JPH06260644A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06260644A
JPH06260644A JP4161293A JP4161293A JPH06260644A JP H06260644 A JPH06260644 A JP H06260644A JP 4161293 A JP4161293 A JP 4161293A JP 4161293 A JP4161293 A JP 4161293A JP H06260644 A JPH06260644 A JP H06260644A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon
silicon oxide
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4161293A
Other languages
Japanese (ja)
Inventor
耕治 ▲浜▼田
Koji Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4161293A priority Critical patent/JPH06260644A/en
Publication of JPH06260644A publication Critical patent/JPH06260644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To lower the temperature in formation process of a semiconductor without lowering the quality of a silicon oxide film by thermally oxidizing a polysilicon film after forming the silicon oxide film on the polysilicon film by a method excluding thermal oxide method. CONSTITUTION:A silicon oxide film 2 is formed on a silicon substrate 1, and further an amorphous silicon film 3 is stacked by low-pressure chemical vapor deposition Next, the amorphous silicon film 3 is polycrystallized by heat-treating the silicon substrate, and then a polisilicon film 4 is formed, and after cleaning the surface, a CVD oxide film 5 is grown, and thermal oxidation is performed in atmosphere of H2-O2 at 750 deg.C so as to form a silicon oxide film 6 on the polysilicon film 4. Though it is thermally oxidized at relatively low temperature, the flatness of the interface between the polysilicon film 4 and the silicon oxide film 6 is good, and the unoxidized silicon crystal grains do not exist in the silicon oxide film 6. Accordingly, the temperature in formation process of a semiconductor device can be materialized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に薄膜トランジスタに用いられる薄膜ポリシリ
コン膜やその他、各種電極、抵抗体、配線等に広く用い
られているポリシリコン膜上へのシリコン酸化膜の形成
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a thin film polysilicon film used for a thin film transistor, and other silicon on a polysilicon film which is widely used for various electrodes, resistors, wirings and the like. The present invention relates to a method for forming an oxide film.

【0002】[0002]

【従来の技術】近年、ポリシリコン膜は薄膜トランジス
タ(以下TFTと称する)の材料などとして注目されて
いる。特にSRAMにおける負荷素子やアクティブマト
リックス型LCDにおけるスイッチ素子等への応用がさ
かんである。
2. Description of the Related Art In recent years, a polysilicon film has attracted attention as a material for a thin film transistor (hereinafter referred to as TFT). In particular, it is widely applied to load elements in SRAMs and switch elements in active matrix LCDs.

【0003】また、従来のICやLSIでも広く用いら
れているポリシリコン膜は、電極や抵抗体または配線等
に重要な位置をしめている。このような状況下でポリシ
リコン膜とその上の絶縁膜、とくにシリコン酸化膜の高
品質化は重要な課題となっている。
Polysilicon films, which are widely used in conventional ICs and LSIs, play an important role in electrodes, resistors, wirings and the like. Under such circumstances, it is an important issue to improve the quality of the polysilicon film and the insulating film thereon, especially the silicon oxide film.

【0004】従来、ポリシリコン膜はLPCVD法など
により原料ガスにSiH4 (モノシラン)ガスを用いて
成長温度600〜650℃程度で基板上に形成されてき
た。そしてシリコン酸化膜の形成には、ポリシリコン膜
の熱酸法とCVD法が主に用いられていた。一般にポリ
シリコン膜の熱酸化は普通の単結晶シリコン基板と同じ
方法がとられている。熱酸化法には大きく分けてH2
2 雰囲気を用いるウェット酸化法とドライO2 雰囲気
を用いるドライ酸化法に分類される。同一温度では前者
は酸化速度が速く、後者は酸化速度が遅い。ポリシリコ
ン膜は単結晶シリコン基板と異なり多結晶状であるた
め、酸化条件や結晶構造の違いによって単結晶シリコン
基板とは酸化速度が異なることが多い。特に酸化条件の
低温化が要求されている中で酸化温度が1000℃以下
になるとこの差は大きくなり、酸化速度だけではなくポ
リシリコン膜の構造に伴うポリシリコン膜酸化表面での
構造変化も多く見られるようになる。
Conventionally, a polysilicon film has been formed on a substrate at a growth temperature of about 600 to 650 ° C. by using SiH 4 (monosilane) gas as a source gas by the LPCVD method or the like. The thermal acid method and the CVD method for the polysilicon film have been mainly used for forming the silicon oxide film. Generally, the thermal oxidation of the polysilicon film is performed by the same method as that for a normal single crystal silicon substrate. The thermal oxidation method is roughly divided into H 2
Using an O 2 atmosphere using a wet oxidation method and a dry O 2 atmosphere is classified into a dry oxidation method. At the same temperature, the former has a faster oxidation rate and the latter has a slower oxidation rate. Since the polysilicon film is polycrystalline unlike the single crystal silicon substrate, the oxidation rate is often different from that of the single crystal silicon substrate due to the difference in oxidation conditions and crystal structure. This difference becomes large especially when the oxidation temperature becomes 1000 ° C. or lower under the requirement of lowering the oxidation conditions, and not only the oxidation rate but also the structural change on the oxidized surface of the polysilicon film due to the structure of the polysilicon film is large. You will be able to see it.

