JPH06234565A - Target and its production - Google Patents

Target and its production

Info

Publication number
JPH06234565A
JPH06234565A JP5315084A JP31508493A JPH06234565A JP H06234565 A JPH06234565 A JP H06234565A JP 5315084 A JP5315084 A JP 5315084A JP 31508493 A JP31508493 A JP 31508493A JP H06234565 A JPH06234565 A JP H06234565A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
compound
target
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5315084A
Other languages
Japanese (ja)
Other versions
JP2695605B2 (en
Inventor
Masatsugu Oyama
正嗣 大山
Akira Umigami
暁 海上
Masatoshi Shibata
雅敏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP5315084A priority Critical patent/JP2695605B2/en
Publication of JPH06234565A publication Critical patent/JPH06234565A/en
Application granted granted Critical
Publication of JP2695605B2 publication Critical patent/JP2695605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To obtain a transparent electrically conductive film more excellent in moisture resistance than an ITO film and having the same electrical conductivity and light transmissivity as the ITO film by using a sintered compact of an oxide containing hexagonal laminar compound mainly containing In and Zn and expressed by the general formula In2O3(ZnO)m ((m) is 2-20). CONSTITUTION:The In compound and Zn compound can be the oxides or a materials to be oxided after sintering. A solution (solution A) made by dissolving both compound in a solvent (e.g. water) is prepared. The conc. of each metal in the solution A is 0.01-10mol/l. On the other hand, a solution (solution B) made by dissolving a precipitation forming agent (e.g. alkali) is prepared. The temp. at the time of forming the precipitate can be above the m.p. and below the b.p. of the solvent. The precipitate is aged for 1-50hr after forming the precipitate. The obtained precipitate is dried at 40-200 deg.C for 0.1-100hr, and next, calcined at 800-1200 deg.C and is pulverized, reduced in a reducing gas atmosphere at 100-800 deg.C and, after molded, sintered at 800-1700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ターゲットおよびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a target and its manufacturing method.

【0002】[0002]

【従来の技術】近年、表示装置の発展は目覚ましく、液
晶表示装置やEL表示装置等、種々の表示装置がパソコ
ンやワ−プロ等のOA機器へ活発に導入されている。こ
れらの表示装置は、いずれも表示素子を透明導電膜で挟
み込んだサンドイッチ構造を有している。
2. Description of the Related Art In recent years, the development of display devices has been remarkable, and various display devices such as liquid crystal display devices and EL display devices have been actively introduced into office automation equipment such as personal computers and word processors. Each of these display devices has a sandwich structure in which a display element is sandwiched between transparent conductive films.

【0003】透明導電膜としては、現在、ITO膜が主
流を占めている。それは、ITO膜の高透明性、低抵抗
性の他、エッチング性、基板への付着性等が良好なため
である。このITO膜は、一般にスパッタリング法によ
り作製されている。
As a transparent conductive film, an ITO film is currently the mainstream. This is because the ITO film has excellent transparency, low resistance, etching properties, and adhesion to the substrate. This ITO film is generally produced by a sputtering method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ITO
膜は耐湿性が比較的低く、湿気により電気抵抗値が増大
するという難点を有している。そして、スパッタリング
法によりITO膜を作製する際に用いるITOターゲッ
トは還元により黒化し易いため、その特性の経時変化が
問題となっている。
However, the ITO is
The film has a relatively low humidity resistance, and has a drawback that the electric resistance value increases due to humidity. Since the ITO target used when forming the ITO film by the sputtering method is easily blackened by reduction, the change over time in its characteristics poses a problem.

【0005】本発明の目的は、ITO膜よりも耐湿性に
優れるとともにITO膜と同等の導電性および光透過率
を有する透明導電膜を得るための材料等として好適なタ
ーゲットおよびその製造方法を提供することにある。
An object of the present invention is to provide a target suitable as a material for obtaining a transparent conductive film which is superior in moisture resistance to an ITO film and has the same conductivity and light transmittance as the ITO film, and a method for producing the target. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明のターゲットは、InとZnを主成分とし、一般式I
2 3 (ZnO)m (m=2〜20)で表される六方
晶層状化合物を含む酸化物の焼結体からなることを特徴
とするものである(以下、このターゲットをターゲット
Iという)。また、上記六方晶層状化合物が、正三価以
上の原子価を有する元素の少なくとも1種を全カチオン
元素の合量に対して20原子%以下でドープしたもので
あることを特徴とするターゲットもまた、上記目的を達
成する(以下、このターゲットをターゲットIIとい
う)。
A target of the present invention which achieves the above object is mainly composed of In and Zn and has the general formula I
It is characterized by comprising a sintered body of an oxide containing a hexagonal layered compound represented by n 2 O 3 (ZnO) m (m = 2 to 20) (hereinafter, this target is referred to as target I). ). Further, a target characterized in that the hexagonal layered compound is one in which at least one element having a valence of positive trivalence or more is doped at 20 atom% or less with respect to the total amount of all cationic elements is also provided. , Achieve the above-mentioned purpose (hereinafter, this target is referred to as target II).

【0007】一方、上記目的を達成する本発明のターゲ
ットの製造方法は、インジウム化合物と亜鉛化合物とを
混合する工程と、前記工程で得られた混合物を仮焼する
工程と、前記工程で得られた仮焼物を成型し焼結して、
InとZnを主成分とし、一般式In2 3 (ZnO)
m (m=2〜20)で表される六方晶層状化合物を含む
酸化物の焼結体を得る工程とを含むことを特徴とするも
のである(以下、この方法を方法Iという)。さらに、
インジウム化合物と亜鉛化合物に、正三価以上の原子価
を有する元素の化合物の少なくとも1種を加えて混合す
る工程と、前記工程で得られた混合物を仮焼する工程
と、前記工程で得られた仮焼物を成型し焼結して、In
とZnを主成分とし、一般式In2 3 (ZnO)
m (m=2〜20)で表される六方晶層状化合物に、正
三価以上の原子価を有する元素の少なくとも1種を全カ
チオン元素の合量に対して20原子%以下でドープした
化合物を含む酸化物の焼結体を得る工程とを含むことを
特徴とするターゲットの製造方法もまた、上記目的を達
成する(以下、この方法を方法IIという)。
On the other hand, the method for producing a target of the present invention which achieves the above object, comprises a step of mixing an indium compound and a zinc compound, a step of calcining the mixture obtained in the above step, and a step obtained in the above step. The calcined material is molded and sintered,
The main component is In and Zn, and the general formula is In 2 O 3 (ZnO).
and a step of obtaining a sintered body of an oxide containing a hexagonal layered compound represented by m (m = 2 to 20) (hereinafter, this method is referred to as method I). further,
A step of adding at least one compound of an element having a valence of at least positive trivalence to an indium compound and a zinc compound and mixing, a step of calcining the mixture obtained in the step, and a step obtained in the step The calcined product is molded and sintered to
And Zn as main components, and has the general formula In 2 O 3 (ZnO)
A compound obtained by doping a hexagonal layered compound represented by m (m = 2 to 20) with at least one element having a valence of at least positive trivalence at 20 atom% or less based on the total amount of all cationic elements. A method for producing a target, which comprises a step of obtaining a sintered body of an oxide containing the same, also achieves the above object (hereinafter, this method is referred to as method II).

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】まず、本発明のターゲットIは、上述した
ようにInとZnを主成分とし、一般式In2 3 (Z
nO)m (m=2〜20)で表される六方晶層状化合物
を含む酸化物の焼結体からなるものである。
First, the target I of the present invention contains In and Zn as the main components as described above, and has the general formula In 2 O 3 (Z
nO) m (m = 2 to 20), which is a sintered body of an oxide containing a hexagonal layered compound.

【0010】ここに、「六方晶層状化合物を含む酸化物
の焼結体」とは、X線回折測定で、六方晶層状化合物に
帰属されるX線回折パターンを示す物質からなる酸化物
の焼結体または六方晶層状化合物に帰属されるX線回折
パターンを示す物質とともに、他の構造に帰属されるX
線回折パターンを示す物質、非晶質物質を含む酸化物の
焼結体を意味する。
As used herein, the term "sintered body of oxide containing a hexagonal layered compound" means an oxide composed of a substance showing an X-ray diffraction pattern assigned to the hexagonal layered compound by X-ray diffraction measurement. X, which is assigned to another structure, together with a substance showing an X-ray diffraction pattern, which is assigned to a compound or a hexagonal layered compound
It means a sintered body of an oxide including a substance showing a line diffraction pattern and an amorphous substance.

