JPH06280116A - Production of carbon nanotube - Google Patents

Production of carbon nanotube

Info

Publication number
JPH06280116A
JPH06280116A JP4172242A JP17224292A JPH06280116A JP H06280116 A JPH06280116 A JP H06280116A JP 4172242 A JP4172242 A JP 4172242A JP 17224292 A JP17224292 A JP 17224292A JP H06280116 A JPH06280116 A JP H06280116A
Authority
JP
Japan
Prior art keywords
carbon
torr
arc discharge
carbon nanotubes
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4172242A
Other languages
Japanese (ja)
Other versions
JP2845675B2 (en
Inventor
Toomasu Ebuson
トーマス エブソン
Parikuru Ajiyayan
パリクル アジャヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4172242A priority Critical patent/JP2845675B2/en
Publication of JPH06280116A publication Critical patent/JPH06280116A/en
Application granted granted Critical
Publication of JP2845675B2 publication Critical patent/JP2845675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials

Abstract

PURPOSE:To produce carbon nanotubes in high yield. CONSTITUTION:Carbon direct current arc discharge is carried out in a helium atmosphere of 200 to 2500Torr pressure to make carbon nanotubes. The atmosphere may be one of the other inert gases such as Ar, and the arc discharge may be an alternating current. When the arc discharge is effected between the anode carbon ring and the cathode ring of a larger diameter than that of the anode, the deposition amount is increased, although the yield does not change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、最近発見されたカーボ
ンナノチューブの高収率な製造方法に関するもので、カ
ーボンナノチューブという新素材を産業、とりわけエレ
クトロニクス産業のために大量に生産することに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recently discovered method for producing carbon nanotubes in high yield, and relates to mass production of a new material called carbon nanotubes for industry, especially for electronics industry.

【0002】[0002]

【従来の技術】カーボンナノチューブは厚さ数原子層の
グラファイト状炭素原子面を丸めた円筒が、複数個入れ
子になったものであり、nmオーダーの外径のきわめて
微小な物質である。チューブは1991年に発見され
[ネイチャー(Nature)1991年、354巻。
pp.56−58]、世界中から1次元ワイヤや触媒な
ど多様な応用の可能性を秘めた材料として注目を浴びて
きている。この材料に関しては、現在カーボン棒をアー
ク放電法により蒸発させて、カーボンロッドに再び凝縮
して成長させる方法を用いている。実際には、最初に報
告された上記原論文では、直流カーボンアーク放電を1
00Torrアルゴン雰囲気でおこなわせてカーボンナ
ノチューブを作成している。
2. Description of the Related Art A carbon nanotube is a substance in which a plurality of cylinders, each of which has a carbon atom plane of graphite-like carbon having a thickness of several atomic layers, are nested, and which is an extremely minute substance having an outer diameter of nm order. The tube was discovered in 1991 [Nature, 1991, 354 volumes.
pp. 56-58], it has attracted attention as a material with various potential applications such as one-dimensional wires and catalysts from all over the world. Regarding this material, at present, a method of evaporating a carbon rod by an arc discharge method and then condensing and growing the carbon rod again is used. In fact, the above-mentioned original paper, which was first reported,
The carbon nanotubes are produced by performing it in an atmosphere of 00 Torr argon.

【0003】[0003]

【発明が解決しようとする課題】しかし、これまで報告
されている製造方法(100Torrアルゴン、直流カ
ーボンアーク放電)では回収された物質はほとんどがア
モルファスカーボンでそのなかにわずかにカーボンナノ
チューブが混じっているに過ぎず、新素材として広範囲
に活用するためにはこの材料の高収率な製造方法が必要
であった。
However, in the manufacturing methods reported up to now (100 Torr argon, direct-current carbon arc discharge), most of the substances recovered are amorphous carbon, and a small amount of carbon nanotubes are mixed therein. However, a high-yield production method of this material was necessary for widespread use as a new material.