【0005】次にポリシリコン膜上へのCVD法による
酸化膜(CVD酸化膜)の堆積について説明する。現
在、一般的に用いられているCVD酸化膜には大別して
2種類のシリコン酸化膜がある。第1には堆積温度が約
700〜900℃程度の温度領域を用いるHTO(Hi
gh Temperature Oxide)膜であ
り、第2は約600℃以下の温度領域を用いているLT
O(Low Temperature Oxide)膜
である。これらのCVD酸化膜は種々の構造のTFTや
その他のIC、LSIのゲート酸化膜や層間膜、カバー
膜などとして用いられている。
Next, the deposition of an oxide film (CVD oxide film) on the polysilicon film by the CVD method will be described. The CVD oxide films generally used at present are roughly classified into two types. First, HTO (Hi) using a temperature range where the deposition temperature is about 700 to 900 ° C.
GH Temperature Oxide) film, the second is an LT using a temperature range of about 600 ° C. or lower.
It is an O (Low Temperature Oxide) film. These CVD oxide films are used as gate oxide films, interlayer films, cover films and the like of TFTs of various structures and other ICs and LSIs.

【0006】[0006]

【発明が解決しようとする課題】LSIの集積度が高ま
るにつれ、その作製プロセスは従来にも増してプロセス
の低温化が要求されている。このためポリシリコン膜上
のシリコン酸化膜も、その品質を低下させずに形成プロ
セスの低温化を図る必要がある。しかしながら、ポリシ
リコン膜上のシリコン酸化膜は、その形成方法が低温化
するにつれて多くの問題点が生じてくる。
As the degree of integration of LSIs increases, the fabrication process thereof is required to have a lower process temperature than ever before. Therefore, it is necessary to lower the temperature of the formation process of the silicon oxide film on the polysilicon film without deteriorating its quality. However, the silicon oxide film on the polysilicon film has many problems as the method for forming the silicon oxide film is lowered in temperature.

【0007】ここで最も基本となる従来技術の問題点を
ポリシリコン膜の熱酸化を例とし、図面を用いて説明す
る。
Here, the most basic problem of the prior art will be described with reference to the drawings, taking thermal oxidation of a polysilicon film as an example.

【0008】まず図3(A)に示すように、シリコン基
板1上にシリコン酸化膜2を形成した後、LPCVD法
により原料ガスにSiH4 ガスを用いて成膜温度650
℃でポリシリコン膜15を膜厚200nmで堆積する。
First, as shown in FIG. 3A, after a silicon oxide film 2 is formed on a silicon substrate 1, a SiH 4 gas is used as a source gas by a LPCVD method to form a film at a temperature of 650.
A polysilicon film 15 is deposited to a thickness of 200 nm at a temperature of ° C.

【0009】次に図3(B)に示すように、基板を90
0℃、H2 −O2 雰囲気中で熱酸化を行い、ポリシリコ
ン膜15上に膜厚50nmのシリコン酸化膜16を形成
する。ポリシリコン膜15上にはシリコン酸化膜16が
形成されているが、ポリシリコン膜15とシリコン酸化
膜16の界面には900℃での熱酸化工程で生じたシリ
コン結晶質のアスペリティ(突起物)17が生成してお
り、さらにシリコン酸化膜16中にはシリコン結晶質の
インクル−ジョン(包合物)18が含まれている。
Next, as shown in FIG.
Thermal oxidation is performed at 0 ° C. in an H 2 —O 2 atmosphere to form a silicon oxide film 16 having a film thickness of 50 nm on the polysilicon film 15. Although the silicon oxide film 16 is formed on the polysilicon film 15, a silicon crystalline asperity (projection) generated at the interface between the polysilicon film 15 and the silicon oxide film 16 at the thermal oxidation process at 900 ° C. 17 is generated, and the silicon oxide film 16 further contains an inclusion (inclusion) 18 of silicon crystalline.