【0011】より具体的には、この焼結体は、六方晶層
状化合物を5重量%以上、より好ましくは10重量%以
上含み、その好ましい例としして以下のものが挙げられ
る。 (a).In2 3 (ZnO)m (m=2〜20)の六方
晶層状化合物、 (b).In2 3 (ZnO)m (m=2〜20)の六方
晶層状化合物とIn2 3 との混合物、 (c).In2 3 (ZnO)m (m=2〜20)の六方
晶層状化合物とZnOとの混合物、 ここで (b),(c) 中のIn2 3 ,ZnOは、特定の結
晶構造を有していても非晶質であってもよい。
More specifically, this sintered body contains the hexagonal layered compound in an amount of 5% by weight or more, more preferably 10% by weight or more, and preferable examples thereof include the following. (a). A hexagonal layered compound of In 2 O 3 (ZnO) m (m = 2 to 20), (b). A mixture of a hexagonal layered compound of In 2 O 3 (ZnO) m (m = 2 to 20) and In 2 O 3 , (c). A mixture of a hexagonal layered compound of In 2 O 3 (ZnO) m (m = 2 to 20) and ZnO, wherein In 2 O 3 and ZnO in (b) and (c) have a specific crystal structure. It may have or be amorphous.

【0012】本発明のターゲットIにおいて、InとZ
nの原子比(In/(In+Zn)は0.2〜0.85
であるのが好ましく、より好ましくは、0.45〜0.
85、特に好ましくは0.55〜0.85である。その
理由は、0.2未満ではターゲットから得られる透明導
電膜の導電性が低くなり、0.85を超えると透明導電
膜の耐湿熱性が低下するからである。
In the target I of the present invention, In and Z
The atomic ratio of n (In / (In + Zn) is 0.2 to 0.85.
Is preferable, and more preferably 0.45 to 0.
85, particularly preferably 0.55 to 0.85. The reason is that if it is less than 0.2, the conductivity of the transparent conductive film obtained from the target will be low, and if it exceeds 0.85, the wet heat resistance of the transparent conductive film will be reduced.

【0013】上記のInとZnの原子比は焼結前のイン
ジウム化合物と亜鉛化合物の混合比を調整することによ
り得られ、焼結前の混合比により、化学的量論比率に見
合うインジウム酸化物と亜鉛酸化物からなる六方晶層状
化合物が生成し、残りのインジウム酸化物と亜鉛酸化物
が結晶性物質又は非晶質物質等として存在するものと推
定される。
The above atomic ratio of In and Zn is obtained by adjusting the mixing ratio of the indium compound and the zinc compound before sintering, and the indium oxide that is in proportion to the stoichiometric ratio is obtained by the mixing ratio before sintering. It is presumed that a hexagonal layered compound composed of zinc oxide and zinc oxide is produced, and the remaining indium oxide and zinc oxide are present as a crystalline substance or an amorphous substance.

【0014】また本発明のターゲットIを構成する焼結
体の相対密度は70%以上であることが好ましく、より
好ましい相対密度は85%以上であり、更に好ましくは
90%以上である。焼結体の密度が70%未満である場
合、成膜速度が遅くなり、又ターゲットおよびそれから
得られる膜が黒化しやすくなる。密度の高い焼結体を得
るためには、CIP(冷間静水圧)等で成型後、HIP
(熱間静水圧)等により焼結することが好ましい。
The relative density of the sintered body constituting the target I of the present invention is preferably 70% or more, more preferably 85% or more, further preferably 90% or more. When the density of the sintered body is less than 70%, the film formation rate becomes slow, and the target and the film obtained therefrom are easily blackened. In order to obtain a sintered body with a high density, after molding with CIP (cold isostatic pressure) etc., HIP
It is preferable to sinter by (hot isostatic pressure) or the like.

【0015】本発明のターゲットIは、上述したように
上記インジウム・亜鉛酸化物の焼結体からなり、この焼
結体からなるターゲットIは導電性および耐湿性に優
れ、液晶表示素子用透明導電膜、EL表示素子用透明導
電膜、太陽電池用透明導電膜等、種々の用途の透明導電
膜をスパッタリング法により得るためのターゲットとし
て好適である。このターゲットを用いた場合には、IT
O膜よりも耐湿性に優れるとともにITO膜と同等の導
電性および光透過率を有する透明導電膜を得ることがで
きる。
As described above, the target I of the present invention is made of the above-mentioned sintered body of indium-zinc oxide. The target I made of this sintered body is excellent in conductivity and moisture resistance, and is transparent conductive for liquid crystal display devices. It is suitable as a target for obtaining a transparent conductive film for various uses such as a film, a transparent conductive film for an EL display element, a transparent conductive film for a solar cell, etc. by a sputtering method. When using this target, IT
It is possible to obtain a transparent conductive film which is superior in moisture resistance to the O film and has the same conductivity and light transmittance as the ITO film.

【0016】ターゲットIは種々の方法により製造する
ことが可能であるが、後述する本発明の方法Iにより製
造することが好ましい。
Although the target I can be manufactured by various methods, it is preferably manufactured by the method I of the present invention described later.

【0017】次に、本発明のターゲットIIについて説明
する。
Next, the target II of the present invention will be described.

【0018】このターゲットIIは、前記六方晶層状化合
物が、正三価以上の原子価を有する元素(例えばSn,
Al,Sb,Ga、Ge)の少なくとも1種(以下、ド
ープ元素ということがある)を全カチオン元素の合量に
対して20原子%以下でドープしたものである。ここ
で、インジウム・亜鉛酸化物の組成、密度等について
は、ターゲットIと同様であるので、その説明は省略す
る。また、本発明のターゲットIIにおいて、ドープ元素
(Sn,Al,Sb,Ga,Ge等)の割合を20原子
%以下に限定する理由は、20原子%を超えてドープさ
せるとこのターゲットから得られる透明導電膜において
イオンの散乱が起こり、導電性が低下し過ぎるからであ
る。このターゲットIIは、正三価以上の原子価を有する
元素をドープしているため、前述したターゲットIから
得られた透明導電膜よりも導電性に優れた透明導電膜を
与える。
In this target II, the hexagonal layered compound is an element (for example, Sn,
At least one (Al, Sb, Ga, Ge) (hereinafter sometimes referred to as a doping element) is doped at 20 atomic% or less with respect to the total amount of all cation elements. Here, the composition, density, and the like of indium / zinc oxide are the same as those of the target I, so description thereof will be omitted. Further, in the target II of the present invention, the reason for limiting the ratio of the doping elements (Sn, Al, Sb, Ga, Ge, etc.) to 20 atomic% or less is that the target is obtained when the doping exceeds 20 atomic%. This is because ions are scattered in the transparent conductive film and the conductivity is lowered too much. Since this target II is doped with an element having a valence of positive trivalence or more, it gives a transparent conductive film having higher conductivity than the transparent conductive film obtained from the target I described above.

【0019】本発明のターゲットIIは、ターゲットIと
同様に、液晶表示素子用透明導電膜、EL表示素子用透
明導電膜、太陽電池用透明導電膜等、種々の用途の透明
導電膜をスパッタリング法により得るためのターゲット
として好適である。このターゲットを用いた場合にも、
ITO膜よりも耐湿性に優れるとともにITO膜と同等
の導電性および光透過率を有する透明導電膜を得ること
ができる。
The target II of the present invention is, like the target I, a transparent conductive film for various purposes such as a transparent conductive film for liquid crystal display devices, a transparent conductive film for EL display devices, a transparent conductive film for solar cells, etc. It is suitable as a target for obtaining When using this target,
It is possible to obtain a transparent conductive film which is superior in moisture resistance to the ITO film and has the same conductivity and light transmittance as the ITO film.

【0020】ターゲットIIも種々の方法により製造する
ことが可能であるが、後述する本発明の方法IIにより製
造することが好ましい。
The target II can also be produced by various methods, but it is preferably produced by the method II of the present invention described later.

【0021】次に、本発明の方法Iおよび方法IIについ
て説明する。
Next, the method I and the method II of the present invention will be described.

【0022】まず本発明の方法Iは、前述したようにイ
ンジウム化合物と亜鉛化合物とを混合する工程と、前記
工程で得られた混合物を仮焼する工程と、前記工程で得
られた仮焼物を成型し焼結して、InとZnを主成分と
し、一般式In2 3 (ZnO)m (m=2〜20)で
表される六方晶層状化合物を含む酸化物の焼結体を得る
工程とを含むことを特徴とする。
First, in the method I of the present invention, as described above, the step of mixing the indium compound and the zinc compound, the step of calcining the mixture obtained in the above step, and the step of calcining the calcined material obtained in the above step Formed and sintered to obtain a sintered body of an oxide containing In and Zn as main components and containing a hexagonal layered compound represented by the general formula In 2 O 3 (ZnO) m (m = 2 to 20). And a process.

【0023】方法Iで用いるインジウム化合物および亜
鉛化合物は酸化物または焼成後に酸化物になるもの(酸
化物前駆体)であればよい。インジウム酸化物前駆体、
亜鉛酸化物前駆体としては、インジウム、亜鉛のそれぞ
れの硫化物、硫酸塩、硝酸塩、ハロゲン化物(塩化物、
臭化物等)、炭酸塩、有機酸塩(酢酸塩、プロピオン酸
塩、ナフテン酸塩等)、アルコキシド(メトキシド、エ
トキシド等)、有機金属錯体(アセチルアセトナート
等)等が挙げられる。
The indium compound and zinc compound used in Method I may be oxides or those that become oxides after firing (oxide precursors). Indium oxide precursor,
As the zinc oxide precursor, indium and zinc sulfides, sulfates, nitrates, halides (chlorides,
Bromide, etc.), carbonate, organic acid salt (acetate, propionate, naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organic metal complex (acetylacetonate, etc.) and the like.