【0004】[0004]

【課題を解決するための手段】本発明は、このようにカ
ーボンナノチューブの収率が少ないという状況を解決す
るためになされたものであり、本発明者は収率を向上さ
せるために鋭意研究を進めた結果、アーク放電の不活性
ガス雰囲気の圧力が非常に重要であり、作製時の雰囲気
ガスの圧力を適性な範囲に調節する事で収率が最適化さ
れカーボンナノチューブが高収率で作製可能であること
を見いだし本発明に至った。
The present invention has been made in order to solve the situation where the yield of carbon nanotubes is low, and the present inventor has conducted diligent research in order to improve the yield. As a result of the progress, the pressure of the inert gas atmosphere of the arc discharge is very important, and the yield is optimized by adjusting the pressure of the atmosphere gas during production to an appropriate range, and the carbon nanotubes are produced in high yield. The inventors have found that it is possible and have reached the present invention.

【0005】また、圧力を制御した状態で、消費電極よ
りも太い径の対電極を用いると非常に効果が良いことを
見いだした。
Further, it has been found that it is very effective to use a counter electrode having a diameter larger than that of the consuming electrode while controlling the pressure.

【0006】[0006]

【作用】一般にカーボンナノチューブを製造するために
用いるカーボンのアーク放電では、不活性ガスで満たさ
れた作製容器の中でCやC2やC3などのカーボン種を
含むプラズマを発生させる。この様な状況下で発生した
これらの小さなカーボン種は次の段階でより大きな構造
体、例えばすすやフラーレンや高密度の固体へと凝縮す
る。この様な条件下で気相中でC60等のフラーレンが
製造され、またカーボン棒の電極表面からカーボンナノ
チューブが成長することがわかっている。我々は、カー
ボンナノチューブの収率を多くするために鋭意検討を重
ねた結果、カーボンナノチューブの収率が作製時のガス
圧に強く依存している事を見いだした。
In general, in arc discharge of carbon used for producing carbon nanotubes, plasma containing carbon species such as C, C2 and C3 is generated in a production container filled with an inert gas. Under these circumstances, these small carbon species will condense into larger structures such as soot, fullerenes and dense solids in the next step. It is known that under such conditions, fullerenes such as C60 are produced in the vapor phase, and carbon nanotubes grow from the electrode surface of the carbon rod. As a result of intensive studies to increase the yield of carbon nanotubes, we found that the yield of carbon nanotubes strongly depends on the gas pressure during production.

【0007】例えば、従来のように100Torrのア
ルゴン雰囲気下でおこなった実験では、電極表面に積層
してくるカーボンナノチューブはわずかであった。しか
し、本発明に示すように不活性ガスの圧力を高くしてい
くことにより、カーボン電極表面に得られるカーボンナ
ノチューブの収率はいちじるしく向上することがわかっ
た。100Torrの場合収率は数%であったが200
Torrにすると25%程度、500Torr以上だと
60%に向上する。この事実は、カーボン種の凝縮反応
の化学反応速度やいまだ明らかにされていないナノチュ
ーブの生成機構そのものに関与するものと考えられる。
また、従来の報告ではアルゴンが用いられているが、本
発明者は不活性ガスの圧力が非常に重要であり、ヘリウ
ムがアルゴンと同様の働きをする事を見いだした。さら
にまた驚くべき事に直流・交流どちらの放電でも回収し
た固体物質中でのチューブの存在比率はほぼ同じであっ
た。直流を使用する事の利点は、回収可能な固体物質の
量が増えている事である。作製時の電圧・電流の値もそ
れらが作製容器中でプラズマが立つに充分な値である限
り厳密である必要はない。
[0007] For example, in a conventional experiment conducted under an argon atmosphere of 100 Torr, the number of carbon nanotubes laminated on the electrode surface was small. However, it has been found that the yield of carbon nanotubes obtained on the surface of the carbon electrode is remarkably improved by increasing the pressure of the inert gas as shown in the present invention. The yield was several% at 100 Torr, but 200
When it is Torr, it is improved to about 25%, and when it is 500 Torr or more, it is improved to 60%. This fact is considered to be involved in the chemical reaction rate of the condensation reaction of carbon species and the mechanism of nanotube formation itself, which has not been clarified yet.
In addition, although argon has been used in the conventional reports, the present inventor has found that the pressure of the inert gas is very important, and that helium functions similarly to argon. Furthermore, surprisingly, the proportion of tubes present in the solid substances recovered by both DC and AC discharge was almost the same. The advantage of using direct current is that the amount of solid material that can be recovered is increasing. The values of voltage and current at the time of manufacturing do not have to be strict as long as they are values sufficient for plasma to stand in the manufacturing container.