【0010】このため、アスペリティ17やインクル−
ジョン18などが存在するポリシリコン膜及びシリコン
酸化膜では、質の良いデバイス性能は得られない。例え
ばEPROMなどのフローティングゲートとコントロー
ルゲートをポリシリコン膜を用いて作製する時、二つの
ゲート電極間の絶縁膜をフローティングゲートのポリシ
リコン膜を900℃のH2 −O2 雰囲気のウェット酸化
法で形成した場合、このシリコン酸化膜の絶縁破壊耐圧
は2〜3MV/cmと非常に低いものとなる。
Therefore, the asperity 17 and the increment
With a polysilicon film and a silicon oxide film in which John 18 and the like exist, good device performance cannot be obtained. For example, when a floating gate and a control gate such as an EPROM are manufactured by using a polysilicon film, an insulating film between two gate electrodes is formed by using a polysilicon film of the floating gate by a wet oxidation method at 900 ° C. in an H 2 —O 2 atmosphere. When formed, the breakdown voltage of this silicon oxide film is very low, 2-3 MV / cm.

【0011】また、ポリシリコン膜上のシリコン酸化膜
を実際のデバイスに応用する例として、現在注目されて
いるポリシリコンTFTを集積度の高いLSIや液晶駆
動用の素子として応用しようとする試みがある。全体的
なデバイス作製条件の要求からTFT作製プロセス温度
もできるだけ低温化させる必要がある。このためポリシ
リコン膜上のシリコン酸化膜はゲート酸化膜としてCV
D酸化膜を用いることが一般的であり、熱酸化法を用い
たとしても、できるだけ低温で熱酸化を行う必要があ
る。
Further, as an example of applying a silicon oxide film on a polysilicon film to an actual device, an attempt is made to apply a polysilicon TFT, which is currently receiving attention, as a highly integrated LSI or an element for driving a liquid crystal. is there. From the requirements of the overall device manufacturing conditions, it is necessary to lower the TFT manufacturing process temperature as much as possible. Therefore, the silicon oxide film on the polysilicon film serves as a gate oxide film for CV.
It is common to use a D oxide film, and even if the thermal oxidation method is used, it is necessary to perform thermal oxidation at a temperature as low as possible.

【0012】現在、一般的に用いられているCVD酸化
膜は前述した通り大別して2種類のシリコン酸化膜があ
る。第1にはHTO膜であり第2にLTO膜である。こ
のうちHTO膜は比較的に種々の膜特性やデバイス特性
も良く、多くのところで使用されてきている。しかしT
FTなどのゲート酸化膜として用いる場合、CVD酸化
膜は膜や堆積方法などに起因すると考えられる固定電荷
や界面準位などの問題がしきい値電圧の制御性を困難な
ものとしたり、ゲート酸化膜の絶縁破壊耐圧特性などの
面から未だ熱酸化法の酸化膜質には劣ることが多く、半
導体装置の信頼性が低下する。
At present, the CVD oxide films generally used are roughly classified into two types as described above. The first is an HTO film and the second is an LTO film. Of these, the HTO film is relatively good in various film characteristics and device characteristics and has been used in many places. But T
When used as a gate oxide film of FT or the like, the CVD oxide film has problems such as fixed charges and interface states that are considered to be caused by the film and the deposition method, which makes controllability of the threshold voltage difficult, and the gate oxide film. In many cases, the quality of the oxide film obtained by the thermal oxidation method is still inferior in terms of dielectric breakdown voltage characteristics of the film, and the reliability of the semiconductor device is reduced.

【0013】[0013]

【課題を解決するための手段】第1の発明の半導体装置
の製造方法は、基板上に形成されたポリシリコン膜上に
シリコン酸化膜を形成する半導体装置の製造方法におい
て、ポリシリコン膜上に熱酸化法以外の方法でシリコン
酸化膜を形成したのちこのポリシリコン膜を熱酸化する
ものである。
A method of manufacturing a semiconductor device according to a first aspect of the present invention is a method of manufacturing a semiconductor device in which a silicon oxide film is formed on a polysilicon film formed on a substrate. After forming a silicon oxide film by a method other than the thermal oxidation method, the polysilicon film is thermally oxidized.

【0014】第2の発明の半導体装置の製造方法は、基
板上に形成されたポリシリコン膜上にシリコン酸化膜を
形成する半導体装置の製造方法において、基板上にアモ
ルファスシリコン膜を形成したのちこのアモルファスシ
リコン膜上に熱酸化法以外の方法でシリコン酸化膜を形
成し、次で熱酸化によりこのアモルファスシリコン膜を
ポリシリコン膜にすると同時にその表面にシリコン酸化
膜を形成するものである。
A method of manufacturing a semiconductor device according to a second aspect of the present invention is a method of manufacturing a semiconductor device in which a silicon oxide film is formed on a polysilicon film formed on a substrate, after forming an amorphous silicon film on the substrate. A silicon oxide film is formed on the amorphous silicon film by a method other than the thermal oxidation method, and then this amorphous silicon film is formed into a polysilicon film by thermal oxidation and at the same time a silicon oxide film is formed on the surface thereof.