【0024】低温で完全に熱分解し、不純物が残存しな
いようにするためには、この中でも、硝酸塩、有機酸
塩、アルコキシド、有機金属錯体を用いるのが好まし
い。
Of these, nitrates, organic acid salts, alkoxides, and organic metal complexes are preferably used in order to completely decompose them at low temperature and prevent impurities from remaining.

【0025】本発明の方法Iにおいては、上記のインジ
ウム化合物と亜鉛化合物と混合して混合物を得る工程を
先ず行なうが、この工程は、下記(i) 溶液法(共沈法)
または(ii)物理混合法により実施するのが好ましい。
In the method I of the present invention, the step of mixing the above-mentioned indium compound and zinc compound to obtain a mixture is first carried out. This step is the following (i) solution method (coprecipitation method).
Alternatively, (ii) the physical mixing method is preferable.

【0026】(i) 溶液法(共沈法) この方法は、インジウム化合物と亜鉛化合物を溶解した
溶液、もしくは少なくともインジウム化合物を溶解した
溶液と少なくとも亜鉛化合物を溶解した溶液、および沈
澱形成剤を溶解した溶液をそれぞれ調製する。そして別
に用意した容器(必要により溶媒を入れておいてもよ
い)に必要により撹拌しながら前述の溶液を同時にある
いは順次添加混合してインジウム化合物と亜鉛化合物の
共沈物を形成させるものである。
(I) Solution method (coprecipitation method) In this method, a solution in which an indium compound and a zinc compound are dissolved, or a solution in which at least an indium compound is dissolved and at least a zinc compound are dissolved, and a precipitation forming agent is dissolved. Each of the prepared solutions is prepared. Then, the above solution is simultaneously or sequentially added to and mixed with a separately prepared container (may contain a solvent if necessary) to form a coprecipitate of an indium compound and a zinc compound.

【0027】またインジウム化合物と亜鉛化合物を溶解
した溶液に沈澱形成剤を溶解した溶液を添加してもよい
し、またその逆であってもよい。
The solution in which the precipitation forming agent is dissolved may be added to the solution in which the indium compound and the zinc compound are dissolved, or vice versa.

【0028】インジウム化合物と亜鉛化合物を溶解した
溶液と沈澱形成剤を溶解した溶液をそれぞれ調製し、別
に溶媒を入れた容器に撹拌しながら両者の溶液を同時に
添加混合して沈澱を形成する場合を例として以下詳細に
説明する。
In the case where a solution in which an indium compound and a zinc compound are dissolved and a solution in which a precipitation forming agent is dissolved are prepared, and both solutions are simultaneously added and mixed while stirring in a container containing a solvent to form a precipitate. This will be described in detail below as an example.

【0029】まず、上記インジウム化合物と亜鉛化合物
を適当な溶媒に溶解させた溶液(以下溶液Aという)を
準備する。溶媒は、用いるインジウム化合物または亜鉛
化合物の溶解性に応じて適宜選択すればよく、例えば、
水、アルコール、非プロトン性極性溶媒(DMSO、N
MP、スルホラン、THF等)を用いることができ、生
成する沈澱の溶解度が低いことから、特に炭素数1〜5
のアルコール(メタノール、エタノール、イソプロパノ
ール、メトキシエタノール、エチレングリコール等)が
好ましい。溶液A中の各金属の濃度は0.01〜10m
ol/リットルが好ましい。その理由は0.01mol
/リットル未満では生産性が劣り、10mol/リット
ルを超えると不均一な沈澱が生成するからである。
First, a solution (hereinafter referred to as solution A) in which the above indium compound and zinc compound are dissolved in a suitable solvent is prepared. The solvent may be appropriately selected depending on the solubility of the indium compound or zinc compound used, and for example,
Water, alcohol, aprotic polar solvent (DMSO, N
MP, sulfolane, THF, etc.) can be used, and the solubility of the resulting precipitate is low.
Alcohols (methanol, ethanol, isopropanol, methoxyethanol, ethylene glycol, etc.) are preferable. The concentration of each metal in the solution A is 0.01 to 10 m
ol / liter is preferred. The reason is 0.01 mol
This is because if it is less than 1 liter / liter, the productivity is poor, and if it exceeds 10 mol / liter, a non-uniform precipitate is formed.

【0030】さらに、原料の溶解を促進するため、各種
溶媒により適宜、酸(硝酸、塩酸等)やアセチルアセト
ン類、多価アルコール(エチレングリコール等)、エタ
ノールアミン類(モノエタノールアミン、ジエタノール
アミン等)を溶液中の金属量の0.01〜10倍程度添
加してもよい。
Further, in order to accelerate the dissolution of the raw materials, an acid (nitric acid, hydrochloric acid, etc.), acetylacetone, polyhydric alcohol (ethylene glycol, etc.), ethanolamines (monoethanolamine, diethanolamine, etc.) are appropriately added with various solvents. You may add about 0.01-10 times the metal amount in a solution.

【0031】上記溶液Aとともに、沈澱形成剤を溶解さ
せた溶液(以下、溶液Bという)を準備する。溶液Bに
溶解させる沈澱形成剤としては、アルカリ(水酸化ナト
リウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウ
ム、重炭酸ナトリウム、重炭酸カリウム、水酸化アンモ
ニウム、炭酸アンモニウム、重炭酸アンモニウム等)、
有機酸(ギ酸、蓚酸、クエン酸等)等を用いることがで
きる。沈澱は、沈澱形成剤により水酸化物、無機酸塩、
有機酸塩となる。
A solution (hereinafter referred to as a solution B) in which a precipitation forming agent is dissolved is prepared together with the above solution A. As the precipitation forming agent to be dissolved in the solution B, alkali (sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium hydroxide, ammonium carbonate, ammonium bicarbonate, etc.),
Organic acids (formic acid, oxalic acid, citric acid, etc.) can be used. Precipitation can be carried out by using a precipitation-forming agent, such as hydroxide, inorganic acid salt,
It becomes an organic acid salt.

【0032】また、沈澱形成剤を溶解するための溶媒お
よび沈澱を形成させる容器に入れる溶媒としては、イン
ジウム化合物、亜鉛化合物を溶解するために用いる前述
の溶媒を用いることができる。
As the solvent for dissolving the precipitation forming agent and the solvent placed in the container for forming the precipitate, the above-mentioned solvents used for dissolving the indium compound and the zinc compound can be used.

【0033】また、各種溶液に用いる溶媒は、操作上同
じものを用いた方がよいが、異なる溶媒を用いてもよ
い。
The solvents used for the various solutions should be the same in operation, but different solvents may be used.

【0034】方法Iにおいては上述のいずれかの手段で
沈澱を形成させるが、沈澱形成時の温度は、溶媒の融点
以上沸点以下であればよい。また、沈澱形成後に1〜5
0時間沈澱を熟成させてもよい。
In Method I, the precipitate is formed by any of the above means, and the temperature at the time of forming the precipitate may be from the melting point of the solvent to the boiling point thereof. In addition, 1 to 5 after the precipitate is formed
The precipitate may be aged for 0 hours.

【0035】このようにして得られた沈澱物を次に固液
分離、乾燥する。沈澱物の固液分離は、遠心分離、濾過
等の常法により行われる。固液分離後、沈澱物から陰イ
オンやアルカリ金属イオン等を除去する目的で、溶液
A、Bに用いた溶媒またはその他の溶媒で沈澱物を十分
に洗浄することが望ましい。固液分離後の乾燥は、40
〜200℃で0.1〜100時間行うのが好ましい。4
0℃未満では、乾燥に時間がかかり過ぎ、200℃以上
では粒子の凝集が起きやすくなる。
The precipitate thus obtained is then solid-liquid separated and dried. Solid-liquid separation of the precipitate is performed by a conventional method such as centrifugation or filtration. After solid-liquid separation, it is desirable to thoroughly wash the precipitate with the solvent used for the solutions A and B or another solvent for the purpose of removing anions, alkali metal ions and the like from the precipitate. Drying after solid-liquid separation is 40
It is preferable to carry out the treatment at ˜200 ° C. for 0.1 to 100 hours. Four
If the temperature is lower than 0 ° C., it takes too long to dry, and if the temperature is 200 ° C. or higher, aggregation of particles easily occurs.

【0036】(ii) 物理混合法 この方法は、上記のインジウム化合物が酸化インジウム
またはその前駆体(水溶性、難溶性を問わない)であ
り、上記の亜鉛化合物が酸化亜鉛またはその前駆体(水
溶性、難溶性を問わない)である場合のいずれにも行な
うことができる方法であり、インジウム化合物と亜鉛化
合物をボールミル、ジェットミル、パールミルなどの混
合器に入れ、両化合物を均一に混ぜ合わせるものであ
る。混合時間は1〜200時間とするのが好ましい。1
時間未満では均一化が不十分となりやすく、200時間
を超えると生産性が低下するからである。特に好ましい
混合時間は10〜120時間である。
(Ii) Physical mixing method In this method, the indium compound is indium oxide or its precursor (whether water soluble or sparingly soluble), and the zinc compound is zinc oxide or its precursor (water soluble). It can be applied to any of the compounds, regardless of its solubility or poor solubility), in which the indium compound and the zinc compound are put into a mixer such as a ball mill, jet mill, or pearl mill, and both compounds are uniformly mixed. Is. The mixing time is preferably 1 to 200 hours. 1
This is because if it is less than the time, the homogenization tends to be insufficient, and if it exceeds 200 hours, the productivity is lowered. A particularly preferable mixing time is 10 to 120 hours.