【0008】本発明に用いることのできる製造装置にお
いて、使用するカーボン棒の直径は通常5mm〜50m
mのものが用いられるが、装置の大きさにより任意に選
んで差し支えない。また片方のカーボン電極にカーボン
ナノチューブを有効に成長させるために、消費されるカ
ーボン棒の径はカーボンナノチューブを成長させる対電
極の大きさより小さくしておくことが望ましい。なぜな
らば、両方のカーボン棒の径が同じならば、成長が両方
の電極で生じる確率が高くなり、均一な反応条件が得ら
れないからである。さらには、DCモードで放電させ消
費されるカーボン電極を陽極にし、カーボンナノチュー
ブを成長させるカーボン電極をこの陽極より太い陰極に
すると非常に安定したカーボンナノチューブ製造条件が
得られることがわかった。これは、カーボンナノチュー
ブの成長に陽イオンのカーボン種が大きく寄与している
ためと考えられる。
In the manufacturing apparatus which can be used in the present invention, the diameter of the carbon rod used is usually 5 mm to 50 m.
Although m of m is used, it may be arbitrarily selected depending on the size of the device. Further, in order to effectively grow the carbon nanotubes on one of the carbon electrodes, it is desirable that the diameter of the consumed carbon rod be smaller than the size of the counter electrode for growing the carbon nanotubes. This is because if the diameters of both carbon rods are the same, the probability of growth occurring at both electrodes is high, and uniform reaction conditions cannot be obtained. Furthermore, it was found that a very stable carbon nanotube production condition can be obtained by using a carbon electrode that is discharged and consumed in the DC mode as an anode and a carbon electrode for growing carbon nanotubes as a cathode thicker than this anode. It is considered that this is because the cation carbon species greatly contributes to the growth of the carbon nanotube.

【0009】不活性がスとしては、ヘリウムあるいはア
ルゴンを用いると効果的であるが、これらのガス以外に
もネオン、キセノン、クリプトン、ラドンなどのガスを
用いることもできる。
As the inert gas, it is effective to use helium or argon, but besides these gases, gases such as neon, xenon, krypton, and radon can also be used.

【0010】[0010]

【実施例1】カーボンナノチューブを合成するためにヘ
リウムとアルゴンの圧力を、20Torrから2500
Torrの範囲で変えて実験した。実験後、炭素棒に堆
積した炭素クラスターを回収し粉砕して透過電子顕微鏡
(TEM)で形状を観測してカーボンナノチューブの生
成量を調べた。20Torrではナノチューブは形成さ
れなかった。また、100Torrの圧力の時、ナノチ
ューブは回収物中に検出されたが収率は低かった。図1
に示すように500Torrから2500Torrの間
で60%ていどの平坦な収率領域を形成しそこでは回収
物はほとんどがチューブで、他のグラファイト関連物質
の量はごくわずかだった。得られたサンプルの質および
量は透過型電子顕微鏡(TEM)で調べた。収率の定義
は、カーボンロッドに堆積したカーボンをTEMで観測
した場合に得られる像より、カーボンナノチューブとア
モルファスあるいはグラファイト状のカーボン微粒子と
を区別して体積比として算出したものである。以下に詳
細に条件を変化させた実験の場合に得られる結果を実施
例として示す。
Example 1 The pressure of helium and argon for synthesizing carbon nanotubes was changed from 20 Torr to 2500.
The experiment was performed by changing the range of Torr. After the experiment, the carbon clusters deposited on the carbon rod were collected, pulverized, and observed for the shape with a transmission electron microscope (TEM) to examine the production amount of carbon nanotubes. At 20 Torr no nanotubes were formed. At a pressure of 100 Torr, nanotubes were detected in the recovered product, but the yield was low. Figure 1
As shown in Fig. 6, a flat yield region of 60% was formed between 500 Torr and 2500 Torr, in which the recovered material was mostly tubes and the amount of other graphite-related substances was negligible. The quality and quantity of the obtained samples were examined by transmission electron microscopy (TEM). The definition of yield is calculated as a volume ratio by distinguishing between carbon nanotubes and amorphous or graphite-like carbon fine particles from an image obtained when observing carbon deposited on a carbon rod with a TEM. The results obtained in the case of an experiment in which the conditions are changed in detail are shown below as examples.