【0015】本発明ではポリシリコン膜を熱酸化する前
に従来のポリシリコン膜に比べて表面平坦性の良いアモ
ルファスシリコン膜または、アモルファスシリコン膜を
結晶化したポリシリコン膜を用い、且つ熱酸化の前にC
VD酸化膜等を形成しシリコン膜の表面をおさえ、この
後熱酸化を行うために、従来のようなポリシリコン膜表
面の凹凸やシリコンインクルージョンの発生はなくな
る。
In the present invention, before the polysilicon film is thermally oxidized, an amorphous silicon film having a better surface flatness than a conventional polysilicon film or a polysilicon film obtained by crystallizing the amorphous silicon film is used, and the thermal oxidation is performed. C before
Since a VD oxide film or the like is formed to suppress the surface of the silicon film and then thermal oxidation is performed, there is no occurrence of unevenness and silicon inclusion on the surface of the polysilicon film as in the conventional case.

【0016】[0016]

【実施例】次に本発明について図面を参照して説明す
る。図1(A)〜(D)は本発明の第1の実施例を説明
するための半導体チップの断面図である。
The present invention will be described below with reference to the drawings. 1A to 1D are cross-sectional views of a semiconductor chip for explaining a first embodiment of the present invention.

【0017】まず図1(A)に示すように、シリコン基
板1の上にシリコン酸化膜2を形成し、さらにアモルフ
ァスシリコン膜3を低圧化学気相成長法(以下LPCV
D法と記す)で原料ガスにSi2 6 を用いて膜厚15
0nm堆積する。
First, as shown in FIG. 1A, a silicon oxide film 2 is formed on a silicon substrate 1, and an amorphous silicon film 3 is further formed by a low pressure chemical vapor deposition method (hereinafter referred to as LPCV).
The film thickness is 15 by using Si 2 H 6 as a source gas by
Deposit 0 nm.

【0018】次に図1(B)に示すように、このシリコ
ン基板を窒素雰囲気中、750℃、30分の熱処理を行
うことにより、アモルファスシリコン膜3を多結晶化し
ポリシリコン膜4とする。
Next, as shown in FIG. 1B, the amorphous silicon film 3 is polycrystallized to form a polysilicon film 4 by heat-treating this silicon substrate in a nitrogen atmosphere at 750 ° C. for 30 minutes.

【0019】次に図1(C)に示すように、このポリシ
リコン膜4の表面クリーニング(例えば、アンモニア−
過酸化水素系洗浄や酸洗浄など)を行った後、CVD酸
化膜5を膜厚15nm成長する。
Next, as shown in FIG. 1C, the surface of the polysilicon film 4 is cleaned (for example, ammonia-
After performing hydrogen peroxide cleaning or acid cleaning), a CVD oxide film 5 is grown to a thickness of 15 nm.

【0020】さらに750℃、H2 −O2 雰囲気中で熱
酸化を行い、図1(D)に示すようにポリシリコン膜4
上でトータル25nmの膜厚のシリコン酸化膜6を形成
する。
Further, thermal oxidation is performed in an H 2 —O 2 atmosphere at 750 ° C., and a polysilicon film 4 is formed as shown in FIG.
A silicon oxide film 6 having a total film thickness of 25 nm is formed above.

【0021】このようにして形成したポリシリコン膜4
上のシリコン酸化膜6は、比較的低温で熱酸化したにも
かかわらず、ポリシリコン膜4とシリコン酸化膜6との
界面の平坦性は良く、シリコン酸化膜6中に未酸化シリ
コン結晶粒(インクルージョンなど)は存在していな
い。また熱酸化を行うことにより、CVD酸化膜の膜質
改善(例えば、酸化膜中の欠陥や固定電荷の低減など)
とともにポリシリコン膜とシリコン酸化膜の界面も界面
準位の低減や平坦性に優れ、しきい値電圧の制御性を良
く、かつ絶縁破壊耐圧も向上する。
Polysilicon film 4 thus formed
Although the upper silicon oxide film 6 is thermally oxidized at a relatively low temperature, the flatness of the interface between the polysilicon film 4 and the silicon oxide film 6 is good, and unoxidized silicon crystal grains ( Inclusion) does not exist. Also, by performing thermal oxidation, the quality of the CVD oxide film is improved (for example, defects in the oxide film and reduction of fixed charges).
At the same time, the interface between the polysilicon film and the silicon oxide film is also excellent in the reduction of the interface state and the flatness, the controllability of the threshold voltage is good, and the breakdown voltage is also improved.