【0037】本発明の方法Iでは、上述のインジウム化
合物と亜鉛化合物の混合物を得る工程の後、この混合物
を仮焼する工程を行う。
In the method I of the present invention, after the step of obtaining the above-mentioned mixture of the indium compound and the zinc compound, the step of calcining this mixture is performed.

【0038】インジウム化合物と亜鉛化合物との混合物
の仮焼工程は、温度と時間との兼ね合いで種々異なって
くるが、500〜1200℃で1〜100時間行うこと
が好ましい。500℃未満または1時間未満ではインジ
ウム化合物と亜鉛化合物の熱分解が不十分であり、12
00℃を超えた場合または100時間を超えた場合には
粒子が焼結して粒子の粗大化が起こる。特に好ましい焼
成温度および焼成時間は、800〜1200℃で2〜5
0時間である。
The calcination step of the mixture of the indium compound and the zinc compound varies depending on the balance between temperature and time, but it is preferably performed at 500 to 1200 ° C. for 1 to 100 hours. If the temperature is less than 500 ° C or less than 1 hour, the thermal decomposition of the indium compound and the zinc compound is insufficient.
If the temperature exceeds 00 ° C or exceeds 100 hours, the particles are sintered and the particles become coarse. Particularly preferable firing temperature and firing time are 2 to 5 at 800 to 1200 ° C.
It's 0 hours.

【0039】本発明の方法Iでは、上述のようにして仮
焼した後、得られた仮焼物の粉砕を行なった方が好まし
く、また必要に応じて、粉砕前後に還元処理を行っても
よい。
In the method I of the present invention, it is preferable that the calcined product obtained is calcined as described above, and then the calcinated product is crushed. If necessary, a reduction treatment may be performed before and after crushing. .

【0040】仮焼物の粉砕は、ボールミル、ロールミ
ル、パールミル、ジェットミル等を用いて、粒子径が
0.01〜1.0μmになるように行うことが好まし
い。粒子径が0.01μm未満では粉末が凝集しやす
く、ハンドリングが悪くなる上、緻密な焼結体が得にく
い。一方1.0μmを超えると緻密な焼結体が得にく
い。なお仮焼と粉砕を繰り返し行なった方が組成の均一
な焼結体が得られる。
The calcination product is preferably pulverized by using a ball mill, a roll mill, a pearl mill, a jet mill or the like so that the particle diameter becomes 0.01 to 1.0 μm. If the particle size is less than 0.01 μm, the powder tends to agglomerate, resulting in poor handling, and it is difficult to obtain a dense sintered body. On the other hand, if it exceeds 1.0 μm, it is difficult to obtain a dense sintered body. Note that a sintered body having a uniform composition can be obtained by repeating calcination and pulverization.

【0041】また還元処理を行う場合の還元方法として
は還元性ガスによる還元、真空焼成又は不活性ガスによ
る還元等を適用することができる。還元性ガスによる還
元を行う場合、還元性ガスとしては水素、メタン、CO
等や、これらのガスと酸素との混合ガス等を用いること
ができる。又、不活性ガス中での焼成による還元の場
合、不活性ガスとしては、窒素、アルゴン等や、これら
ガスと酸素との混合ガス等を用いることができる。還元
温度は100〜800℃が好ましい。100℃未満では
十分な還元を行うことが困難である。一方、800℃を
超えると酸化亜鉛の蒸発が生じて組成が変化する。特に
好ましい還元温度は200〜800℃である。還元時間
は、還元温度にもよるが、0.01〜10時間が好まし
い。0.01時間未満では十分な還元を行うことが困難
である。一方、10時間を超えると経済性に乏しくな
る。特に好ましい還元時間は0.05〜5時間である。
As a reducing method for carrying out the reducing treatment, reduction with a reducing gas, vacuum firing, reduction with an inert gas, or the like can be applied. When reducing with a reducing gas, the reducing gas is hydrogen, methane, CO
Etc., or a mixed gas of these gases and oxygen can be used. Further, in the case of reduction by firing in an inert gas, nitrogen, argon, etc., a mixed gas of these gases and oxygen, etc. can be used as the inert gas. The reduction temperature is preferably 100 to 800 ° C. If it is less than 100 ° C, it is difficult to perform sufficient reduction. On the other hand, when the temperature exceeds 800 ° C., zinc oxide is evaporated and the composition changes. A particularly preferable reduction temperature is 200 to 800 ° C. The reduction time depends on the reduction temperature, but is preferably 0.01 to 10 hours. If it is less than 0.01 hours, it is difficult to perform sufficient reduction. On the other hand, if it exceeds 10 hours, the economy becomes poor. Particularly preferable reduction time is 0.05 to 5 hours.

【0042】本発明の方法Iにおいては、前工程で得ら
れた仮焼物を成型し焼結する工程を次に行なう。
In the method I of the present invention, the step of molding and sintering the calcined product obtained in the previous step is performed next.

【0043】仮焼粉末の成型は、金型成型、鋳込み成
型、射出成型等により行なわれるが、焼結密度の高い焼
結体を得るためには、CIP(冷間静水圧)等で成型
し、後記する焼結処理に付するのが好ましい。成型体の
形状は、ターゲットとして好適な各種形状とすることが
できる。また成型するにあたっては、PVA(ポリビニ
ルアルコール)、MC(メチルセルロース)、ポリワッ
クス、オレイン酸等の成型助剤を用いてもよい。
The calcined powder is molded by die molding, casting molding, injection molding or the like. In order to obtain a sintered body having a high sintering density, it is molded by CIP (cold isostatic pressure) or the like. It is preferable to apply the sintering treatment described later. The shape of the molded body can be various shapes suitable as a target. When molding, a molding aid such as PVA (polyvinyl alcohol), MC (methyl cellulose), polywax, or oleic acid may be used.

【0044】成型後の焼結は、常圧焼成、HIP(熱間
静水圧)焼成等により行なわれる。焼結温度は、インジ
ウム化合物と亜鉛化合物が熱分解し、酸化物となる温度
以上であればよく、通常800〜1700℃が好まし
い。1700℃を超えると酸化亜鉛および酸化インジウ
ムが昇華し組成のずれを生じるので好ましくない。特に
好ましい焼結温度は1200〜1700℃である。焼結
時間は焼結温度にもよるが、1〜50時間、特に2〜1
0時間が好ましい。
Sintering after molding is performed by normal pressure firing, HIP (hot isostatic pressure) firing, or the like. The sintering temperature may be at least a temperature at which an indium compound and a zinc compound are thermally decomposed to form an oxide, and usually 800 to 1700 ° C is preferable. If it exceeds 1700 ° C., zinc oxide and indium oxide are sublimated to cause compositional shift, which is not preferable. A particularly preferable sintering temperature is 1200 to 1700 ° C. Although the sintering time depends on the sintering temperature, it is 1 to 50 hours, especially 2-1.
0 hours is preferred.

【0045】焼結は還元雰囲気で行なってもよく、還元
雰囲気としては、H2 、メタン、COなどの還元性ガ
ス、Ar、N2 などの不活性ガスの雰囲気が挙げられ
る。なお、この場合酸化亜鉛、酸化インジウムが蒸発し
やすいので、HIP焼結等により加圧焼結することが望
ましい。
Sintering may be carried out in a reducing atmosphere, and examples of the reducing atmosphere include reducing gases such as H 2 , methane and CO, and inert gases such as Ar and N 2 . In this case, since zinc oxide and indium oxide are easily evaporated, it is desirable to perform pressure sintering such as HIP sintering.

【0046】このようにして焼結を行なうことにより、
InとZnを主成分とし、一般式In2 3 (ZnO)
m (m=2〜20)で表される六方晶層状化合物を含む
酸化物の焼結体からなる、目的とするターゲットIを得
ることができる。
By carrying out the sintering in this way,
The main component is In and Zn, and the general formula is In 2 O 3 (ZnO).
The target I can be obtained, which is composed of a sintered body of an oxide containing a hexagonal layered compound represented by m (m = 2 to 20).

【0047】次に、本発明の方法IIについて説明する。Next, the method II of the present invention will be described.