【0011】[0011]

【実施例2】アルゴン雰囲気を用いてガス圧を変えて実
験した。図2は(a)100Torrおよび(b)50
0Torrの場合に得られる物質のTEM写真である。
写真中針状のものがナノチューブで、それ以外のものは
アモルファスあるいはグラファイト状のカーボン微粒子
である。針状の部分の電子線回折像をみると、前述の文
献(ネイチャー)に示したナノチューブ特有のパターン
が表われ、針状の部分がナノチューブであることを確認
した。以下の実施例でも針状の部分がナノチューブであ
ることを確認している。本実施例2では電流は交流(A
C)でアーク電圧は18Vであった。チューブの量がア
ルゴンの圧力の増加と共に目立って増加している事が明
かである。
Example 2 An experiment was conducted by changing the gas pressure using an argon atmosphere. FIG. 2 shows (a) 100 Torr and (b) 50
It is a TEM photograph of the substance obtained in the case of 0 Torr.
The needles in the photograph are nanotubes, and the others are amorphous or graphite-like carbon fine particles. When the electron beam diffraction image of the needle-shaped portion was observed, the pattern peculiar to the nanotube shown in the above-mentioned document (Nature) appeared, and it was confirmed that the needle-shaped portion was the nanotube. Also in the following examples, it was confirmed that the needle-shaped portion was a nanotube. In the second embodiment, the current is an alternating current (A
In C) the arc voltage was 18V. It is clear that the tube volume increases significantly with increasing argon pressure.

【0012】[0012]

【実施例3】実施例2と同様に圧力の影響をヘリウム雰
囲気を使用して実験した。図3はそれぞれ(a)20T
orr、(b)100Torr、図4はそれぞれ(a)
500Torr、(b)2500Torrである。放電
条件はACモードでおこなった。圧力が500Torr
と2500Torrでカーボンナノチューブの量が著し
く増えていくことがわかる。
Example 3 As in Example 2, the effect of pressure was tested using a helium atmosphere. Figure 3 shows (a) 20T
orr, (b) 100 Torr, and FIG. 4 shows (a)
500 Torr, (b) 2500 Torr. The discharge condition was AC mode. Pressure is 500 Torr
It can be seen that the amount of carbon nanotubes significantly increases at 2500 Torr.

【0013】[0013]

【実施例4】ACとDCとの違いを500Torrの圧
力で比較した。図5は、500Torrの圧力のもとで
のアルゴン雰囲気およびヘリウム雰囲気でおこなったD
Cモードの実験の結果である。炭素電極上に堆積生成す
るカーボン微粒子中のナノチューブの収率はACとDC
で同じであるが、堆積量がDCモードだと著しく多く、
結果として収量が増加する。またDCモードの方が放電
条件が安定するため均一なナノチューブが得やすい。
Example 4 The difference between AC and DC was compared at a pressure of 500 Torr. FIG. 5 shows D performed in an argon atmosphere and a helium atmosphere under a pressure of 500 Torr.
It is a result of the experiment of C mode. The yield of nanotubes in carbon particles deposited and formed on the carbon electrode is AC and DC.
However, if the deposition amount is DC mode,
As a result, the yield is increased. Further, in the DC mode, the discharge conditions are more stable and uniform nanotubes are easier to obtain.

【0014】[0014]

【実施例5】電極のカーボンの太さを変化させて実験を
した。実験は10mmの電極カーボンに対して対電極カ
ーボンを(a)6mmおよび(b)3mmにした。片方
の電極が対電極に比較して小さい場合に、両方の電極が
同じ場合に比較して、回収した単位重量あたりの収率は
変わらなかったが、実施例4で述べたと同じようにカー
ボンロッド(この場合は、より太い10mmロッド)に
堆積生成して回収される実効的なカーボンナノチューブ
の量が(a)の場合に30%、(b)の場合に50%増
え、収量が増えることがわかる。
Example 5 An experiment was conducted by changing the thickness of carbon of the electrode. In the experiment, the counter electrode carbon was (a) 6 mm and (b) 3 mm with respect to 10 mm of electrode carbon. When one electrode was smaller than the counter electrode, the yield per unit weight recovered was the same as when both electrodes were the same, but the carbon rod was the same as described in Example 4. (In this case, the effective amount of carbon nanotubes deposited and generated on a thicker rod of 10 mm) is increased by 30% in the case of (a) and by 50% in the case of (b), which may increase the yield. Recognize.