【0022】また本第1の実施例では、シリコン酸化膜
形成初期に熱酸化法以外のシリコン酸化膜の形成方法と
してCVD法を用いたが、スパッタ法または真空蒸着法
または電子ビーム堆積法によりシリコン酸化膜を形成し
てもよい。これらの方法を用いるとCVD法よりもさら
に低温で酸化膜を形成することが可能であり、また引き
続き行う熱酸化工程を同一炉内で処理する、いわゆるそ
の場プロセス(in−situ process)とし
て真空を破ること無く処理することも装置によっては可
能であり、酸化膜特性等はさらに向上する。
In the first embodiment, the CVD method is used as the method for forming the silicon oxide film other than the thermal oxidation method at the initial stage of forming the silicon oxide film, but the silicon is formed by the sputtering method, the vacuum evaporation method or the electron beam deposition method. An oxide film may be formed. By using these methods, it is possible to form an oxide film at a lower temperature than the CVD method, and the subsequent thermal oxidation step is performed in the same furnace, that is, as a so-called in-situ process, a vacuum is used. Depending on the device, it is possible to perform the treatment without breaking the oxide, and the oxide film characteristics and the like are further improved.

【0023】上述した技術の応用例の一つとして、各種
電極としてはフラッシュメモリデバイスのフローティン
グゲートとコントロールゲートとの間に設けられるポリ
シリコン電極間酸化膜も上述した技術を用いて作製する
ことにより、絶縁破壊耐圧が向上するなどの特徴を有す
る。
As one application example of the above-mentioned technique, by forming the polysilicon interelectrode oxide film provided between the floating gate and the control gate of the flash memory device as various electrodes by using the above-mentioned technique, It also has features such as improved dielectric breakdown voltage.

【0024】また第1の実施例には、アモルファスシリ
コン膜を熱処理してポリシリコン膜とした場合を説明し
たが、アモルファスシリコン膜3上にCVD酸化膜5を
堆積し、次で750℃、H2 −O2 雰囲気中で熱酸化を
行い、図1(D)に示したように、トータル25nmの
膜厚のシリコン酸化膜6を形成すると同時にアモルファ
スシリコン膜をポリシリコン膜4としてもよい。この場
合でも、ポリシリコン膜とシリコン酸化膜との界面の平
坦性は良く、シリコン酸化膜中に未酸化シリコン結晶粒
(インクルージョンなど)は存在していない。
In the first embodiment, the case where the amorphous silicon film is heat-treated to form a polysilicon film has been described. However, a CVD oxide film 5 is deposited on the amorphous silicon film 3, and then 750 ° C. and H are applied. Thermal oxidation may be performed in a 2- O 2 atmosphere to form a silicon oxide film 6 having a total film thickness of 25 nm as shown in FIG. Even in this case, the flatness of the interface between the polysilicon film and the silicon oxide film is good, and there is no unoxidized silicon crystal grain (inclusion) in the silicon oxide film.

【0025】図2は本発明の第2の実施例を説明するた
めの半導体チップの断面図であり、本発明をポリシリコ
ン薄膜トランジスタ(TFT)に適応した場合を示す。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention, showing a case where the present invention is applied to a polysilicon thin film transistor (TFT).

【0026】図2に示す通り、初めにシリコン基板1上
にシリコン酸化膜2を形成し、さらにTFTのチャネル
用のポリシリコン膜10を形成する。このポリシリコン
膜10は減圧化学気相成長法(LPCVD)等により原
料ガスにSiH4 (モノシラン)ガスまたはSi2 6
(ジシラン)ガスを用いてアモルファスシリコン膜を膜
厚100nm堆積した後、窒素雰囲気中、600℃、2
0時間の熱処理を行い、結晶化させて形成する。次でし
きい値制御用にボロン(B)のイオン注入を行う。この
後ポリシリコン膜をフォトリソグラフィ技術やドライエ
ッチング技術等によりTFT活性層のポリシリコン膜の
形にパターニングする。
As shown in FIG. 2, first, the silicon oxide film 2 is formed on the silicon substrate 1, and then the polysilicon film 10 for the channel of the TFT is formed. This polysilicon film 10 has a source gas of SiH 4 (monosilane) gas or Si 2 H 6 by low pressure chemical vapor deposition (LPCVD) or the like.
After depositing an amorphous silicon film with a film thickness of 100 nm using (disilane) gas, in a nitrogen atmosphere at 600 ° C. for 2
Heat treatment is performed for 0 hours to crystallize and form. Next, boron (B) ions are implanted for controlling the threshold value. After that, the polysilicon film is patterned into the shape of the polysilicon film of the TFT active layer by a photolithography technique or a dry etching technique.

