、この混合溶液を反応管内に気体を間欠的に
送り込むことにより個々の小容量に分割して輸送しつ
つ、上記各反応を行わせることを特徴とする無機酸化物
粒子の連続製造方法。
1. A method in which a solution in which a hydrolyzable organometallic compound is dissolved in an organic solvent and a solution in which pH-adjusted water is dissolved in an organic solvent are mixed, and a hydrolysis reaction and a condensation reaction are performed to form inorganic oxide particles. In the production method, the above two solutions are continuously and continuously injected at a predetermined ratio into a reaction tube, mixed, and the mixed solution is divided into individual small volumes by intermittently sending gas into the reaction tube. A method for continuously producing inorganic oxide particles, wherein the above-mentioned reactions are carried out while transporting.
【請求項2】 有機金属化合物が有機珪素化合物であ
り、pH調整水がアルカリ性であって、平均粒径0.0
5〜2μmの単分散性球状シリカ粒子を製造することを
特徴とする請求項1に記載の無機酸化物粒子の連続製造
方法。
2. The method according to claim 1, wherein the organometallic compound is an organosilicon compound, the pH-adjusted water is alkaline, and the average particle size is 0.1 to 0.2 . 0
The method for continuously producing inorganic oxide particles according to claim 1, wherein monodisperse spherical silica particles of 5 to 2 µm are produced.
【請求項3】 有機金属化合物が有機珪素化合物であ
り、pH調整水が酸性であって、平均粒径0.001〜
0.5μmの単分散性シリカ粒子を製造することを特徴
とする請求項1に記載の無機酸化物粒子の連続製造方
法。
3. The method according to claim 1, wherein the organometallic compound is an organosilicon compound, the pH-adjusted water is acidic, and the average particle size is 0.1 to 0.3 . 001-001
The method for continuously producing inorganic oxide particles according to claim 1, wherein monodisperse silica particles of 0.5 µm are produced.
JP22462292A 1992-07-31 1992-07-31 Method for producing inorganic oxide particles Expired - Fee Related JP3313771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22462292A JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22462292A JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Publications (2)

Publication Number Publication Date
JPH0656418A JPH0656418A (en) 1994-03-01
JP3313771B2 true JP3313771B2 (en) 2002-08-12

Family

ID=16816599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22462292A Expired - Fee Related JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Country Status (1)

Country Link
JP (1) JP3313771B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG119379A1 (en) 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
JP2008285406A (en) * 2008-06-23 2008-11-27 Ube Nitto Kasei Co Ltd Silica spherical particle
JP5253124B2 (en) * 2008-12-10 2013-07-31 日揮触媒化成株式会社 Porous silica particles and method for producing the same
JP5253125B2 (en) * 2008-12-10 2013-07-31 日揮触媒化成株式会社 Porous silica particles, method for producing the same, and composite material comprising the porous silica particles
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
US11312634B2 (en) 2017-03-31 2022-04-26 Jgc Catalysts And Chemicals Ltd. Production method for dispersion liquid of silica particle

Also Published As

Publication number Publication date
JPH0656418A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
Kim et al. Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method
CN102781839B (en) The method manufacturing high purity metal oxide particle and the material manufactured by it
EP2735543A2 (en) Volume production method for uniformly sized silica nanoparticles
US20030219370A1 (en) Method of making silica
CN101492164A (en) Method of manufacturing monodisperse silicon dioxide microsphere
JPH0816003B2 (en) Method for producing inorganic oxide
JP3313771B2 (en) Method for producing inorganic oxide particles
Do Kim et al. Synthesis of titanium dioxide nanoparticles using a continuous reaction method
JPH0159974B2 (en)
CN108033475A (en) A kind of method that micro- reaction prepares nano-calcium carbonate
US20050011409A1 (en) Inorganic oxide
Sugimoto et al. Formation mechanism of uniform spindle-type titania particles in the gel-sol process
JP2006503790A (en) Continuous production method of zirconia hydrate nanoparticle sol
JPH06254383A (en) Production of metal oxide particulate
JP3330984B2 (en) Method for producing monodisperse spherical silica
Do Kim et al. Comparison of the effect of reaction parameters on particle size in the formation of SiO2, TiO2, and ZrO2 nanoparticles
JPS63310714A (en) Silica particles
CN114591517B (en) Preparation method of size-adjustable AIE nano particles
JP5004492B2 (en) Silica-based composite oxide fine particles and method for producing the same
JP3746301B2 (en) Method for producing spherical silica particles
CN112156730B (en) Preparation method of high-purity monodisperse porous silicon oxide spheres
JPH06287005A (en) Production of superfine particle
EP1743869B1 (en) Method for producing composite oxide power
JP3123652B2 (en) Method for producing spherical silica
JP2512835B2 (en) Method for producing silica fine particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees