JPH06260422A - Method and device for heating glass substrate - Google Patents

Method and device for heating glass substrate

Info

Publication number
JPH06260422A
JPH06260422A JP7290793A JP7290793A JPH06260422A JP H06260422 A JPH06260422 A JP H06260422A JP 7290793 A JP7290793 A JP 7290793A JP 7290793 A JP7290793 A JP 7290793A JP H06260422 A JPH06260422 A JP H06260422A
Authority
JP
Japan
Prior art keywords
heating
glass substrate
plate
substrate
far infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7290793A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
高橋  清
Shuji Kitajima
修司 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP7290793A priority Critical patent/JPH06260422A/en
Publication of JPH06260422A publication Critical patent/JPH06260422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a uniform heating temperature profile to prevent the generation of a warpage of a glass substrate at the time of heating of the substrate and moreover, to inhibit the generation of particles by a method wherein far infrared rays are made to absorb in the glass substrate and the substrate is heated. CONSTITUTION:An upper reflective plate 4 is provided on the upper part of a vacuum tank 5, a necessary number of heating lamps 3 are provided under the lower part of the plate 4 and a far infrared ray emitting plate 8 is provided under the lower parts of the lamps 3. The plate 8 absorbs near infrared rays from the lamps 3 and emits far infrared rays. A lower reflective plate 9 is provided in such a way that it is made to confront the plate 8 and a glass substrate 2 is held by a support device 10 between the plates 9 and 10. The lamps 3 are lighted. After the near infrared rays emitted the lamps 3 are directly reflected or are reflected by the plate 4, they are absorbed in the plate 8. The far infrared rays are absorbed in the substrate 2 and the substrate 2 is heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造装置の1つで
あるCVD装置の基板加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate heating apparatus for a CVD apparatus which is one of semiconductor manufacturing apparatuses.

【0002】[0002]

【従来の技術】液晶表示ユニットはガラス基板に多数の
半導体素子を形成してあり、この半導体素子を形成する
為、プラズマCVD装置によって成膜を行う。又、成膜
は減圧下所定の温度で行われ、成膜の準備工程として真
空中で予熱する。
2. Description of the Related Art In a liquid crystal display unit, a large number of semiconductor elements are formed on a glass substrate, and in order to form these semiconductor elements, a film is formed by a plasma CVD apparatus. The film formation is performed under a reduced pressure at a predetermined temperature, and preheating is performed in a vacuum as a film formation preparation step.

【0003】真空下では対流による加熱を行えない為、
加熱は熱輻射か、或は熱伝導によらなければならない。
被加熱物体がガラスの場合、赤外線吸収波長が高温側に
ない為、従来より熱伝導方式による加熱が採用されてい
た。
Since heating by convection cannot be performed under vacuum,
Heating must be by heat radiation or heat conduction.
When the object to be heated is glass, the infrared absorption wavelength is not on the high temperature side, so heating by a heat conduction method has been conventionally used.

【0004】従来の基板加熱装置としては以下に示すも
のがある。
The following are conventional substrate heating devices.

【0005】図11は所謂インライン方式のCVD装置
の基板加熱装置を示すものであり、垂直姿勢で移動可能
に垂設された基板搬送用のホルダ(金属製でアノード電
極を兼ねる)1を具備し、該ホルダ1に所要枚数のガラ
ス基板2が装着され、ホルダ1の両側には近赤外線を発
する加熱ランプ3(例えばInfrared Lam
p)が配設される。図中、4は反射板、5は真空槽であ
る。
FIG. 11 shows a so-called in-line type substrate heating device of a CVD device, which is provided with a substrate transfer holder (made of metal which also serves as an anode electrode) 1 vertically movably mounted vertically. , A required number of glass substrates 2 are mounted on the holder 1, and a heating lamp 3 (for example, Infrared Lam) that emits near infrared rays is provided on both sides of the holder 1.
p) is provided. In the figure, 4 is a reflector and 5 is a vacuum chamber.

【0006】図11で示す従来例では、前記加熱ランプ
3から発せられる近赤外線を含む電磁波を前記ホルダ1
に吸収させ、先ず該ホルダ1を加熱し、更に該ホルダ1
により、熱伝導によって前記ガラス基板2を加熱するも
のである。
In the conventional example shown in FIG. 11, the holder 1 receives electromagnetic waves including near infrared rays emitted from the heating lamp 3.
First, the holder 1 is heated, and then the holder 1
To heat the glass substrate 2 by heat conduction.