【0015】[0015]

【実施例6】両端の電極のカーボンロッドの太さを10
mmと3mmに設定し、さらに500Torrのヘリウ
ム雰囲気でDCモードで実験した。10mmの方を陰
極、3mmの方を陽極とした。その結果、収率はほぼ6
0%であったが、消費したカーボン量に対する、電極上
に堆積し回収されるカーボンナノチューブを大量に含む
カーボン微粒子回収量が向上した。つまり電極の太さが
等しいDCモードの実験あるいは電極の太さに差異のあ
るACモードの同様な実験に比べ、回収量は50%向上
した。
[Embodiment 6] The thickness of the carbon rods of the electrodes on both ends is 10
mm and 3 mm, and further experimented in DC mode in a helium atmosphere of 500 Torr. 10 mm was used as a cathode and 3 mm was used as an anode. As a result, the yield is almost 6
Although it was 0%, the recovery amount of carbon fine particles containing a large amount of carbon nanotubes deposited and collected on the electrode was improved with respect to the consumed carbon amount. That is, the recovery amount was improved by 50% as compared with the DC mode experiment in which the electrodes have the same thickness or the similar experiment in the AC mode in which the electrodes have different thicknesses.

【0016】[0016]

【発明の効果】本発明の作製方法によるとナノチューブ
を高収率で作製することができ、ナノチューブを用いた
新素材作製という点で工業的有用性は極めて高い。
INDUSTRIAL APPLICABILITY According to the production method of the present invention, nanotubes can be produced in a high yield, and the industrial utility is extremely high in terms of producing a new material using nanotubes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法によるカーボンナノチューブ
の収率の圧力による変化を示す図である。
FIG. 1 is a diagram showing changes in the yield of carbon nanotubes due to pressure according to the production method of the present invention.

【図2】本発明の方法で製造したカーボンの結晶構造を
示す透過電子顕微鏡写真で、製造条件はACモード、ア
ルゴン雰囲気で、圧力は(a)が100Torr、
(b)が500Torrである。
FIG. 2 is a transmission electron micrograph showing the crystal structure of carbon produced by the method of the present invention, the production conditions are AC mode, an argon atmosphere, the pressure (a) is 100 Torr,
(B) is 500 Torr.

【図3】本発明の方法で製造したカーボンの結晶構造を
示す透過電子顕微鏡写真で、製造条件はACモード、ヘ
リウム雰囲気で、圧力は(a)、(b)でそれぞれ2
0、100Torrである。
FIG. 3 is a transmission electron micrograph showing the crystal structure of carbon produced by the method of the present invention, where the production conditions are AC mode, helium atmosphere, and pressures (a) and (b) are 2 respectively.
It is 0,100 Torr.

【図4】本発明の方法で製造したカーボンの結晶構造を
示す透過電子顕微鏡写真で、製造条件はACモード、ヘ
リウム雰囲気で、圧力は(a)、(b)でそれぞれ50
0、2500Torrである。
FIG. 4 is a transmission electron micrograph showing the crystal structure of carbon produced by the method of the present invention, wherein the production conditions are AC mode, helium atmosphere, and pressures (a) and (b) are 50.
It is 0, 2500 Torr.

