JPH0623712Y2 - Cooling fan drive - Google Patents

Cooling fan drive

Info

Publication number
JPH0623712Y2
JPH0623712Y2 JP4162489U JP4162489U JPH0623712Y2 JP H0623712 Y2 JPH0623712 Y2 JP H0623712Y2 JP 4162489 U JP4162489 U JP 4162489U JP 4162489 U JP4162489 U JP 4162489U JP H0623712 Y2 JPH0623712 Y2 JP H0623712Y2
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
passage
oil
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4162489U
Other languages
Japanese (ja)
Other versions
JPH02132813U (en
Inventor
友良 関口
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP4162489U priority Critical patent/JPH0623712Y2/en
Publication of JPH02132813U publication Critical patent/JPH02132813U/ja
Application granted granted Critical
Publication of JPH0623712Y2 publication Critical patent/JPH0623712Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、内燃機関に付設されたラジエータ内の冷却水
を冷却するファンの駆動装置に関する。
TECHNICAL FIELD The present invention relates to a fan drive device for cooling cooling water in a radiator attached to an internal combustion engine.

従来の技術 従来の冷却ファンの駆動装置としては、例えば特開昭6
2−282110号公報等に記載されているものが知ら
れている。
2. Description of the Related Art As a conventional cooling fan driving device, for example, Japanese Patent Laid-Open No.
Those described in, for example, JP-A-2-282110 are known.

概略を説明すれば、内燃機関のクランク軸に連結された
オイルポンプと、該オイルポンプの吐出通路下流に比例
差圧制御弁を介して並設され、かつ冷却ファンの駆動軸
と直結する同容量の第1,第2油圧モータと、該両油圧
モータに供給される作動油を貯留するリザーバタンク
と、第1,第2油圧モータ間の流路を切り換える第1,
第2切換弁と、機関運転状態に応じて前記比例差圧制御
弁を切換作動させると共に、第1,第2切換弁を切換作
動させる電子制御部とを備えている。
In brief, an oil pump connected to the crankshaft of an internal combustion engine and an oil pump of the same capacity which is installed in parallel downstream of a discharge passage of the oil pump via a proportional differential pressure control valve and is directly connected to a drive shaft of a cooling fan. Of the first and second hydraulic motors, a reservoir tank for storing hydraulic oil supplied to the both hydraulic motors, and a first and a second switching paths for the flow paths between the first and second hydraulic motors.
A second switching valve and an electronic control unit for switching the proportional differential pressure control valve according to the engine operating state and switching the first and second switching valves are provided.

そして、例えば機関の冷却水温が所定以下である場合は
機関回転数に拘わらず比例差圧制御弁によりリリーフ通
路が開成されて各油圧モータへの油供給量を減少させ
る。一方、機関冷却水温が所定以上でかつ機関低回転域
では、比例差圧制御弁がリリーフ通路を閉成すると共
に、第1,第2切換弁によって第1油圧モータを駆動し
た作動油が第2油圧モータを駆動するように流路を直列
に切り換える。したがって、両油圧モータが低圧で高回
転し冷却ファンを高回転で作動させることができる。さ
らに、機関冷却水温が所定以上でかつ高回転域では、第
1,第2切換弁により第1,第2油圧モータの油圧回路
が並列となるように切換制御され、これによって冷却フ
ァンの回転数をさらに上昇させて冷却効果を向上させる
ようになっている。
Then, for example, when the cooling water temperature of the engine is below a predetermined value, the relief passage is opened by the proportional differential pressure control valve regardless of the engine speed, and the oil supply amount to each hydraulic motor is reduced. On the other hand, when the engine cooling water temperature is equal to or higher than the predetermined value and the engine is in the low rotation speed range, the proportional differential pressure control valve closes the relief passage, and the hydraulic oil that drives the first hydraulic motor by the first and second switching valves is the second hydraulic oil. The flow paths are switched in series to drive the hydraulic motor. Therefore, both hydraulic motors can rotate at a low pressure and the cooling fan can operate at a high speed. Further, when the engine cooling water temperature is higher than a predetermined value and in the high rotation speed range, the first and second switching valves are switched and controlled so that the hydraulic circuits of the first and second hydraulic motors are in parallel, whereby the rotation speed of the cooling fan is controlled. Is further raised to improve the cooling effect.