【0007】図12は枚葉式のCVD装置の基板加熱装
置を示すものであり、ガラス基板2を水平姿勢で保持す
る基板保持プレート6を昇降可能に具備し、該基板保持
プレート6の上方に近赤外線を発する加熱ランプ3が配
設され、前記基板保持プレート6の下方には冷却板7が
配設されている。図中、4は反射板、5は真空槽であ
る。
FIG. 12 shows a substrate heating apparatus of a single-wafer CVD apparatus, which is provided with a substrate holding plate 6 for holding the glass substrate 2 in a horizontal position so that it can be moved up and down, and above the substrate holding plate 6. A heating lamp 3 that emits near infrared rays is arranged, and a cooling plate 7 is arranged below the substrate holding plate 6. In the figure, 4 is a reflector and 5 is a vacuum chamber.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記した従
来例の内、図11で示すものは基板が加熱され温度が上
昇すると、基板の自重より特に基板中央部がホルダ1側
に撓む。この為、ガラス基板2とホルダ1との密着性が
低下し、熱伝導性が悪くなる。従って、ガラス基板2内
の温度分布が不均一となると共に加熱時間が長くなり、
生成膜の均質性を低下させると共にスループット低下を
招く。ホルダ1は繰返し使用するので、常温付近迄冷却
し、その状態から加熱する必要があるが、ホルダ1の熱
膨張率がアルミニウム材で2.56×10-5/℃,10
0℃〜300℃であるのに対して、ガラス基板2の熱膨
張率は4.6×10-6/℃,0℃〜300℃と大きく異
なる為、ガラス基板2のクランプが困難で密着性を確保
することができなくやはり熱伝導性が低下し、ガラス基
板2内の温度分布が不均一となる。
However, among the above-mentioned conventional examples shown in FIG. 11, when the substrate is heated and the temperature rises, the central portion of the substrate is bent toward the holder 1 side due to its own weight. For this reason, the adhesion between the glass substrate 2 and the holder 1 is lowered, and the thermal conductivity is deteriorated. Therefore, the temperature distribution in the glass substrate 2 becomes non-uniform, and the heating time becomes long,
This lowers the homogeneity of the produced film and lowers the throughput. Since the holder 1 is used repeatedly, it is necessary to cool it to near room temperature and heat it from that state. However, the coefficient of thermal expansion of the holder 1 is 2.56 × 10 −5 / ° C., 10 for aluminum material.
While the glass substrate 2 has a coefficient of thermal expansion of 4.6 × 10 −6 / ° C. and 0 ° C. to 300 ° C., it is difficult to clamp the glass substrate 2 and the adhesion is high. Cannot be ensured and the thermal conductivity is lowered, and the temperature distribution in the glass substrate 2 becomes non-uniform.

【0009】又、図12で示す従来例では、熱の伝達量
はガラス基板の裏面と基板保持プレート6の表面との接
触状態に影響されるので、所定の安定な温度を得る為に
は、長時間ガラス基板2と基板保持プレート6を接触さ
せ温度飽和に近づけねばならない。これは処理能力の低
下となっていた。
Further, in the conventional example shown in FIG. 12, the amount of heat transfer is affected by the contact state between the back surface of the glass substrate and the surface of the substrate holding plate 6, so in order to obtain a predetermined stable temperature, It is necessary to bring the glass substrate 2 and the substrate holding plate 6 into contact with each other for a long period of time so as to approach temperature saturation. This was a decrease in processing capacity.

【0010】更に、所定温度の基板保持プレート6上
に、常温又は常温近傍のガラス基板2を載置すると基板
の接触面が急加熱されて反りを発生し、基板保持プレー
ト6とガラス基板2とが部分接触となり、極部加熱とな
って大きな温度分布むらを生じ成膜の不均質を招く。こ
のガラス基板2の反りを解消する為には基板保持プレー
ト6の加熱初めは常温近傍であることが要求され、該基
板保持プレート6は前記冷却板7によって冷却されなけ
ればならない。従って、基板保持プレート6の昇降装置
が必要となり、機構が複雑となる。
Further, when the glass substrate 2 at or near room temperature is placed on the substrate holding plate 6 at a predetermined temperature, the contact surface of the substrate is rapidly heated and warpage occurs, so that the substrate holding plate 6 and the glass substrate 2 Results in partial contact, resulting in extreme heating and uneven temperature distribution, resulting in inhomogeneous film formation. In order to eliminate the warp of the glass substrate 2, it is required that the temperature of the substrate holding plate 6 is near room temperature at the beginning of heating, and the substrate holding plate 6 must be cooled by the cooling plate 7. Therefore, an elevating device for the substrate holding plate 6 is required, and the mechanism becomes complicated.

【0011】更に上記2つの従来例に於いては、ホルダ
1或は基板保持プレート6とガラス基板2が接触する
為、パーティクル発生の原因となる。更に又、熱接触抵
抗は接触面の仕上がり精度によって異なるので、ホルダ
1或は基板保持プレート6は、熱変形がなく表面仕上げ
が高精度なものが要求され非常に高価となる。
Furthermore, in the above two conventional examples, the holder 1 or the substrate holding plate 6 and the glass substrate 2 are in contact with each other, which causes the generation of particles. Furthermore, since the thermal contact resistance varies depending on the finishing accuracy of the contact surface, the holder 1 or the substrate holding plate 6 is required to have a high surface finish without thermal deformation, which is very expensive.

【0012】前記した様に、熱伝導による加熱方法に於
いては、熱源物体の熱歪み、ガラスの熱歪みにより接触
状態は非常に悪く、又相互の接触界面状態によって熱の
伝わりが違ってくる。これを解決する為に、この界面に
気体を封入し、気体の熱伝導を利用する方法があるが、
気体の封込めにはガラス基板の端部をクランプし気体が
逃げないようにしなければならない。しかしこのクラン
プはガラスの熱歪みに対し強制的な応力を加えることと
なり熱衝撃による破壊を招く。
As described above, in the heating method by heat conduction, the contact state is very bad due to the heat strain of the heat source object and the heat strain of the glass, and the heat transfer is different depending on the mutual contact interface state. . In order to solve this, there is a method of enclosing a gas in this interface and utilizing the heat conduction of the gas.
To contain the gas, the edge of the glass substrate must be clamped to prevent the gas from escaping. However, this clamp applies a compulsive stress to the thermal strain of the glass, which causes destruction by thermal shock.

【0013】本発明は斯かる実情に鑑み、均一な加熱温
度分布が得られ、加熱時の基板の反りを防止し、更にパ
ーティクルの発生を抑止可能な基板加熱装置を提供しよ
うとするものである。
In view of the above situation, the present invention is to provide a substrate heating apparatus which can obtain a uniform heating temperature distribution, prevent the substrate from warping during heating, and further suppress the generation of particles. .

【0014】[0014]

【課題を解決するための手段】本発明は、ガラス基板に
遠赤外線を吸収させ加熱することを特徴とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention is characterized in that a glass substrate is made to absorb far infrared rays and heated.

【0015】[0015]

【作用】遠赤外線を吸収させて加熱するので非接触加熱
が可能であり、均一加熱が可能で加熱時の基板の反りを
防止でき、而もパーティクルの発生を抑止できる。
Since far infrared rays are absorbed and heated, non-contact heating is possible, uniform heating is possible, warpage of the substrate during heating can be prevented, and particle generation can be suppressed.

【0016】[0016]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0017】本発明者等は、ガラス状Si O2 の赤外線
透過範囲が4μm 迄であり、結晶状Si O2 の赤外線吸
収波数は1100cm-1と625cm-1とに吸収ピークがあ
ることに着目し、ガラス基板2に遠赤外線を吸収させて
加熱する方法で、CVD装置で必要な温度、300℃〜
400℃迄加熱できるかどうかを種々の実験をして確認
した。実験の結果、図10中実線で示す真空中の加熱曲
線を得るに至った。尚、図10中破線で示す真空中の加
熱曲線は従来の熱伝導による加熱曲線である。
[0017] The present inventors have infrared transmission range of the glass-like Si O2 is at up to 4 [mu] m, the infrared absorption wave number of crystalline Si O2 is focused on the fact that there is absorption peaks at 1100 cm -1 and 625 cm -1, This is a method of heating the glass substrate 2 by absorbing far infrared rays.
It was confirmed by various experiments whether heating up to 400 ° C. was possible. As a result of the experiment, the heating curve in vacuum shown by the solid line in FIG. 10 was obtained. The heating curve in vacuum indicated by the broken line in FIG. 10 is a conventional heating curve by heat conduction.

【0018】図10で示される様に、本方法でCVD装
置で必要な温度、300℃〜400℃迄加熱可能である
と共に従来の熱伝導による加熱に対して著しく加熱速度
が早いという結果が得られた。
As shown in FIG. 10, according to the present method, it is possible to heat up to a temperature required by the CVD apparatus, that is, 300 ° C. to 400 ° C., and it is possible to obtain a result that the heating rate is remarkably high as compared with the conventional heat conduction. Was given.

【0019】次に、遠赤外線によるガラス基板加熱装置
を図1により説明する。
Next, a glass substrate heating device using far infrared rays will be described with reference to FIG.

【0020】尚、図12中で示したものと同一のものに
は同符号を付してある。
The same parts as those shown in FIG. 12 are designated by the same reference numerals.

【0021】本実施例は枚葉式ガラス基板加熱装置を示
し、真空槽5の上部に上反射板4を配設し、該上反射板
4の下方に所要数の加熱ランプ3を配設し、該加熱ラン
プ3の下方に遠赤外線発射板8を配設する。該遠赤外線
発射板8は前記加熱ランプ3からの近赤外線を吸収し、
遠赤外線を発するものであり、例えば前記加熱ランプ3
群を覆う板厚0.8mmのグラファイト製の板であり、前
記遠赤外線発射板8と前記ガラス基板2との距離は2mm
である。
This embodiment shows a single-wafer type glass substrate heating apparatus, in which an upper reflection plate 4 is arranged above a vacuum chamber 5 and a required number of heating lamps 3 are arranged below the upper reflection plate 4. A far-infrared emitting plate 8 is arranged below the heating lamp 3. The far-infrared emitting plate 8 absorbs near-infrared rays from the heating lamp 3,
It emits far infrared rays, for example, the heating lamp 3
It is a graphite plate with a plate thickness of 0.8 mm that covers the group, and the distance between the far-infrared emitting plate 8 and the glass substrate 2 is 2 mm.
Is.

【0022】該遠赤外線発射板8に対峙させ下反射板9
を配設し、該下反射板9と前記遠赤外線発射板8との間
にガラス基板2を支持装置10により保持する。該支持
装置10は前記下反射板9を貫通する支持針11を有
し、該支持針11は前記ガラス基板2の下面を数点で支
持する。
A lower reflecting plate 9 facing the far infrared emitting plate 8
And the glass substrate 2 is held between the lower reflecting plate 9 and the far infrared ray emitting plate 8 by a supporting device 10. The supporting device 10 has a supporting needle 11 penetrating the lower reflecting plate 9, and the supporting needle 11 supports the lower surface of the glass substrate 2 at several points.

【0023】前記加熱ランプ3を点灯する。該加熱ラン
プ3から発せられる近赤外線は直接或は前記上反射板4
に反射された後前記遠赤外線発射板8に吸収される。該
遠赤外線発射板8が前記加熱ランプ3により加熱される
と該遠赤外線発射板8は遠赤外線を発する。遠赤外線は
前記ガラス基板2に吸収され、該ガラス基板2が加熱さ
れる。該ガラス基板2を透過した遠赤外線は、前記下反
射板9に反射され有効に前記ガラス基板2に吸収され
る。
The heating lamp 3 is turned on. The near infrared rays emitted from the heating lamp 3 are directly or in the upper reflection plate 4.
After being reflected by the far infrared ray emitting plate 8, it is absorbed by the far infrared ray emitting plate 8. When the far infrared ray emitting plate 8 is heated by the heating lamp 3, the far infrared ray emitting plate 8 emits far infrared rays. Far infrared rays are absorbed by the glass substrate 2, and the glass substrate 2 is heated. Far infrared rays transmitted through the glass substrate 2 are reflected by the lower reflection plate 9 and effectively absorbed by the glass substrate 2.

【0024】本装置によるガラス基板2の加熱は、基本
的には非接触、非熱伝導の加熱であり、均一加熱が可能
でガラス基板2の反りも生じない。
The heating of the glass substrate 2 by this apparatus is basically non-contact, non-heat conduction heating, uniform heating is possible, and the glass substrate 2 is not warped.