【0048】方法IIはターゲットIIを得るための方法と
して好適である。この方法IIは前述したように、インジ
ウム化合物と亜鉛化合物に、正三価以上の原子価を有す
る元素の化合物(例えば錫化合物,アルミニウム化合
物,アンチモン化合物,ガリウム化合物およびゲルマニ
ウム化合物)の少なくとも1種を加えて混合させて混合
物を得る点でのみ上記方法Iと異なり、他は上記方法I
と同様に行うものである。 方法IIにおいて用いられる
錫化合物としては酸化錫または焼成後に酸化錫になる酸
化錫前駆体、例えば酢酸錫、しゅう酸錫、2−エチルヘ
キシル錫、ジメトキシ錫、ジエトキシ錫、ジプロポキシ
錫、ジブトキシ錫、テトラメトキシ錫、テトラエトキシ
錫、テトラプロポキシ錫、テトラブトキシ錫などの錫ア
ルコキシド、塩化錫、フッ化錫、硝酸錫、硫酸錫等が挙
げられる。
Method II is suitable as a method for obtaining Target II. In this method II, as described above, at least one compound of an element having a valence of positive trivalence or more (for example, a tin compound, an aluminum compound, an antimony compound, a gallium compound and a germanium compound) is added to an indium compound and a zinc compound. Except that the above method I is different from the above method I only in that the mixture is mixed to obtain a mixture.
The same is done as. The tin compound used in Method II is tin oxide or a tin oxide precursor which becomes tin oxide after firing, such as tin acetate, tin oxalate, 2-ethylhexyl tin, dimethoxy tin, diethoxy tin, dipropoxy tin, dibutoxy tin, tetramethoxy. Examples thereof include tin alkoxides such as tin, tetraethoxytin, tetrapropoxytin and tetrabutoxytin, tin chloride, tin fluoride, tin nitrate, tin sulfate and the like.

【0049】また、アルミニウム化合物としては酸化ア
ルミニウムまたはその前駆体、例えば塩化アルミニウ
ム、トリメトキシアルミニウム、トリエトキシアルミニ
ウム、トリプロポキシアルミニウム、トリブトキシアル
ミニウムなどのアルミニウムアルコキシド、硫酸アルミ
ニウム、硝酸アルミニウム、しゅう酸アルミニウム等が
挙げられる。
As the aluminum compound, aluminum oxide or its precursor, for example, aluminum alkoxide such as aluminum chloride, trimethoxy aluminum, triethoxy aluminum, tripropoxy aluminum, tributoxy aluminum, aluminum sulfate, aluminum nitrate, aluminum oxalate, etc. Is mentioned.

【0050】アンチモン化合物としては酸化アンチモン
またはその前駆体、例えば塩化アンチモン、フッ化アン
チモン、トリメトキシアンチモン、トリエトキシアンチ
モン、トリプロポキシアンチモン、トリブトキシアンチ
モンなどのアンチモンアルコキシド、硫酸アンチモン、
水酸化アンチモン等があげられる。
As the antimony compound, antimony oxide or a precursor thereof, for example, antimony alkoxide such as antimony chloride, antimony fluoride, trimethoxyantimony, triethoxyantimony, tripropoxyantimony, tributoxyantimony, antimony sulfate, and the like,
Examples thereof include antimony hydroxide.

【0051】ガリウム化合物としては酸化ガリウムまた
はその前駆体、例えば塩化ガリウム、トリメトキシガリ
ウム、トリエトキシガリウム、トリプロポキシガリウ
ム、トリブトキシガリウムなどのガリウムアルコキシ
ド、硝酸ガリウム等が挙げられる。 そして、ゲルマニ
ウム化合物としては酸化ゲルマニウムまたはその前駆
体、例えば塩化ゲルマニウム、テトラメトキシゲルマニ
ウム、テトラエトキシゲルマニウム、テトラプロポキシ
ゲルマニウム、テトラブトキシゲルマニウムなどのゲル
マニウムアルコキシド等が挙げられる。
Examples of the gallium compound include gallium oxide or a precursor thereof, for example, gallium alkoxides such as gallium chloride, trimethoxygallium, triethoxygallium, tripropoxygallium and tributoxygallium, gallium nitrate and the like. Examples of the germanium compound include germanium oxide or its precursor, for example, germanium alkoxide such as germanium chloride, tetramethoxygermanium, tetraethoxygermanium, tetrapropoxygermanium, and tetrabutoxygermanium.

【0052】ドーピング原料である正三価以上の原子価
を有する元素の化合物、すなわち錫、アルミニウム、ア
ンチモン、ガリウム、ゲルマニウムの化合物の添加量
は、最終的に得られるターゲットにおけるドープ元素
(Sn,Al,Sb,Ga,Geなど)の割合が全カチ
オン元素の合量に対して20原子%以下となるように、
製造過程での各成分の蒸散を考慮して適宜設定すること
が好ましい。ドープ元素の割合が最終的に20原子%を
超えると、イオンの散乱によりターゲット、ひいては透
明導電膜の導電性が低下する。
The doping amount of the compound of an element having a valence of positive trivalence or more, that is, the compound of tin, aluminum, antimony, gallium, or germanium, which is a doping raw material, depends on the doping element (Sn, Al, Sb, Ga, Ge, etc.) is 20 atomic% or less based on the total amount of all cationic elements,
It is preferable to appropriately set in consideration of transpiration of each component in the manufacturing process. When the proportion of the doping element finally exceeds 20 atomic%, the conductivity of the target, and by extension, the transparent conductive film, decreases due to the scattering of ions.

【0053】本発明の方法IIにより、六方晶層状化合物
が、正三価以上の原子価の元素を所定量ドープしたもの
である、目的とするターゲットIIを得ることができる。
By the method II of the present invention, it is possible to obtain the target II which is a hexagonal layered compound doped with a predetermined amount of an element having a valence of at least positive trivalence.

【0054】[0054]

【実施例】以下、本発明の実施例について説明するが、
実施例で得られた物質の測定方法について説明してお
く。
EXAMPLES Examples of the present invention will be described below.
The measuring method of the substances obtained in the examples will be described.

【0055】体積固体抵抗の測定 体積固体抵抗(一般に「粉体抵抗」と表現されることも
ある)は試料1gを内径10mmの円筒に入れ、100
kg/cm2 の加圧を行い、テスターで抵抗を測定し、
下記の式により求めた。
Measurement of Volume Solid Resistance The volume solid resistance (generally referred to as “powder resistance”) is 100% when 1 g of a sample is put into a cylinder having an inner diameter of 10 mm.
Apply a pressure of kg / cm 2 , measure the resistance with a tester,
It was calculated by the following formula.

【0056】=[全抵抗(Ω)×シリンダ−の内面積
(cm2 )]/試料の厚さ(cm)
= [Total resistance (Ω) × internal area of cylinder (cm 2 )] / thickness of sample (cm)

【0057】実施例1 (1)ターゲットIの製造 まず、硝酸インジウム70.97gと硝酸亜鉛89.2
5gとを1リットルのイオン交換水に溶解させて、イン
ジウム塩と亜鉛塩とが溶解した水溶液を調製した。ま
た、アンモニア水(濃度28%)78gを750ミリリ
ットルのイオン交換水に溶解させて、アルカリ性水溶液
を調製した。
Example 1 (1) Production of Target I First, 70.97 g of indium nitrate and 89.2 of zinc nitrate were prepared.
5 g was dissolved in 1 liter of ion-exchanged water to prepare an aqueous solution in which an indium salt and a zinc salt were dissolved. Further, 78 g of ammonia water (concentration 28%) was dissolved in 750 ml of ion-exchanged water to prepare an alkaline aqueous solution.

【0058】次いで、イオン交換水100ccが入った
容積5リットルの容器に、上で得られた水溶液とアルカ
リ性水溶液とを室温下で激しく攪拌しながら同時に滴下
して、両液を反応させた。このとき、反応系のpHが
9.0に保たれるように滴下速度を調節した。そして、
滴下終了後も更に1時間攪拌した。このようにして上記
水溶液とアルカリ性水溶液とを反応させることにより沈
澱物が生じ、スラリーが得られた。なお、この反応系に
おける金属(InおよびZn)の濃度は0.3 mol/リ
ットルであった。
Then, the aqueous solution obtained above and the alkaline aqueous solution were simultaneously added dropwise at room temperature to a container having a volume of 5 liters containing 100 cc of ion-exchanged water with vigorous stirring to react the two solutions. At this time, the dropping rate was adjusted so that the pH of the reaction system was maintained at 9.0. And
After the dropping was completed, the mixture was further stirred for 1 hour. By reacting the above aqueous solution with the alkaline aqueous solution in this way, a precipitate was produced and a slurry was obtained. The concentration of metals (In and Zn) in this reaction system was 0.3 mol / liter.

【0059】次に、得られたスラリーを十分に水洗した
後、沈澱物を濾取した。そして、濾取した沈澱物を12
0℃で一晩乾燥した後、900℃で5時間焼成した。
Next, the resulting slurry was thoroughly washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration is used for 12
After drying overnight at 0 ° C., it was baked at 900 ° C. for 5 hours.

【0060】この後、得られた焼成物を直径2mmのア
ルミナボールとともに容積80ccのポリイミド製ポッ
トに入れ、エタノールを加えて、遊星ボールミルで2時
間粉砕した。
Then, the obtained fired product was put together with alumina balls having a diameter of 2 mm in a pot made of polyimide having a volume of 80 cc, ethanol was added, and the mixture was pulverized by a planetary ball mill for 2 hours.