考案が解決しようとする課題 然し乍ら、前記従来の駆動装置にあっては、前述のよう
に、第1,第2油圧モータの油圧回路を、直列あるいは
並列に切り換える作動を電子制御部や2つの切換弁によ
って行なっているため、装置全体の構造が複雑になり、
製造作業が煩雑になる。また、電子制御部や切換弁は、
高価なものであるため、前記構造の複雑さと相俟って製
造コストの大巾な高騰が余儀なくされる。
However, in the above-mentioned conventional drive device, as described above, the operation for switching the hydraulic circuits of the first and second hydraulic motors in series or in parallel is controlled by an electronic control unit or two switching circuits. Since it is done with a valve, the structure of the entire device becomes complicated,
Manufacturing work becomes complicated. In addition, the electronic control unit and the switching valve
Since it is expensive, the manufacturing cost is inevitably soared in combination with the complexity of the structure.

課題を解決するための手段 本考案は、前記従来の問題点に鑑みて案出されたもの
で、機関により駆動する油圧供給機構の下流側に、1つ
の冷却ファンを駆動させる複数の油圧モータを設けると
共に、該各油圧モータの油圧回路を並列あるいは直列に
切り換える1つの切換弁を設け、かつ前記切換弁に前記
油圧回路の油圧変化に応じてその情報信号を伝達する圧
力検出機構を設けたことを特徴としている。
Means for Solving the Problems The present invention has been devised in view of the above-mentioned conventional problems, and a plurality of hydraulic motors for driving one cooling fan are provided downstream of a hydraulic pressure supply mechanism driven by an engine. A switching valve for switching the hydraulic circuits of the respective hydraulic motors in parallel or in series is provided, and a pressure detection mechanism for transmitting the information signal to the switching valve according to the change in the hydraulic pressure of the hydraulic circuit is provided. Is characterized by.

作用 前記構成の本考案によれば、例えば機関低回転域などに
おいて油圧供給機構の作動油の吐出圧が低い場合には、
その低油圧を検出した圧力検出機構がその情報信号を切
換弁に伝達し、この切換弁が各油圧モータの油圧回路を
直列回路に速やかに切り換える。したがって、油圧供給
機構の吐出圧が低くても冷却ファンに直結した油圧モー
タの回転速度が高回転となり、冷却ファンを高回転で駆
動させることができる。
Operation According to the present invention having the above-described configuration, for example, when the discharge pressure of the hydraulic oil of the hydraulic pressure supply mechanism is low in a low engine speed region,
The pressure detection mechanism that detects the low oil pressure transmits the information signal to the switching valve, and this switching valve quickly switches the hydraulic circuit of each hydraulic motor to the series circuit. Therefore, even if the discharge pressure of the hydraulic pressure supply mechanism is low, the rotational speed of the hydraulic motor directly connected to the cooling fan becomes high, and the cooling fan can be driven at high speed.

一方、機関高回転時では、その回転数に比例して油圧供
給機構の吐出圧が高くなると、この高油圧を検出した圧
力検出機構がその情報信号を切換弁に伝達するので、こ
の切換弁が各油圧モータの油圧回路を並列回路に速やか
に切り換える。したがって、両油圧モータに多量の作動
油が供給されてさらに高回転で駆動して、冷却ファンを
一層高回転で駆動させることができる。
On the other hand, at high engine speed, when the discharge pressure of the hydraulic pressure supply mechanism increases in proportion to the rotational speed, the pressure detection mechanism that detects this high hydraulic pressure transmits the information signal to the switching valve, so this switching valve Quickly switch the hydraulic circuit of each hydraulic motor to a parallel circuit. Therefore, a large amount of hydraulic oil is supplied to both hydraulic motors to drive them at a higher rotation speed, thereby driving the cooling fan at a higher rotation speed.