【0027】次にゲート酸化膜11を形成する。この形
成工程の初めにポリシリコン膜10上の表面クリーニン
グ(例えばアンモニア−過酸化水素系洗浄や酸洗浄な
ど)を施す。続いてCVD酸化膜を堆積温度850℃で
膜厚15nm堆積する。続いて酸化温度750℃、H2
−O2 雰囲気中でポリシリコン膜10を熱酸化し、ポリ
シリコン膜10上のシリコン酸化膜厚がトータル25n
mになるようにしゲート酸化膜11とする。
Next, the gate oxide film 11 is formed. At the beginning of this forming process, surface cleaning on the polysilicon film 10 (for example, ammonia-hydrogen peroxide cleaning or acid cleaning) is performed. Then, a CVD oxide film is deposited at a deposition temperature of 850 ° C. to a thickness of 15 nm. Then, the oxidation temperature is 750 ° C., H 2
The polysilicon film 10 is thermally oxidized in a -O 2 atmosphere so that the total thickness of the silicon oxide film on the polysilicon film 10 is 25 n.
The gate oxide film 11 is made to have a thickness of m.

【0028】次に基板表面クリーニングを行った後、全
面にポリシリコン膜をLPCVD法により堆積し、燐ド
ープを行い、さらにフォトリソグラフィ技術やドライエ
ッチング技術を用いてゲート電極12を形成する。次に
このゲート電極12を用いてセルフアラインでソース・
ドレイン形成用のAsのイオン注入を行いソース領域1
3A、ドレイン領域13Bを形成する。以下基板上に層
間膜としての酸化膜を堆積し、さらにソース及びドレイ
ン部の不純物の活性化のために窒素雰囲気中、850
℃、20分の熱処理を行う。次にアルミ膜で配線を形成
しさらに窒化膜でカバー膜を形成してTFTを完成させ
る。
Next, after cleaning the surface of the substrate, a polysilicon film is deposited on the entire surface by the LPCVD method, phosphorus doping is performed, and the gate electrode 12 is formed by using the photolithography technique and the dry etching technique. Next, the gate electrode 12 is used to self-align the source
Source region 1 by performing As ion implantation for drain formation
3A and drain region 13B are formed. Then, an oxide film as an interlayer film is deposited on the substrate, and further, in order to activate the impurities in the source and drain portions, in an atmosphere of nitrogen, 850
Heat treatment is performed at 20 ° C. for 20 minutes. Next, a wiring is formed by an aluminum film and a cover film is formed by a nitride film to complete the TFT.

【0029】上述した第2の実施例におけるポリシリコ
ン膜10上のシリコン酸化膜形成方法でゲート酸化膜を
形成したTFTは、従来技術で形成したゲート酸化膜を
有するTFTに比べ、TFT作製プロセスが低温化でき
かつ、比較的低温でも質の良いゲート酸化膜が形成でき
る。例えば、ゲート酸化膜の絶縁破壊耐圧は7〜8MV
/cmと従来のものより(約30%)も向上する。更に
しきい値電圧の制御性向上(界面準位の低減、QSSで約
1/2)、特性ばらつきの低減等、膜質やデバイス特性
(例えばS値、リーク電流低減)が改善される。
The TFT in which the gate oxide film is formed by the method for forming the silicon oxide film on the polysilicon film 10 in the second embodiment described above has a TFT manufacturing process which is higher than that of the TFT having the gate oxide film formed by the conventional technique. The temperature can be lowered and a high quality gate oxide film can be formed even at a relatively low temperature. For example, the dielectric breakdown voltage of the gate oxide film is 7 to 8 MV
/ Cm, which is an improvement (about 30%) over the conventional one. Further, the controllability of the threshold voltage (reduction of interface state, about 1/2 in Q SS ), reduction of characteristic variation, and the like, film quality and device characteristics (for example, S value, leakage current reduction) are improved.

【0030】上述した第2の実施例におけるポリシリコ
ンTFTでの特徴は、SRAMの負荷素子として用いら
れるだけでなく、液晶デバイスにも同様に用いることが
できる。液晶デバイスの基本的な構成は図2に示したシ
リコン基板上のTFTと同様であるが、基板としては石
英基板を用いる。そして活性層としてのポリシリコン膜
は、石英基板上に直接堆積させるか、又は石英基板上に
CVD酸化膜を膜厚約200nm堆積した後堆積させ
る。
The characteristics of the polysilicon TFT in the second embodiment described above can be used not only as a load element of SRAM but also in a liquid crystal device. The basic configuration of the liquid crystal device is the same as that of the TFT on the silicon substrate shown in FIG. 2, but a quartz substrate is used as the substrate. Then, the polysilicon film as the active layer is directly deposited on the quartz substrate, or a CVD oxide film having a thickness of about 200 nm is deposited on the quartz substrate and then deposited.