【0025】図2に示す実施例では、真空槽5の下部に
加熱ランプ3を配設すると共に加熱ランプ3の上方に遠
赤外線発射板8を配設しガラス基板2を下面より加熱す
る様にしたものであり、作用については上記した図1の
実施例と同様である。
In the embodiment shown in FIG. 2, the heating lamp 3 is arranged below the vacuum chamber 5 and the far-infrared emitting plate 8 is arranged above the heating lamp 3 so that the glass substrate 2 is heated from below. The operation is the same as that of the embodiment of FIG. 1 described above.

【0026】図3に示す実施例では、真空槽5の上部下
部に対称的に加熱ランプ3、遠赤外線発射板8を配設し
たものである。該実施例によればガラス基板2を上下両
面より加熱する様にしたものであり、より急速加熱が可
能であると共に上下両面のより均一加熱が可能である。
In the embodiment shown in FIG. 3, the heating lamp 3 and the far-infrared emitting plate 8 are symmetrically arranged in the upper and lower parts of the vacuum chamber 5. According to this embodiment, the glass substrate 2 is heated from both the upper and lower surfaces, which enables more rapid heating and more uniform heating on the upper and lower surfaces.

【0027】図4は前記図1で示した実施例の加熱ラン
プ3と遠赤外線発射板8に代え、ヒータを内蔵した遠赤
外線発射源12としたものであり、図5は前記図2で示
した実施例の加熱ランプ3と遠赤外線発射板8に代え、
ヒータを内蔵した遠赤外線発射源12としたものであ
り、図6は前記図3で示した実施例の加熱ランプ3と遠
赤外線発射板8に代え、ヒータを内蔵した遠赤外線発射
源12としたものである。
FIG. 4 shows a far-infrared radiation source 12 having a built-in heater in place of the heating lamp 3 and far-infrared radiation plate 8 of the embodiment shown in FIG. 1, and FIG. 5 shows in FIG. Instead of the heating lamp 3 and the far-infrared ray emitting plate 8 of the embodiment,
This is a far-infrared ray emission source 12 with a built-in heater, and FIG. 6 shows a far-infrared ray emission source 12 with a built-in heater instead of the heating lamp 3 and the far-infrared ray emission plate 8 of the embodiment shown in FIG. It is a thing.

【0028】図7は前記図1で示した実施例の加熱ラン
プ3と遠赤外線発射板8に代え、セラミック管又は石英
管にヒータを内蔵させた遠赤外線発射源13としたもの
であり、図8は前記図2で示した実施例の加熱ランプ3
と遠赤外線発射板8に代え、セラミック管又は石英管に
ヒータを内蔵させた遠赤外線発射源13としたものであ
り、図9は前記図3で示した実施例の加熱ランプ3と遠
赤外線発射板8に代え、セラミック管又は石英管等の遠
赤外線発射材料にヒータを内蔵させた遠赤外線発射源1
3としたものである。
FIG. 7 shows a far infrared ray emission source 13 in which a heater is built in a ceramic tube or a quartz tube, instead of the heating lamp 3 and the far infrared ray emitting plate 8 of the embodiment shown in FIG. 8 is the heating lamp 3 of the embodiment shown in FIG.
The far infrared ray emitting plate 8 is replaced with a far infrared ray emitting source 13 in which a heater is built in a ceramic tube or a quartz tube, and FIG. 9 shows the heating lamp 3 and the far infrared ray emitting element of the embodiment shown in FIG. Far-infrared ray emission source 1 in which a heater is incorporated in a far-infrared ray emitting material such as a ceramic tube or a quartz tube instead of the plate 8
3 is set.

【0029】尚、上記実施例は真空下でのガラス基板の
加熱について説明したが、常圧化、高圧下でのガラス基
板加熱についても同様に実施可能であることは勿論であ
り、又加熱ランプ3等の発熱体の形状配置を考慮するこ
とでガラス基板2の温度分布を制御することも可能であ
る。更に、発熱ランプとしてはハロゲンランプ等その他
のランプであってもよい。又、遠赤外線発射板の材料と
してはグラファイトの他にセラミック等が挙げられる。
In the above embodiment, the heating of the glass substrate under vacuum has been described, but it goes without saying that the heating of the glass substrate under normal pressure and high pressure can be carried out in the same manner, and the heating lamp is used. It is also possible to control the temperature distribution of the glass substrate 2 by taking into consideration the geometrical arrangement of the heating elements such as 3. Further, the heat generating lamp may be another lamp such as a halogen lamp. Further, as the material of the far-infrared ray emitting plate, ceramics and the like can be mentioned in addition to graphite.