実施例 以下、本考案の実施例を図面に基づいて詳述する。Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本考案に係る冷却ファンの駆動装置の一実施例
を示し、1は内燃機関2のクランク軸2aに図外のクラ
ンクプーリやベルト等を介して連結され、該クランク軸
2aの回転数と同期回転する油圧供給機構たるオイルポ
ンプ、3は該オイルポンプ1の作動により作動油を循環
させる油圧回路であって、この油圧回路3はリザーバタ
ンク4内の作動油をオイルポンプ1に供給する吸入通路
5と、オイルポンプ1の下流側に設けられた吐出通路6
と、該吐出通路6の下流端とリザーバタンク4とを連通
する戻し通路7と、一端が吐出通路6に、他端が吸入通
路5に夫々接続されたリリーフ通路8とを備えている。
前記吐出通路6には、リリーフ通路8との接続個所にオ
イルポンプ1からの作動油の吐出量Qと吐出圧Pを制御
する制御弁9が配設されていると共に、該制御弁9の下
流に1つの冷却ファン10に回転軸11aを介して直結
した第1油圧モータ11と、該第1油圧モータ11に互
いの回転軸11a,12aを介して連結された第2油圧
モータ12が設けられている。
FIG. 1 shows an embodiment of a cooling fan drive device according to the present invention, in which 1 is connected to a crankshaft 2a of an internal combustion engine 2 via a crank pulley, a belt or the like (not shown), and the crankshaft 2a rotates. An oil pump 3, which is a hydraulic pressure supply mechanism that rotates in synchronization with the number, is a hydraulic circuit that circulates hydraulic oil by the operation of the oil pump 1. The hydraulic circuit 3 supplies the hydraulic oil in the reservoir tank 4 to the oil pump 1. Suction passage 5 and discharge passage 6 provided on the downstream side of the oil pump 1.
A return passage 7 that connects the downstream end of the discharge passage 6 to the reservoir tank 4, and a relief passage 8 that has one end connected to the discharge passage 6 and the other end connected to the suction passage 5.
The discharge passage 6 is provided with a control valve 9 for controlling the discharge amount Q and discharge pressure P of the hydraulic oil from the oil pump 1 at a connection point with the relief passage 8 and downstream of the control valve 9. Is provided with a first hydraulic motor 11 directly connected to one cooling fan 10 via a rotary shaft 11a, and a second hydraulic motor 12 connected to the first hydraulic motor 11 via mutual rotary shafts 11a and 12a. ing.

前記制御弁9は、リリーフバルブと流量制御バルブとを
兼ね備え、リリーフ通路8を適宜開閉して、吐出通路6
に圧送される作動油の吐出量Qを第3図に示すように一
定量Q以下に制御すると共に、吐出量Pも一定圧P
+2以下に制御するようになっている。
The control valve 9 serves both as a relief valve and a flow rate control valve, and opens and closes the relief passage 8 as appropriate to discharge the discharge passage 6.
Controls below a predetermined amount Q R the discharge amount Q of the working oil pumped as shown in FIG. 3, the discharge amount P also a constant pressure P R
It is controlled to be +2 or less.

前記第1油圧モータ11は、上流端が吐出通路6の第1
分岐路6aに接続され、下流端が第1油通路13aと第
2油通路13bを介して第2油圧モータ12の上流端に
接続されている。また、第2油圧モータ12は、上流端
が前記第2油圧通路13bを介して吐出通路6の第2分
岐路6bに接続されていると共に、下流端が前記戻し通
路7の第1戻し分岐路7aに接続されている。
The first hydraulic motor 11 has a first end of the discharge passage 6 having an upstream end.
It is connected to the branch passage 6a, and its downstream end is connected to the upstream end of the second hydraulic motor 12 via the first oil passage 13a and the second oil passage 13b. The second hydraulic motor 12 has an upstream end connected to the second branch passage 6b of the discharge passage 6 via the second hydraulic passage 13b, and a downstream end of the second return passage 7 of the return passage 7. 7a.

そして、第1,第2油通路13a,13bと第2分岐路
6bの接続個所に電磁切換弁14が配置されていると共
に、第2油通路13bの途中に該第2油通路13bの油
圧変化に応じて電磁切換弁14にON,OFF信号を出
力する圧力検出機構たる圧力スイッチ15が配設されて
いる。電磁切換弁14はOFF信号(消励)の入力時に
は、第2分岐路6bと第2油通路13bの連通を遮断し
て第1油通路13aと第2油通路13bとを連通して直
列回路を創成する一方、ON信号(励磁)の入力時に
は、第1,第2油通路13a,13bを遮断し、第2分
岐路6bと第2油通路13bを連通させると共に、第1
油通路13aと第2戻し分岐路7bとを連通させて並列
回路を創成するようになっている。
The electromagnetic switching valve 14 is arranged at the connection point between the first and second oil passages 13a and 13b and the second branch passage 6b, and the hydraulic pressure change of the second oil passage 13b is in the middle of the second oil passage 13b. A pressure switch 15, which is a pressure detection mechanism for outputting an ON / OFF signal to the electromagnetic switching valve 14 in accordance with the above, is provided. When the OFF signal (excitation) is input to the electromagnetic switching valve 14, the communication between the second branch passage 6b and the second oil passage 13b is cut off to connect the first oil passage 13a and the second oil passage 13b to each other to form a series circuit. On the other hand, when the ON signal (excitation) is input, the first and second oil passages 13a and 13b are cut off, the second branch passage 6b and the second oil passage 13b are communicated with each other, and
The oil passage 13a and the second return branch passage 7b are communicated with each other to create a parallel circuit.