【図5】本発明の方法で製造したカーボンの結晶構造を
示す透過電子顕微鏡写真で、製造条件は、DCモード、
圧力500Torrで、雰囲気は(a)がヘリウム、
(b)がアルゴンである。
FIG. 5 is a transmission electron micrograph showing the crystal structure of carbon produced by the method of the present invention, in which the production conditions are DC mode,
At a pressure of 500 Torr, the atmosphere (a) is helium,
(B) is argon.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アーク放電によりカーボンを蒸発させた
後凝縮させてナノチューブを形成させるに際し、アーク
放電を200Torr以上の圧力範囲の不活性ガス雰囲
気でおこなう事を特徴とするカーボンナノチューブの製
造方法。
1. A method for producing carbon nanotubes, characterized in that when carbon is evaporated by arc discharge and then condensed to form nanotubes, arc discharge is performed in an inert gas atmosphere in a pressure range of 200 Torr or more.
【請求項2】 不活性ガスの圧力範囲を200〜250
0Torrとする請求項1に記載のカーボンナノチュー
ブの製造方法。
2. The pressure range of the inert gas is 200 to 250.
The method for producing a carbon nanotube according to claim 1, wherein the pressure is 0 Torr.
【請求項3】 不活性ガスとしてヘリウムガスまたはア
ルゴンガスを用いることを特徴とする請求項1または2
に記載のカーボンナノチューブの製造方法。
3. A helium gas or an argon gas is used as the inert gas, according to claim 1 or 2.
The method for producing a carbon nanotube according to item 1.
【請求項4】 アーク放電をDCモードでおこなうこと
を特徴とする請求項1、2または3に記載のカーボンナ
ノチューブの製造方法。
4. The method for producing carbon nanotubes according to claim 1, 2 or 3, wherein the arc discharge is performed in a DC mode.
【請求項5】 アーク放電を大きさの異なる2つの電極
を用いておこなうことを特徴とする請求項1、2、3ま
たは4に記載のカーボンナノチューブの製造方法。
5. The method for producing a carbon nanotube according to claim 1, wherein the arc discharge is performed using two electrodes having different sizes.
【請求項6】 アーク放電の陰電極に用いるカーボンの
径を陽電極に用いる電極の径より大きいことを特徴とす
る請求項4または5に記載のカーボンナノチューブの製
造方法。
6. The method for producing carbon nanotubes according to claim 4, wherein the diameter of the carbon used for the negative electrode of the arc discharge is larger than the diameter of the electrode used for the positive electrode.
JP4172242A 1992-06-30 1992-06-30 Method for producing carbon nanotube Expired - Lifetime JP2845675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172242A JP2845675B2 (en) 1992-06-30 1992-06-30 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172242A JP2845675B2 (en) 1992-06-30 1992-06-30 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JPH06280116A true JPH06280116A (en) 1994-10-04
JP2845675B2 JP2845675B2 (en) 1999-01-13