【0030】[0030]

【発明の効果】以上述べた如く本発明によれば、下記の
優れた効果を発揮する。
As described above, according to the present invention, the following excellent effects are exhibited.

【0031】 加熱速度を大幅に増加させることがで
き、加熱時間の短縮と消費電力の減少を実現することが
できる。
The heating rate can be significantly increased, and the heating time can be shortened and the power consumption can be reduced.

【0032】 非接触加熱であるのでパーティクルの
発生を抑制することができる。
Since non-contact heating is used, generation of particles can be suppressed.

【0033】 ガラス基板に熱線を吸収させて加熱す
る方法であるので、熱歪みが少なくガラス基板の反りを
防止することができる。
Since this is a method of heating the glass substrate by absorbing heat rays, the glass substrate can be prevented from warping with little thermal strain.

【0034】 非接触加熱方法であるので、熱源の冷
却機構が省略でき装置の簡略化が図れると共に冷却時間
を省くことができ加熱工程のサイクルタイムを減少させ
ることができる。
Since it is the non-contact heating method, the cooling mechanism of the heat source can be omitted, the apparatus can be simplified, the cooling time can be omitted, and the cycle time of the heating process can be reduced.

【0035】 加熱工程のサイクルタイムの短縮、省
電力化、装置の簡略化より、スループットの向上、ラン
ニングコストの低減、装置の製作コストの低減を図り得
る。
By shortening the cycle time of the heating process, saving power, and simplifying the device, throughput can be improved, running cost can be reduced, and device manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す概略図である。FIG. 2 is a schematic view showing another embodiment of the present invention.

【図3】本発明の他の実施例を示す概略図である。FIG. 3 is a schematic view showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す概略図である。FIG. 4 is a schematic view showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す概略図である。FIG. 5 is a schematic view showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す概略図である。FIG. 6 is a schematic view showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す概略図である。FIG. 7 is a schematic view showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す概略図である。FIG. 8 is a schematic view showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す概略図である。FIG. 9 is a schematic view showing another embodiment of the present invention.

【図10】本発明による加熱特性を示す線図である。FIG. 10 is a diagram showing heating characteristics according to the present invention.

【図11】従来例を示す平断面概略図である。FIG. 11 is a schematic plan sectional view showing a conventional example.

【図12】他の従来例を示す立断面概略図である。FIG. 12 is a schematic vertical sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

2 ガラス基板 3 加熱ランプ 4 上反射板 5 真空槽 8 遠赤外線発射板 9 下反射板 10 支持装置 11 支持針 12 遠赤外線発射源 13 遠赤外線発射源 2 glass substrate 3 heating lamp 4 upper reflecting plate 5 vacuum tank 8 far infrared emitting plate 9 lower reflecting plate 10 supporting device 11 supporting needle 12 far infrared emitting source 13 far infrared emitting source

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板に遠赤外線を吸収させ加熱す
ることを特徴とするガラス基板加熱方法。
1. A method of heating a glass substrate, which comprises heating a glass substrate by absorbing far infrared rays.
【請求項2】 遠赤外線発射源を有すると共に該遠赤外
線発射源と対峙する位置にガラス基板を複数点で支持可
能としたことを特徴とするガラス基板加熱装置。
2. A glass substrate heating apparatus having a far infrared ray emission source and capable of supporting a glass substrate at a plurality of points at positions facing the far infrared ray emission source.
【請求項3】 遠赤外線発射源が発熱ランプ及び遠赤外
線発射板から成る請求項2のガラス基板加熱装置。
3. The glass substrate heating apparatus according to claim 2, wherein the far-infrared radiation source comprises a heating lamp and a far-infrared radiation plate.
JP7290793A 1993-03-08 1993-03-08 Method and device for heating glass substrate Pending JPH06260422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290793A JPH06260422A (en) 1993-03-08 1993-03-08 Method and device for heating glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290793A JPH06260422A (en) 1993-03-08 1993-03-08 Method and device for heating glass substrate

Publications (1)

Publication Number Publication Date
JPH06260422A true JPH06260422A (en) 1994-09-16

Family

ID=13502899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290793A Pending JPH06260422A (en) 1993-03-08 1993-03-08 Method and device for heating glass substrate

Country Status (1)