前記圧力スイッチ15は、第2図に示すように略円筒状
のケーシング16の下部に固定されて第2油通路13b
内に臨む圧力取入部17と、該圧力取入部17の取入口
17aからダイヤフラム室18aに導入された油圧に応
じて図中上下に可動するダイヤフラムスプリング18
と、ケーシング16内に配置されてダイヤフラムスプリ
ング18の上下可動に応じてスイッチをON,OFFす
るスイッチ部19とから構成されている。このスイッチ
部19は、ダイヤフラムスプリング18の固定板20上
に有蓋円筒状の接点ボディ21が段差円板部材22を介
して固定されていると共に、該円板部材22と固定板2
0の中央に、下端がダイヤフラムスプリング18上面と
当接する可動ピン23が上下動自在に挿通配置されてい
る。また、接点ボディ21の上壁21aには、各リード
線24,25の一端に接続された両端子26,27が固
定されており、この一方の端子26には、固定接点26
aが設けられ、かつ他方の端子27に、下面が前記可動
ピン23の上端に弾接する可動接点27aがOFF状態
に設けられている。また、上記リード線24,25は一
部が図外の電源に接続されていると共に、他が前記電磁
切換弁14の電磁コイルに接続されている。
The pressure switch 15 is fixed to a lower portion of a substantially cylindrical casing 16 as shown in FIG.
A pressure intake portion 17 that faces the inside, and a diaphragm spring 18 that moves up and down in the drawing in accordance with the hydraulic pressure introduced into the diaphragm chamber 18a from the intake port 17a of the pressure intake portion 17.
And a switch portion 19 which is arranged in the casing 16 and which turns the switch on and off according to the vertical movement of the diaphragm spring 18. In this switch section 19, a cylindrical contact body 21 with a lid is fixed on a fixed plate 20 of a diaphragm spring 18 via a stepped disc member 22, and the disc member 22 and the fixed plate 2 are also provided.
At the center of 0, a movable pin 23 whose lower end abuts on the upper surface of the diaphragm spring 18 is vertically movably inserted. Further, both terminals 26 and 27 connected to one ends of the lead wires 24 and 25 are fixed to the upper wall 21 a of the contact body 21, and the fixed contact 26 is connected to the one terminal 26.
In addition, a movable contact 27a whose lower surface elastically contacts the upper end of the movable pin 23 is provided in the OFF state at the other terminal 27. The lead wires 24 and 25 are partially connected to a power source (not shown), and the other wires are connected to an electromagnetic coil of the electromagnetic switching valve 14.

前述の第3図は油圧回路3内を通流する作動油の流量と
圧力との関係を示すグラフであって、吐出通路6の圧力
点Pと、第2油通路13bの圧力スイッチ15近傍の
圧力点PSWと、戻し通路7の圧力点Pとの圧力を表
している。
FIG. 3 described above is a graph showing the relationship between the flow rate and the pressure of the hydraulic oil flowing in the hydraulic circuit 3, and it shows the pressure point P P of the discharge passage 6 and the vicinity of the pressure switch 15 of the second oil passage 13b. The pressure between the pressure point P SW of P and the pressure point P D of the return passage 7 is shown.

以下、この実施例の作用について説明すれば、まず、機
関停止時には、オイルポンプ1も停止しているため油圧
回路3内の作動油の圧力及び流量も0となる。
The operation of this embodiment will be described below. First, when the engine is stopped, the oil pump 1 is also stopped and the pressure and flow rate of the hydraulic oil in the hydraulic circuit 3 are also zero.