【0061】このようにして得られた粉末についてX線
回折測定を行ったところ、In2 3 (ZnO)3 の六
方晶層状化合物の生成が確認され、その組成は実質的に
均一であった。また、SEM(走査型電子顕微鏡)観察
の結果、得られた粉末は平均粒子径が0.12μmで、
実質的に均一粒径であることが確認された。
When X-ray diffraction measurement was performed on the powder thus obtained, formation of a hexagonal layered compound of In 2 O 3 (ZnO) 3 was confirmed, and its composition was substantially uniform. . As a result of SEM (scanning electron microscope) observation, the obtained powder had an average particle diameter of 0.12 μm,
It was confirmed that the particle size was substantially uniform.

【0062】また、得られた粉末の体積固体抵抗は95
0Ωcmであった。そして、この体積固体抵抗は、40
℃、90%RHの条件での耐湿性試験1000時間後で
も1000Ωcmと低く、得られた粉末は耐湿性に優れ
ていることが確認された。
The volume solid resistance of the obtained powder is 95.
It was 0 Ωcm. And this volume solid resistance is 40
Even after 1000 hours of humidity resistance test under conditions of ° C and 90% RH, it was as low as 1000 Ωcm, and it was confirmed that the obtained powder had excellent humidity resistance.

【0063】次に、上記(1)で得られた粉末を10m
mφの金型に装入し、金型プレス成型機により100k
g/cm2 の圧力で予備成型を行った。次に、冷間静水
圧プレス成型機により4t/cm2 の圧力で圧密化した
後、1300℃で5時間焼結して、焼結体を得た。
Next, the powder obtained in the above (1)
Insert into mφ die and press 100k by die press molding machine.
Preforming was performed at a pressure of g / cm 2 . Next, it was consolidated at a pressure of 4 t / cm 2 by a cold isostatic press molding machine and then sintered at 1300 ° C. for 5 hours to obtain a sintered body.

【0064】このようにして得られた焼結体はIn2
3 (ZnO)3 の六方晶層状化合物からなるターゲット
Iであることが確認され、その組成および粒径は実質的
に均一であった。また、この焼結体の密度は95%であ
った。
The sintered body thus obtained was In 2 O
It was confirmed that the target I was a hexagonal layered compound of 3 (ZnO) 3 , and its composition and particle size were substantially uniform. The density of this sintered body was 95%.

【0065】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いて、以下の要領で透明導電膜を製造した。
(2) Production of transparent conductive film Using the sintered body obtained in (1) above as a sputtering target, a transparent conductive film was produced in the following procedure.

【0066】まず、基板(厚さ125μmのガラス板)
をマグネトロン高速スパッタ装置に装着し、真空槽内を
1×10-6torr以下まで減圧した。この後、アルゴ
ンガスと酸素ガスとの混合ガスを真空圧2×10-3to
rrまで導入し、ターゲット印加電圧430V、基板温
度280℃の条件でスパッタリングを行い、膜厚200
nmの透明導電膜を成膜した。
First, a substrate (a glass plate having a thickness of 125 μm)
Was attached to a magnetron high-speed sputtering apparatus, and the pressure inside the vacuum chamber was reduced to 1 × 10 −6 torr or less. After that, a mixed gas of argon gas and oxygen gas is applied at a vacuum pressure of 2 × 10 −3 to.
rr is introduced, sputtering is performed under the conditions of a target applied voltage of 430 V and a substrate temperature of 280 ° C., and a film thickness of 200
nm transparent conductive film was formed.

【0067】このようにして得られた透明導電膜の表面
抵抗は150Ω/□であり、可視光透過率は82%であ
った。また、40℃、90%RHの条件での耐湿性試験
1000時間後でも表面抵抗は159Ω/□と低く、得
られた透明導電膜は耐湿性に優れていることが確認され
た。
The surface resistance of the transparent conductive film thus obtained was 150 Ω / □, and the visible light transmittance was 82%. Further, the surface resistance was as low as 159 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0068】実施例2 (1)ターゲットIの製造 まず、硝酸インジウム50.69gと硝酸亜鉛106.
24gとを1リットルのイオン交換水に溶解させて、イ
ンジウム塩と亜鉛塩とが溶解した水溶液を調製し、この
水溶液と実施例1(1)と同様にして調製したアルカリ
性水溶液とを実施例1(1)と同様にして反応させて、
スラリーを得た。なお、この反応系における金属(In
およびZn)濃度は0.3 mol/リットルであった。
Example 2 (1) Production of Target I First, 50.69 g of indium nitrate and 106.
24 g was dissolved in 1 liter of ion-exchanged water to prepare an aqueous solution in which an indium salt and a zinc salt were dissolved, and this aqueous solution and an alkaline aqueous solution prepared in the same manner as in Example 1 (1) were used. React as in (1),
A slurry was obtained. In addition, the metal (In
And Zn) concentration was 0.3 mol / l.

【0069】次に、得られたスラリーを十分に水洗した
後、沈澱物を濾取した。そして、濾取した沈澱物を12
0℃で一晩乾燥した後、900℃で5時間焼成した。
Next, the obtained slurry was thoroughly washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration is used for 12
After drying overnight at 0 ° C., it was baked at 900 ° C. for 5 hours.

【0070】この後、得られた焼成物を実施例1(1)
と同様にして粉砕して、粉末を得た。 このようにして
得られた粉末についてX線回折測定を行ったところ、I
23 (ZnO)5 の六方晶層状化合物の生成が確認
され、その組成は実質的に均一であった。また、SEM
観察の結果、得られた粉末は平均粒子径が0.20μm
で、実質的に均一粒径であることが確認された。
Thereafter, the obtained fired product was used in Example 1 (1).
It was crushed in the same manner as above to obtain a powder. When X-ray diffraction measurement was performed on the powder thus obtained, I
Formation of a hexagonal layered compound of n 2 O 3 (ZnO) 5 was confirmed, and its composition was substantially uniform. Also, SEM
As a result of observation, the obtained powder has an average particle size of 0.20 μm.
It was confirmed that the particle size was substantially uniform.

【0071】また、得られた粉末の体積固体抵抗は70
0Ωcmであった。そして、この体積固体抵抗は、40
℃、90%RHの条件での耐湿性試験1000時間後で
も730Ωcmと低く、得られた粉末は耐湿性に優れて
いることが確認された。
The volume solid resistance of the obtained powder is 70.
It was 0 Ωcm. And this volume solid resistance is 40
Even after 1000 hours of humidity resistance test under conditions of ° C and 90% RH, it was as low as 730 Ωcm, and it was confirmed that the obtained powder had excellent humidity resistance.

【0072】次に、上記(1)で得られた粉末を実施例
1(1)と同様にして予備成型および圧密化した後、1
350℃で5時間焼結して、焼結体を得た。
Next, the powder obtained in (1) above was preformed and compacted in the same manner as in Example 1 (1), and then 1
It sintered at 350 degreeC for 5 hours, and obtained the sintered compact.

【0073】このようにして得られた焼結体はIn2
3 (ZnO)5 の六方晶層状化合物からなるターゲット
Iであることが確認され、その組成および粒径は実質的
に均一であった。また、この焼結体の密度は96%であ
った。
The sintered body thus obtained was made of In 2 O 3.
It was confirmed that the target I was a hexagonal layered compound of 3 (ZnO) 5 , and its composition and particle size were substantially uniform. The density of this sintered body was 96%.

【0074】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例1(2)と同様にして、膜
厚200nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a film thickness of 200 nm was formed in the same manner as in Example 1 (2) except that the sintered body obtained in (1) above was used as a sputtering target. Filmed

【0075】このようにして得られた透明導電膜の表面
抵抗は110Ω/□であり、可視光透過率は84.1%
であった。また、40℃、90%RHの条件での耐湿性
試験1000時間後でも表面抵抗は118Ω/□と低
く、得られた透明導電膜は耐湿性に優れていることが確
認された。
The transparent conductive film thus obtained had a surface resistance of 110 Ω / □ and a visible light transmittance of 84.1%.
Met. Further, the surface resistance was as low as 118Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0076】実施例3 (1)ターゲットIIの製造 実施例2(1)と同様にして、インジウムと亜鉛の金属
塩を溶解した水溶液を調製した後、これに更に塩化第二
錫7.2g(5原子%)を添加した。次にこの水溶液
と、実施例1(1)と同様にして調製したアルカリ性水
溶液とを実施例1(1)と同様にして反応させて、スラ
リーを得た。
Example 3 (1) Production of Target II In the same manner as in Example 2 (1), an aqueous solution in which a metal salt of indium and zinc was dissolved was prepared, and then 7.2 g of stannic chloride was added thereto ( 5 atomic%) was added. Next, this aqueous solution and an alkaline aqueous solution prepared in the same manner as in Example 1 (1) were reacted in the same manner as in Example 1 (1) to obtain a slurry.