Country Link
JP (1) JPH06260422A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221394A (en) * 2001-01-24 2002-08-09 Showa Mfg Co Ltd Heating device for electronic component
US6449428B2 (en) 1998-12-11 2002-09-10 Mattson Technology Corp. Gas driven rotating susceptor for rapid thermal processing (RTP) system
JP2005260054A (en) * 2004-03-12 2005-09-22 Tokyo Electron Ltd Plasma film forming apparatus, heat treatment apparatus, plasma film forming method and heat treatment method
JP2006156686A (en) * 2004-11-29 2006-06-15 Chemitoronics Co Ltd Heat treatment system
JP2006190731A (en) * 2005-01-04 2006-07-20 Mitsubishi Heavy Ind Ltd Substrate heating device, vacuum device and substrate heating method
US7218847B2 (en) 2003-10-24 2007-05-15 Ushio Denki Kabushiki Kasiha Heating unit for heating a workpiece with light-absorbing heat conducting layer
JP2007329423A (en) * 2006-06-09 2007-12-20 Tokki Corp Apparatus and method for heating substrate
JP2008202066A (en) * 2007-02-16 2008-09-04 Mitsubishi Heavy Ind Ltd Vacuum processing device
US11814729B2 (en) 2018-11-20 2023-11-14 Nippon Electric Glass Co., Ltd. Method for manufacturing glass article and method for heating thin sheet glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449428B2 (en) 1998-12-11 2002-09-10 Mattson Technology Corp. Gas driven rotating susceptor for rapid thermal processing (RTP) system
JP2002221394A (en) * 2001-01-24 2002-08-09 Showa Mfg Co Ltd Heating device for electronic component
US7218847B2 (en) 2003-10-24 2007-05-15 Ushio Denki Kabushiki Kasiha Heating unit for heating a workpiece with light-absorbing heat conducting layer
JP2005260054A (en) * 2004-03-12 2005-09-22 Tokyo Electron Ltd Plasma film forming apparatus, heat treatment apparatus, plasma film forming method and heat treatment method
JP2006156686A (en) * 2004-11-29 2006-06-15 Chemitoronics Co Ltd Heat treatment system
JP2006190731A (en) * 2005-01-04 2006-07-20 Mitsubishi Heavy Ind Ltd Substrate heating device, vacuum device and substrate heating method
JP2007329423A (en) * 2006-06-09 2007-12-20 Tokki Corp Apparatus and method for heating substrate
JP2008202066A (en) * 2007-02-16 2008-09-04 Mitsubishi Heavy Ind Ltd Vacuum processing device
US11814729B2 (en) 2018-11-20 2023-11-14 Nippon Electric Glass Co., Ltd. Method for manufacturing glass article and method for heating thin sheet glass

Similar Documents

Publication Publication Date Title
KR100842641B1 (en) Cooling device, and apparatus and method for manufacturing image display panel using cooling device
US6198074B1 (en) System and method for rapid thermal processing with transitional heater
KR0155545B1 (en) Apparatus for heat-treating a substrate
JP3484651B2 (en) Heating device and heating method
JPS60258928A (en) Device and method for heating semiconductor wafer
US4474831A (en) Method for reflow of phosphosilicate glass
JPH05114571A (en) Quick heat-treating method for semiconductor wafer by irradiation
TW201903903A (en) Heat treatment method
US5991508A (en) Thermal processing apparatus with a shield between heater and substrate
JPH06260422A (en) Method and device for heating glass substrate
CN103374698A (en) Heating chamber and plasma processing equipment
CN101510512A (en) Heating apparatus, heating method, and semiconductor device manufcaturing method
TW202219339A (en) Spot heating by moving a beam with horizontal rotary motion
JPS59178718A (en) Semiconductor substrate processing apparatus
JPH07201753A (en) Manufacture of thin film and its device
US7126087B2 (en) Method of effecting heating and cooling in reduced pressure atmosphere
JPS60189927A (en) Vapor phase reactor
JP3888617B2 (en) Heating device
JPH07201949A (en) Continuous heat treatment apparatus
JP2686498B2 (en) Semiconductor manufacturing equipment
US6091889A (en) Rapid thermal processor for heating a substrate
JP2008138986A (en) Heat treatment silicon plate and heat treatment furnace
JP3578405B2 (en) heating furnace
JPH0848595A (en) Sheet type vapor growth device
JPH06168899A (en) Heater unit for heating substrate