始動後のアイドリング運転時には、オイルポンプ1の吐
出量や吐出圧も小さいため、Pでは第3図に示すよう
に十分に高いP位置になり、PSWでは油圧モータ1
1,12の単品で示す2点破線グラフのP′4位置になり
吐出圧の低い状態を示している。したがって、圧力スイ
ッチ15は、第2図に示すように可動接点27aと固定
接点26aが離間してOFF状態になり、電磁切換弁1
4が消磁されて第2分岐路6bと第2油通路13b、第
1油通路13aと第2戻り分岐路7bとを夫々遮断し、
第1,第2油通路13a,13bを連通させ、これによ
って第1,第2油圧モータ11,12の油圧回路が直列
回路になる。したがって、吐出通路6内の作動油が第1
分岐路6aから第1油圧モータ11に供給され、ここか
ら第1,第2油通路13a,13bを通って第2油圧モ
ータ12に順次供給されるため、両油圧モータ11,1
2は比較的高い回転速度で回転し、冷却ファン10を高
回転で回転させることができる。次に、機関高回転域に
なると、これに伴いオイルポンプ1の回転も上昇して吐
出量及び吐出圧が増加し、P.PSW点の圧力も上昇
する。すると、圧力スイッチ15のダイヤフラムスプリ
ング18が、PSW点の油圧によって上方に可撓変形
し、さらにPSW点が第3図のP位置に圧力上昇する
とダイヤフラムスプリング18が上方へ大きく変形す
る。このため、可動ピン23が急激に上昇して可動接点
27aを上方へ押圧し、該可動接点27aと固定接点2
6aが接触してON状態になる。これにより、電磁切換
弁14が励磁されて第1,第2油通路13a,13b遮
断する一方、第2分岐路6bと第2油通路13b,第1
油通路13aと第2戻し分岐路7bとを夫々連通させ、
これによって第1,第2油圧モータ11,12が並列回
路になる。したがって、各油圧モータ11,12には、
夫々第1分岐路6aと第2分岐路6bから作動油が同時
に供給されるため、両油圧モータ11,12は一層高回
転で駆動し、冷却ファン10をさらに高速で回転させる
ことができる。ここで、PSW点の圧力は、並列特性に
よってPからP位置に降下する。このため、ダイヤ
フラムスプリング18は、上方へ可撓変形した状態から
徐々に下方へ変形して平坦状態になり、可動ピン23も
僅かに下降するが、可動接点27aはばね力に抗して固
定接点26aに当接し続けているので、並列回路が維持
されている。ここから、機関回転数がさらに上昇してオ
イルポンプ1の回転数も上昇すると、並列回路の特性に
よりP(PSW)の圧力は最大1/2Pまでに抑えら
れる。また、この時点からさらにオイルポンプ1の回転
数が上昇した場合は、制御弁9がリリーフ通路8を大き
く開成して作動油のリリーフ量を増加させるため、各分
岐路6a,6bへの供給量がQ以下に抑えられる。
During the idling operation after start-up, the discharge amount and discharge pressure of the oil pump 1 are also small, so at P P , the P 4 position is sufficiently high as shown in FIG. 3, and at P SW the hydraulic motor 1
In the two-dot broken line graph indicated by 1 and 12 separately, the position is P ′ 4 and the discharge pressure is low. Therefore, in the pressure switch 15, the movable contact 27a and the fixed contact 26a are separated from each other as shown in FIG.
4 is demagnetized to cut off the second branch passage 6b and the second oil passage 13b, and the first oil passage 13a and the second return branch passage 7b, respectively.
The first and second oil passages 13a and 13b are made to communicate with each other, whereby the hydraulic circuits of the first and second hydraulic motors 11 and 12 become a series circuit. Therefore, the hydraulic oil in the discharge passage 6 is the first
It is supplied to the first hydraulic motor 11 from the branch path 6a and then sequentially supplied to the second hydraulic motor 12 through the first and second oil paths 13a and 13b.
2 rotates at a relatively high rotation speed, and the cooling fan 10 can rotate at a high rotation speed. Next, in the high engine speed region, the rotation of the oil pump 1 also rises, and the discharge amount and discharge pressure increase, and P P. The pressure at the P SW point also rises. Then, the diaphragm spring 18 of the pressure switch 15, and the flexible deformed upward by the hydraulic pressure of P SW point, further P SW point when upward pressure on P 0 position of Figure 3 the diaphragm spring 18 is largely deformed upward. Therefore, the movable pin 23 suddenly rises to press the movable contact 27a upward, and the movable contact 27a and the fixed contact 2
6a comes into contact and turns on. As a result, the electromagnetic switching valve 14 is excited to shut off the first and second oil passages 13a and 13b, while the second branch passage 6b and the second oil passage 13b and the first oil passage 13b are closed.
The oil passage 13a and the second return branch passage 7b are communicated with each other,
As a result, the first and second hydraulic motors 11 and 12 form a parallel circuit. Therefore, in each hydraulic motor 11, 12,
Since hydraulic oil is simultaneously supplied from the first branch path 6a and the second branch path 6b, respectively, the hydraulic motors 11 and 12 can be driven at a higher rotation speed and the cooling fan 10 can be rotated at a higher speed. Here, the pressure at the point P SW drops from the position P 0 to the position P 1 due to the parallel characteristic. Therefore, the diaphragm spring 18 is gradually deformed downward from a state of being flexibly deformed to a flat state, and the movable pin 23 is also slightly lowered, but the movable contact 27a resists the spring force and the fixed contact. The parallel circuit is maintained because it is kept in contact with 26a. From here, when the engine speed is further increased to increase the rotational speed also the oil pump 1, the pressure of P D (P SW) due to the characteristics of the parallel circuit is suppressed to a maximum 1 / 2P R. Further, if the rotation speed of the oil pump 1 further increases from this point, the control valve 9 greatly opens the relief passage 8 to increase the relief amount of the hydraulic oil, so that the supply amount to the respective branch passages 6a and 6b. There is reduced to below Q R.