【0031】以下図2で説明した第2の実施例と同様に
してTFTを作製することにより、液晶デバイスを製造
することができる。
A liquid crystal device can be manufactured by manufacturing TFTs in the same manner as in the second embodiment described with reference to FIG.

【0032】[0032]

【発明の効果】上述したように本発明によれば、従来の
方法に比べ、比較的低温でポリシリコン膜上にシリコン
酸化膜を形成でき、かつ低温プロセスであるにもかかわ
らずポリシリコン膜とシリコン酸化膜界面及びシリコン
酸化膜中に結晶質のシリコンアスペリティ(突起物)や
シリコンインクルジョン(包合物)が形成されるのを抑
制できる。更に熱酸化法を用いていることによりポリシ
リコン膜とシリコン酸化膜界面の界面準位を制御しやす
いことなどにより、良質のシリコン酸化膜を形成でき、
TFTのリーク電流の低減(約1/2程度)、S値及び
駆動能力の改善の他、しきい値電圧が制御しやすくな
り、半導体装置の信頼性を向上させることができる。
As described above, according to the present invention, a silicon oxide film can be formed on a polysilicon film at a relatively low temperature as compared with the conventional method, and a polysilicon film is formed despite the low temperature process. It is possible to suppress the formation of crystalline silicon asperities (protrusions) and silicon inclusions (inclusions) at the silicon oxide film interface and in the silicon oxide film. Further, by using the thermal oxidation method, it is easy to control the interface state of the interface between the polysilicon film and the silicon oxide film, so that a good quality silicon oxide film can be formed.
Besides reducing the leak current of the TFT (about ½), improving the S value and the driving capability, it becomes easier to control the threshold voltage, and the reliability of the semiconductor device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための半導体
チップの断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための半導体
チップの断面図。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【図3】従来例を説明するための半導体チップの断面
図。
FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン酸化膜 3 アモルフハスシリコン膜 4 ポリシリコン膜 5 CVD酸化膜 6 シリコン酸化膜 10 ポリシリコン膜 11 ゲート酸化膜 12 ゲート電極 13A ソース領域 13B ドレイン領域 15 ポリシリコン膜 16 シリコン酸化膜 17 アスペリティ 18 インクルージョン 1 Silicon Substrate 2 Silicon Oxide Film 3 Amorphous Silicon Film 4 Poly Silicon Film 5 CVD Oxide Film 6 Silicon Oxide Film 10 Poly Silicon Film 11 Gate Oxide Film 12 Gate Electrode 13A Source Region 13B Drain Region 15 Poly Silicon Film 16 Silicon Oxide Film 17 Asperity 18 Inclusion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたポリシリコン膜上に
シリコン酸化膜を形成する半導体装置の製造方法におい
て、ポリシリコン膜上に熱酸化法以外の方法でシリコン
酸化膜を形成したのちこのポリシリコン膜を熱酸化する
ことを特徴とする半導体装置の製造方法。
1. In a method of manufacturing a semiconductor device in which a silicon oxide film is formed on a polysilicon film formed on a substrate, a silicon oxide film is formed on the polysilicon film by a method other than a thermal oxidation method, and then the polysilicon film is formed. A method for manufacturing a semiconductor device, which comprises thermally oxidizing a silicon film.
【請求項2】 基板上に形成されたポリシリコン膜上に
シリコン酸化膜を形成する半導体装置の製造方法におい
て、基板上にアモルファスシリコン膜を形成したのちこ
のアモルファスシリコン膜上に熱酸化法以外の方法でシ
リコン酸化膜を形成し、次で熱酸化によりこのアモルフ
ァスシリコン膜をポリシリコン膜にすると同時にその表
面にシリコン酸化膜を形成することを特徴とする半導体
装置の製造方法。
2. A method of manufacturing a semiconductor device, wherein a silicon oxide film is formed on a polysilicon film formed on a substrate, wherein an amorphous silicon film is formed on the substrate, and then a method other than thermal oxidation is formed on the amorphous silicon film. A method of manufacturing a semiconductor device, comprising forming a silicon oxide film by a method, and then, by thermal oxidation, converting this amorphous silicon film into a polysilicon film and simultaneously forming a silicon oxide film on the surface thereof.
【請求項3】 熱酸化法以外のシリコン酸化膜の形成方
法が、化学気相成長法またはスパッタ法または真空蒸着
法または分子線ビーム堆積法である請求1または請求項
2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the method of forming a silicon oxide film other than the thermal oxidation method is a chemical vapor deposition method, a sputtering method, a vacuum deposition method or a molecular beam deposition method. Method.
JP4161293A 1993-03-03 1993-03-03 Manufacture of semiconductor device Pending JPH06260644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161293A JPH06260644A (en) 1993-03-03 1993-03-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161293A JPH06260644A (en) 1993-03-03 1993-03-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06260644A true JPH06260644A (en) 1994-09-16