Family

ID=15938256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172242A Expired - Lifetime JP2845675B2 (en) 1992-06-30 1992-06-30 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2845675B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665187A1 (en) * 1994-01-28 1995-08-02 Director-General Of The Agency Of Industrial Science And Technology Method and device for the production of carbon nanotubes
KR20000066907A (en) * 1999-04-21 2000-11-15 장진 Fabrication method of carbon nanotube
US6303094B1 (en) 1997-03-21 2001-10-16 Japan Fine Ceramics Center Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
US6794599B2 (en) 2001-03-01 2004-09-21 Sony Corporation Device and method for manufacture of carbonaceous material
JP2004331452A (en) * 2003-05-07 2004-11-25 Hitachi Chem Co Ltd Carbon nanofiber and its preparation method
KR100562975B1 (en) * 2000-11-21 2006-03-23 히로후미 다키카와 Method for manufacturing nano-tube, nano-tube manufactured thereby, apparatus for manufacturing nano-tube, method for patterning nano-tube, nano-tube material patterned thereby, and electron emission source
US7306503B2 (en) 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
JP2008093494A (en) * 2006-10-05 2008-04-24 Mitsubishi Heavy Ind Ltd Catalyst for producing nano-carbon material and method for manufacturing the catalyst
EP2287373A1 (en) 2003-02-06 2011-02-23 Mitsubishi Heavy Industries, Ltd. Producing method of carbon nanofibers
JP2011255382A (en) * 2011-09-28 2011-12-22 Mitsubishi Heavy Ind Ltd Method for manufacturing catalyst for manufacturing nanocarbon material, and method for manufacturing nanocarbon material
US8236269B2 (en) 2006-02-14 2012-08-07 Lg Chem, Ltd. Rigid random coils and composition comprising the same
US8771629B2 (en) 2008-05-30 2014-07-08 Mitsubishi Heavy Industries, Ltd. Nano-carbon material production apparatus and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743500B2 (en) 2001-08-03 2004-06-01 Hitachi Chemical Company, Ltd. Hollow carbon fiber and production method
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US8449858B2 (en) 2009-06-10 2013-05-28 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133119A (en) * 1985-12-04 1987-06-16 Showa Denko Kk Production of carbon fiber
JPH0361373A (en) * 1989-07-31 1991-03-18 Idemitsu Petrochem Co Ltd Method and device for synthesizing inorganic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133119A (en) * 1985-12-04 1987-06-16 Showa Denko Kk Production of carbon fiber
JPH0361373A (en) * 1989-07-31 1991-03-18 Idemitsu Petrochem Co Ltd Method and device for synthesizing inorganic material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665187A1 (en) * 1994-01-28 1995-08-02 Director-General Of The Agency Of Industrial Science And Technology Method and device for the production of carbon nanotubes
US5482601A (en) * 1994-01-28 1996-01-09 Director-General Of Agency Of Industrial Science And Technology Method and device for the production of carbon nanotubes
US6303094B1 (en) 1997-03-21 2001-10-16 Japan Fine Ceramics Center Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
KR20000066907A (en) * 1999-04-21 2000-11-15 장진 Fabrication method of carbon nanotube
KR100562975B1 (en) * 2000-11-21 2006-03-23 히로후미 다키카와 Method for manufacturing nano-tube, nano-tube manufactured thereby, apparatus for manufacturing nano-tube, method for patterning nano-tube, nano-tube material patterned thereby, and electron emission source
US6794599B2 (en) 2001-03-01 2004-09-21 Sony Corporation Device and method for manufacture of carbonaceous material
US7306503B2 (en) 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
EP2287373A1 (en) 2003-02-06 2011-02-23 Mitsubishi Heavy Industries, Ltd. Producing method of carbon nanofibers
US8318124B2 (en) 2003-02-06 2012-11-27 Mitsubishi Heavy Industries, Ltd. Producing method and apparatus of carbon nanofibers
JP2004331452A (en) * 2003-05-07 2004-11-25 Hitachi Chem Co Ltd Carbon nanofiber and its preparation method
US8236269B2 (en) 2006-02-14 2012-08-07 Lg Chem, Ltd. Rigid random coils and composition comprising the same
JP2008093494A (en) * 2006-10-05 2008-04-24 Mitsubishi Heavy Ind Ltd Catalyst for producing nano-carbon material and method for manufacturing the catalyst
US8771629B2 (en) 2008-05-30 2014-07-08 Mitsubishi Heavy Industries, Ltd. Nano-carbon material production apparatus and method
JP2011255382A (en) * 2011-09-28 2011-12-22 Mitsubishi Heavy Ind Ltd Method for manufacturing catalyst for manufacturing nanocarbon material, and method for manufacturing nanocarbon material

Also Published As

Publication number Publication date
JP2845675B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
JP3049019B2 (en) Method of forming single-walled carbon nanotube coating and single-walled carbon nanotube coated by the method
JP2845675B2 (en) Method for producing carbon nanotube
Zhao et al. Preparation of high-grade carbon nanotubes by hydrogen arc discharge
JP2541434B2 (en) Carbon nano tube manufacturing method
US8153240B2 (en) Carbon nanostructures and methods of making and using the same
Han et al. Growth and microstructure of Ga2O3 nanorods
JP2526782B2 (en) Carbon fiber and its manufacturing method
EP2431325A1 (en) Carbon nanotubes and process for producing same
US20030129305A1 (en) Two-dimensional nano-sized structures and apparatus and methods for their preparation
JP2000095509A (en) Production of carbon nanotube and catalyst therefor
Hosseini et al. Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using NaCl accuse as solution and Fe and Ni particles and catalysts
JP4443423B2 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
JP3657574B2 (en) Manufacturing method of carbon nanowire
JP2012153540A (en) Carbon nanotube aggregate, and method for manufacturing the same
KR100935867B1 (en) Method of manufacturing sharp end, multi-layer carbon nano-tube radial aggregate
KR100858291B1 (en) Device and method for manufacture of carbonaceous material
RU2681630C1 (en) Arc method for graphene production
JP2002265209A (en) Method for purifying carbon nanotube
EP3131849B1 (en) Process for preparing single wall carbon nanotubes of pre-defined chirality
JP2006281168A (en) Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same
Karmakar et al. A new approach towards improving the quality and yield of arc-generated carbon nanotubes
JPH07189040A (en) Production of cylindrical graphite fiber
Yao et al. Investigation of carbon nanotube deposits and their formation conditions by an arc-plasma method in water
JP3453379B2 (en) Method for producing densely packed multi-walled carbon nanotubes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14