一方、斯かる並列回路の状態からオイルポンプ1の回転
数が低下すると、PSWの圧力が1/2PからPに下
がり、さらにPに低下する。したがって、ダイヤフラ
ムスプリング18は、Pの圧力時点になると下方へ急
激に可撓変形し、可撓ピン23もそれに追随して速やか
に下降する。依って、可動接点27aが自身のばね力で
固定接点26aから離間してスイッチがOFFされ、電
磁切換弁14も消磁される。したがって、第1,第2油
圧モータ11,12は、前述と同様に直列回路へ速やか
に切り換えられる。この時、PSWの圧力は、Pとな
り、さらにアイドリング運転になるとPの圧力になっ
て前述と同様な作用効果が得られる。
On the other hand, when the rotational speed of the oil pump 1 is reduced from the state of such a parallel circuit, the pressure of P SW decreases from 1 / 2P R to P 1, further reduced to P 2. Therefore, the diaphragm spring 18 is rapidly and flexibly deformed downward when the pressure of P 2 is reached, and the flexible pin 23 is also lowered promptly following it. Accordingly, the movable contact 27a is separated from the fixed contact 26a by its own spring force, the switch is turned off, and the electromagnetic switching valve 14 is also demagnetized. Therefore, the first and second hydraulic motors 11 and 12 can be quickly switched to the series circuit as described above. At this time, the pressure of P SW becomes P 3 , and when the idling operation is performed, it becomes the pressure of P 4 , and the same effect as the above is obtained.

このように、本実施例によれば、各油圧モータ11,1
2を、油圧回路3の油圧に応じて直列あるいは並列に切
り換えることができるため、装置の小型化を図りつつ冷
却ファン10の駆動を精度よく制御できる。
Thus, according to this embodiment, the hydraulic motors 11, 1 are
2 can be switched in series or in parallel according to the hydraulic pressure of the hydraulic circuit 3, so that the drive of the cooling fan 10 can be controlled accurately while the device is downsized.

尚、本考案は前記実施例の各構成に限定されるものでは
ない。
It should be noted that the present invention is not limited to each configuration of the above-mentioned embodiment.