Family

ID=12613170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161293A Pending JPH06260644A (en) 1993-03-03 1993-03-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06260644A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843829A (en) * 1993-09-14 1998-12-01 Fujitsu Limited Method for fabricating a semiconductor device including a step for forming an amorphous silicon layer followed by a crystallization thereof
US6124154A (en) * 1996-10-22 2000-09-26 Seiko Epson Corporation Fabrication process for thin film transistors in a display or electronic device
US6444507B1 (en) 1996-10-22 2002-09-03 Seiko Epson Corporation Fabrication process for thin film transistors in a display or electronic device
US6673126B2 (en) 1998-05-14 2004-01-06 Seiko Epson Corporation Multiple chamber fabrication equipment for thin film transistors in a display or electronic device
JP2009290172A (en) * 2008-06-02 2009-12-10 Hitachi Ltd Semiconductor device and its manufacturing method
JP2015502029A (en) * 2011-11-11 2015-01-19 京東方科技集團股▲ふん▼有限公司 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
CN106783573A (en) * 2016-12-15 2017-05-31 中国电子科技集团公司第四十七研究所 A kind of method for improving VDMOS device Radiation hardness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843829A (en) * 1993-09-14 1998-12-01 Fujitsu Limited Method for fabricating a semiconductor device including a step for forming an amorphous silicon layer followed by a crystallization thereof
US6300217B1 (en) 1993-09-14 2001-10-09 Fujitsu Limited Method for fabricating a semiconductor device including a step for forming an amorphous silicon layer followed by a crystallization thereof
US6124154A (en) * 1996-10-22 2000-09-26 Seiko Epson Corporation Fabrication process for thin film transistors in a display or electronic device
US6444507B1 (en) 1996-10-22 2002-09-03 Seiko Epson Corporation Fabrication process for thin film transistors in a display or electronic device
WO2004079826A1 (en) * 1996-10-22 2004-09-16 Mitsutoshi Miyasaka Method for manufacturing thin film transistor, display, and electronic device
US6673126B2 (en) 1998-05-14 2004-01-06 Seiko Epson Corporation Multiple chamber fabrication equipment for thin film transistors in a display or electronic device
JP2009290172A (en) * 2008-06-02 2009-12-10 Hitachi Ltd Semiconductor device and its manufacturing method
JP2015502029A (en) * 2011-11-11 2015-01-19 京東方科技集團股▲ふん▼有限公司 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
CN106783573A (en) * 2016-12-15 2017-05-31 中国电子科技集团公司第四十七研究所 A kind of method for improving VDMOS device Radiation hardness

Similar Documents

Publication Publication Date Title
KR100191091B1 (en) Thin film transistor and its fabrication method
JPH08195493A (en) Manufacture of film transistor
JPH04326766A (en) Thin film transistor for liquid crystal and its method of manufacturing
JPH06260644A (en) Manufacture of semiconductor device
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
US5827772A (en) Fabrication process for thin film transistor
JPH06232402A (en) Manufacture of thin film semiconductor device
JP2698724B2 (en) Thin film transistor and method of manufacturing the same
KR20060079958A (en) Silicon thin film transistor
JPH11274505A (en) Thin film transistor structure and its manufacture
JPH0613607A (en) Polycrystalline silicon thin-film transistor
JPH04214673A (en) Thin-film transistor and manufacture thereof
JP2556850B2 (en) Method for manufacturing thin film transistor
JP2629601B2 (en) Semiconductor device
JPH11163368A (en) Substrate with conducting film and its manufacture
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
KR100214069B1 (en) Method of fabricating a field effect transistor for semiconductor device
JPH0730122A (en) Production of polycrystalline silicon thin-film transistor
JPH08186262A (en) Manufacture of thin film transistor
JPH06338611A (en) Thin-film transistor and manufacture thereof
JPH07122752A (en) Manufacture of thin film transistor
JP3123182B2 (en) Semiconductor device and manufacturing method thereof
JPH077156A (en) Thin film field effect transistor
JPH0621098A (en) Semiconductor device and manufacture thereof
JPH03120872A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000509