【0077】次に、得られたスラリーを十分に水洗した
後、沈澱物を濾取した。そして、濾取した沈澱物を12
0℃で一晩乾燥した後、900℃で5時間焼成した。
Next, the resulting slurry was thoroughly washed with water and the precipitate was collected by filtration. Then, the precipitate collected by filtration is used for 12
After drying overnight at 0 ° C., it was baked at 900 ° C. for 5 hours.

【0078】この後、得られた焼成物を実施例1(1)
と同様にして粉砕して、粉末を得た。このようにして得
られた粉末のX線回折測定の結果、In2 3 (Zn
O)5の六方晶層状化合物が生成していることが確認さ
れた。粉末の体積固体抵抗は、330Ωcmであった。
そして、この体積固体抵抗は、40℃、90%RHの条
件での耐湿性試験1000時間後でも350Ωcmと低
く、得られた粉末は耐湿性に優れていることが確認され
た。
Thereafter, the obtained fired product was used in Example 1 (1).
It was crushed in the same manner as above to obtain a powder. As a result of X-ray diffraction measurement of the powder thus obtained, In 2 O 3 (Zn
It was confirmed that a hexagonal layered compound of O) 5 was produced. The volume solid resistance of the powder was 330 Ωcm.
The volume solid resistance was as low as 350 Ωcm even after 1000 hours of the humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained powder had excellent humidity resistance.

【0079】次に、上記(1)で得られた粉末を実施例
1(1)と同様にして予備成型及び圧密化した後、13
50℃で5時間焼結して、焼結体を得た。
Next, the powder obtained in (1) above was preformed and consolidated in the same manner as in Example 1 (1), and then 13
It sintered at 50 degreeC for 5 hours, and obtained the sintered compact.

【0080】このようにして得られた焼結体はIn2
3 (ZnO)5 の六方晶層状化合物からなるターゲット
IIであることが確認され、その組成及び粒径は実質的に
均一であった。また、この焼結体の密度は95%であっ
た。
The sintered body thus obtained was made of In 2 O 3.
Target composed of hexagonal layered compound of 3 (ZnO) 5
It was confirmed to be II, and its composition and particle size were substantially uniform. The density of this sintered body was 95%.

【0081】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は、実施例1(2)と同様にして、
膜厚200nmの透明導電膜を成膜した。
(2) Production of transparent conductive film The procedure of Example 1 (2) was repeated except that the sintered body obtained in (1) above was used as a sputtering target.
A transparent conductive film having a film thickness of 200 nm was formed.

【0082】このようにして得られた透明導電膜の表面
抵抗は70Ω/□であり、可視光透過率は85.0%で
あった。また、40℃、90%RHの条件での耐湿性試
験1000時間後でも表面抵抗は75Ω/□と低く、得
られた透明導電膜は耐湿性に優れていることが確認され
た。
The transparent conductive film thus obtained had a surface resistance of 70 Ω / □ and a visible light transmittance of 85.0%. Moreover, the surface resistance was low at 75Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0083】実施例4 (1)ターゲットIの製造 酸化インジウム278gと酸化亜鉛326gを直径2m
mのアルミナボールとともに容積800ccのポリイミ
ド製のポットに入れ、エタノールを加えて遊星ボールミ
ルで100時間粉砕混合した。その後1000℃で5時
間仮焼し、更に遊星ボールミルで24時間粉砕混合し
た。
Example 4 (1) Manufacture of Target I 278 g of indium oxide and 326 g of zinc oxide were used and the diameter was 2 m.
m alumina balls were placed in a polyimide pot having a volume of 800 cc, ethanol was added, and the mixture was pulverized and mixed for 100 hours in a planetary ball mill. Thereafter, the mixture was calcined at 1000 ° C. for 5 hours, and further pulverized and mixed by a planetary ball mill for 24 hours.

【0084】この粉末を直径4インチの金型に装入し、
100kg/cm2 の圧力で金型プレス成型機にて予備
成型を行なった。その後、冷間静水圧プレス成型機にて
4t/cm2 の圧力で圧密化し、熱間静水圧プレスにて
1000kgf/cm2 、1300℃で3時間焼成し焼
結体を得た。得られた焼結体はX線回折測定結果、In
2 3 (ZnO)4 の六方晶層状化合物であることが確
認された。
This powder was placed in a mold having a diameter of 4 inches,
Pre-molding was performed with a die press molding machine at a pressure of 100 kg / cm 2 . Then, it was consolidated by a cold isostatic press molding machine at a pressure of 4 t / cm 2 , and fired at 1000 kgf / cm 2 and 1300 ° C. for 3 hours by a hot isostatic press to obtain a sintered body. The obtained sintered body was measured by X-ray diffraction and In
It was confirmed to be a hexagonal layered compound of 2 O 3 (ZnO) 4 .

【0085】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、セイコー電子工業
社製のSPS−1500VRを用いたICP分析(誘導
結合プラズマ発光分光分析)の結果0.33であった。
また、焼結体の相対密度は88%であった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.33 as a result of ICP analysis (inductively coupled plasma emission spectroscopic analysis) using SPS-1500VR manufactured by Seiko Instruments Inc.
The relative density of the sintered body was 88%.

【0086】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いて、以下の要領で透明導電膜を製造した。
(2) Production of transparent conductive film Using the sintered body obtained in (1) above as a sputtering target, a transparent conductive film was produced in the following procedure.

【0087】まず、基板(厚さ1.1mmのガラス板)
をRFマグネトロンスパッタ装置に装着し、真空槽内を
5×10-4Pa以下まで減圧した。この後、アルゴンガ
スを真空圧3×10-1Paまで導入し、出力100W、
基板温度200℃の条件でスパッタリングを行い、膜厚
200nmの透明導電膜を成膜した。
First, the substrate (1.1 mm thick glass plate)
Was attached to an RF magnetron sputtering device, and the inside of the vacuum chamber was depressurized to 5 × 10 −4 Pa or less. Then, argon gas was introduced up to a vacuum pressure of 3 × 10 −1 Pa, and an output of 100 W,
Sputtering was performed at a substrate temperature of 200 ° C. to form a transparent conductive film having a film thickness of 200 nm.

【0088】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.40であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.40.

【0089】このようにして得られた透明導電膜の表面
抵抗は120Ω/□であり、可視光透過率は83.8%
であった。また、40℃、90%RHの条件での耐湿性
試験1000時間後でも表面抵抗は128Ω/□と低
く、得られた透明導電膜は、耐湿性に優れていることが
確認された。
The transparent conductive film thus obtained had a surface resistance of 120 Ω / □ and a visible light transmittance of 83.8%.
Met. Further, the surface resistance was as low as 128Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0090】実施例5 (1)ターゲットIの製造 酸化インジウム175gと酸化亜鉛100gを直径2m
mのアルミナボールとともに容積800ccのポリイミ
ド製のポットに入れ、エタノールを加えて遊星ボールミ
ルで100時間粉砕混合した。その後1000℃で5時
間仮焼し、更に遊星ボールミルで24時間粉砕混合し
た。
Example 5 (1) Production of Target I 175 g of indium oxide and 100 g of zinc oxide were used and the diameter was 2 m.
m alumina balls were placed in a polyimide pot having a volume of 800 cc, ethanol was added, and the mixture was pulverized and mixed for 100 hours in a planetary ball mill. Thereafter, the mixture was calcined at 1000 ° C. for 5 hours, and further pulverized and mixed by a planetary ball mill for 24 hours.

【0091】この粉末を直径4インチの金型に装入し、
100kg/cm2 の圧力で金型プレス成型機にて予備
成型を行なった。その後、冷間静水圧プレス成型機にて
4t/cm2 の圧力で圧密化し、熱間静水圧プレスにて
1500kgf/cm2 、1450℃で3時間焼成し焼
結体を得た。得られた焼結体はX線回折測定結果、In
2 3 (ZnO)5 の六方晶層状化合物とIn2 3
の混合物であることが確認された。
This powder was placed in a mold having a diameter of 4 inches,
Pre-molding was performed with a die press molding machine at a pressure of 100 kg / cm 2 . Then, it was consolidated with a pressure of 4 t / cm 2 by a cold isostatic press molding machine, and fired by a hot isostatic press at 1500 kgf / cm 2 and 1450 ° C. for 3 hours to obtain a sintered body. The obtained sintered body was measured by X-ray diffraction and In
It was confirmed to be a mixture of a hexagonal layered compound of 2 O 3 (ZnO) 5 and In 2 O 3 .

【0092】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析(誘導
結合プラズマ発光分光分析)の結果0.50であった。
また、焼結体の相対密度は93%であった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.50 as a result of ICP analysis (ICP-AES).
The relative density of the sintered body was 93%.

【0093】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例4(2)と同様にして、膜
厚200nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a film thickness of 200 nm was formed in the same manner as in Example 4 (2) except that the sintered body obtained in (1) above was used as a sputtering target. Filmed

【0094】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.56であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.56.