考案の効果 以上の説明で明らかなように、本考案に係る冷却ファン
の駆動装置によれば、1つの冷却ファンを駆動させる各
油圧モータ回路の直列,並列の切換えを、従来のような
電子制御部等で行なうのではなく、1つの電磁切換弁と
圧力検出機構によって行なうようにしたため、装置全体
の構造が簡素化されて製造作業能率の向上が図れると共
に、製造コストの低廉化が図れる。
EFFECTS OF THE INVENTION As is clear from the above description, according to the cooling fan drive device of the present invention, the switching between series and parallel of the hydraulic motor circuits for driving one cooling fan can be performed by the conventional electronic control. Since it is performed by one electromagnetic switching valve and the pressure detection mechanism instead of by a section or the like, the structure of the entire apparatus is simplified, the manufacturing work efficiency is improved, and the manufacturing cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す全体構成図、第2図は
本実施例に供される圧力スイッチの縦断面図、第3図は
本実施例の油圧回路における油圧と油量との相対特性を
示すグラフである。 1……オイルポンプ(油圧供給機構)、2……内燃機
関、3……油圧回路、10……冷却ファン、11,12
……第1,第2油圧モータ、14……電磁切換弁、15
……圧力スイッチ(圧力検出機構)。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention, FIG. 2 is a vertical sectional view of a pressure switch used in this embodiment, and FIG. 3 is a hydraulic pressure and an oil amount in a hydraulic circuit of this embodiment. It is a graph which shows the relative characteristic of. 1 ... Oil pump (hydraulic pressure supply mechanism), 2 ... Internal combustion engine, 3 ... Hydraulic circuit, 10 ... Cooling fan, 11, 12
...... First and second hydraulic motors, 14 ...... Electromagnetic switching valve, 15
...... Pressure switch (pressure detection mechanism).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】機関により駆動する油圧供給機構の下流側
に、1つの冷却ファンを駆動させる複数の油圧モータを
設ける共に、該各油圧モータの油圧回路を並列あるいは
直列に切り換える1つの切換弁を設け、かつ前記油圧回
路の油圧変化に応じてその情報信号を前記切換弁に伝達
する圧力検出機構を設けたことを特徴とする冷却ファン
の駆動装置。
1. A plurality of hydraulic motors for driving one cooling fan are provided on the downstream side of an oil pressure supply mechanism driven by an engine, and one switching valve for switching the hydraulic circuits of the respective hydraulic motors in parallel or in series. A cooling fan drive device, comprising a pressure detection mechanism which is provided and which transmits an information signal to the switching valve in response to a change in hydraulic pressure of the hydraulic circuit.
JP4162489U 1989-04-07 1989-04-07 Cooling fan drive Expired - Lifetime JPH0623712Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162489U JPH0623712Y2 (en) 1989-04-07 1989-04-07 Cooling fan drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162489U JPH0623712Y2 (en) 1989-04-07 1989-04-07 Cooling fan drive

Publications (2)

Publication Number Publication Date
JPH02132813U JPH02132813U (en) 1990-11-05
JPH0623712Y2 true JPH0623712Y2 (en) 1994-06-22

Family

ID=31552451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162489U Expired - Lifetime JPH0623712Y2 (en) 1989-04-07 1989-04-07 Cooling fan drive

Country Status (1)

Country Link
JP (1) JPH0623712Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897185B2 (en) * 1996-12-26 2007-03-22 株式会社小松製作所 Cooling fan drive unit

Also Published As

Publication number Publication date
JPH02132813U (en) 1990-11-05

Similar Documents

Publication Publication Date Title
JP4489951B2 (en) Fuel supply device for internal combustion engine
US6739305B2 (en) Oil pump for internal combustion engine and method of operating the same
JP2606758Y2 (en) Hydraulic pump / motor cylinder chamber pressure control device
US4481424A (en) Driving mechanism for vehicle engine and accessory
JPH01257712A (en) Controller for hydraulic driving type cooling fan
JPH0623712Y2 (en) Cooling fan drive
US4796592A (en) Fuel injection pump for internal combustion engines
US6247904B1 (en) Oil pump apparatus
JPH10159768A (en) Intake valve device for coolant compressor
JP2002195016A (en) Lubrication device equipped with quick warming-up mechanism for engine
JP4075674B2 (en) Variable displacement pump controller
JP2598994Y2 (en) Variable displacement oil pump
JP4326347B2 (en) Stepless transmission
JP4886159B2 (en) Air conditioner
JPH0623711Y2 (en) Cooling fan drive
JPH09158724A (en) Circulating water passage structure for vehicle
KR19990020417U (en) Variable valve lift device of internal combustion engine
JPH0979211A (en) Cooling system for vehicle
JP3102266B2 (en) Gas engine fuel injector cooling system
JPH08158974A (en) Variable delivery type fuel pump
JP3134006B2 (en) Lubricating device for two-cycle engine
JP2718206B2 (en) Capacity control device for variable capacity compressor
JPS632602Y2 (en)
JPH055257Y2 (en)
JPH0623713Y2 (en) Cooling fan drive