【0095】このようにして得られた透明導電膜の表面
抵抗は25.4Ω/□であり、可視光透過率は84.6
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は26.8Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained had a surface resistance of 25.4 Ω / □ and a visible light transmittance of 84.6.
%Met. Further, the surface resistance was as low as 26.8 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0096】実施例6 (1)ターゲットIの製造 酸化インジウム300gと酸化亜鉛80gを用いた他
は、実施例5(1)と同様に粉砕混合、仮焼、成型、焼
結を行った。得られた焼結体はX線回折測定結果、In
2 3 (ZnO)3 の六方晶層状化合物とIn2 3
の混合物であることが確認された。
Example 6 (1) Manufacture of Target I The same procedures as in Example 5 (1) except that 300 g of indium oxide and 80 g of zinc oxide were used were pulverized and mixed, calcined, molded and sintered. The obtained sintered body was measured by X-ray diffraction and In
It was confirmed to be a mixture of a hexagonal layered compound of 2 O 3 (ZnO) 3 and In 2 O 3 .

【0097】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.67であった。また、焼結体の相対密度は92
%であった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.67 as a result of ICP analysis. The relative density of the sintered body is 92
%Met.

【0098】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いて、以下の要領で透明導電膜を製造した。
(2) Production of transparent conductive film Using the sintered body obtained in (1) above as a sputtering target, a transparent conductive film was produced in the following procedure.

【0099】まず、透明高分子フィルム(厚さ125μ
m、2軸延伸ポリエステルフィルム)をRFマグネトロ
ンスパッタ装置に装着し、真空槽内を5×10-4Pa以
下まで減圧した。この後、アルゴンガス(純度99.9
9%)と酸素ガス(純度99.99%)との混合ガスを
真空圧3×10-1Paまで導入し、出力100W、基板
温度20℃の条件でスパッタリングを行い、膜厚200
nmの透明導電膜を透明高分子フィルム上に成膜した。
First, a transparent polymer film (thickness 125 μm
m biaxially stretched polyester film) was attached to an RF magnetron sputtering apparatus, and the pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa or less. After this, argon gas (purity 99.9
A mixed gas of 9%) and oxygen gas (purity 99.99%) was introduced up to a vacuum pressure of 3 × 10 −1 Pa, sputtering was performed under the conditions of an output of 100 W and a substrate temperature of 20 ° C., and a film thickness of 200
nm transparent conductive film was formed on the transparent polymer film.

【0100】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.70であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.70.

【0101】このようにして得られた透明導電膜の表面
抵抗は21.0Ω/□であり、可視光透過率は83.5
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は22.5Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained had a surface resistance of 21.0 Ω / □ and a visible light transmittance of 83.5.
%Met. Further, the surface resistance was as low as 22.5 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0102】実施例7 (1)ターゲットIの製造 酸化インジウム278gと酸化亜鉛52gを用いた他
は、実施例5(1)と同様に粉砕混合、仮焼、成型、焼
結を行った。得られた焼結体はX線回折測定結果、In
2 3 (ZnO)3 の六方晶層状化合物とIn2 3
の混合物であることが確認された。
Example 7 (1) Manufacture of Target I In the same manner as in Example 5 (1) except that 278 g of indium oxide and 52 g of zinc oxide were used, pulverization and mixing, calcination, molding and sintering were performed. The obtained sintered body was measured by X-ray diffraction and In
It was confirmed to be a mixture of a hexagonal layered compound of 2 O 3 (ZnO) 3 and In 2 O 3 .

【0103】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.75であった。また、焼結体の相対密度は96
%であった。
I in the sintered body thus obtained
The atomic ratio In / (In + Zn) of n was 0.75 as a result of ICP analysis. The relative density of the sintered body is 96
%Met.

【0104】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例6(2)と同様にして膜厚
200nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a film thickness of 200 nm was formed in the same manner as in Example 6 (2) except that the sintered body obtained in (1) above was used as a sputtering target. did.

【0105】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.81であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.81.

【0106】このようにして得られた透明導電膜の表面
抵抗は19.3Ω/□であり、可視光透過率は83.4
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は20.8Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained has a surface resistance of 19.3 Ω / □ and a visible light transmittance of 83.4.
%Met. Further, the surface resistance was as low as 20.8 Ω / □ even after 1000 hours of the humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0107】実施例8 (1)ターゲットIの製造 酸化インジウム278gと酸化亜鉛38gを用いた他
は、実施例5(1)と同様に粉砕混合、仮焼、成型、焼
結を行った。得られた焼結体はX線回折測定結果、In
2 3 (ZnO)3 の六方晶層状化合物とIn2 3
の混合物であることが確認された。
Example 8 (1) Manufacture of Target I [0107] Grinding and mixing, calcination, molding and sintering were performed in the same manner as in Example 5 (1) except that 278 g of indium oxide and 38 g of zinc oxide were used. The obtained sintered body was measured by X-ray diffraction and In
It was confirmed to be a mixture of a hexagonal layered compound of 2 O 3 (ZnO) 3 and In 2 O 3 .

【0108】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.80であった。また、焼結体の相対密度は95
%であった。
I in the sintered body thus obtained
The atomic ratio In / (In + Zn) of n was 0.80 as a result of ICP analysis. The relative density of the sintered body is 95
%Met.

【0109】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用い、透明高分子フィルムとしてポリカーボネ
ートを用いた以外は実施例6(2)と同様にして、膜厚
200nmの透明導電膜を成膜した。
(2) Production of Transparent Conductive Film The procedure of Example 6 (2) was repeated except that the sintered body obtained in (1) above was used as the sputtering target and polycarbonate was used as the transparent polymer film. A transparent conductive film having a film thickness of 200 nm was formed.

【0110】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.85であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.85.

【0111】このようにして得られた透明導電膜の表面
抵抗は19.0Ω/□であり、可視光透過率は82.4
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は20.1Ω/□と
低く、得られた透明導電膜は耐湿性に優れていることが
確認された。
The transparent conductive film thus obtained had a surface resistance of 19.0 Ω / □ and a visible light transmittance of 82.4.
%Met. Moreover, the surface resistance was as low as 20.1 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0112】実施例9 (1)ターゲットIの製造 酸化インジウム278gと酸化亜鉛38gを用いた他
は、実施例5(1)と同様に粉砕混合、仮焼、成型を行
い、熱間静水圧プレスにて1000kgf/cm2 、1
200℃で3時間焼結を行なった。得られた焼結体はX
線回折測定結果、In2 3 (ZnO)5 の六方晶層状
化合物とIn2 3 との混合物であることが確認され
た。
Example 9 (1) Production of Target I Hot milling was carried out by crushing, mixing, calcining and molding in the same manner as in Example 5 (1) except that 278 g of indium oxide and 38 g of zinc oxide were used. At 1000 kgf / cm 2 , 1
Sintering was performed at 200 ° C. for 3 hours. The obtained sintered body is X
As a result of line diffraction measurement, it was confirmed to be a mixture of a hexagonal layered compound of In 2 O 3 (ZnO) 5 and In 2 O 3 .

【0113】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.80であった。また、焼結体の相対密度は82
%であった。
I in the sintered body thus obtained
The atomic ratio In / (In + Zn) of n was 0.80 as a result of ICP analysis. The relative density of the sintered body is 82
%Met.

【0114】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例6(2)と同様にして膜厚
180nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a film thickness of 180 nm was formed in the same manner as in Example 6 (2) except that the sintered body obtained in (1) above was used as the sputtering target. did.

【0115】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.85であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.85.

【0116】このようにして得られた透明導電膜の表面
抵抗は21.2Ω/□であり、可視光透過率は82.7
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は22.0Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained had a surface resistance of 21.2 Ω / □ and a visible light transmittance of 82.7.
%Met. Moreover, the surface resistance was as low as 22.0 Ω / □ even after 1000 hours of the humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0117】実施例10 (1)ターゲットIの製造 酸化インジウム278gと酸化亜鉛27.5gを用いた
他は、実施例5(1)と同様に粉砕混合、仮焼、成型、
焼結を行った。得られた焼結体はX線回折測定結果、I
2 3 (ZnO)3 の六方晶層状化合物とIn2 3
との混合物であることが確認された。
Example 10 (1) Manufacture of Target I In the same manner as in Example 5 (1) except that 278 g of indium oxide and 27.5 g of zinc oxide were used, pulverization and mixing, calcination, molding,
Sintering was performed. The obtained sintered body was measured by X-ray diffraction, and I
Hexagonal layered compound of n 2 O 3 (ZnO) 3 and In 2 O 3
It was confirmed to be a mixture with.

【0118】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.85であった。また、焼結体の相対密度は95
%であった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.85 as a result of ICP analysis. The relative density of the sintered body is 95
%Met.

【0119】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例6(2)と同様にして膜厚
220nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a thickness of 220 nm was formed in the same manner as in Example 6 (2) except that the sintered body obtained in (1) above was used as a sputtering target. did.

【0120】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.89であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.89.

【0121】このようにして得られた透明導電膜の表面
抵抗は15.6Ω/□であり、可視光透過率は82.5
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は16.0Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained had a surface resistance of 15.6 Ω / □ and a visible light transmittance of 82.5.
%Met. In addition, the surface resistance was as low as 16.0 Ω / □ even after 1000 hours of the humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0122】実施例11 (1)ターゲットIの製造 塩化インジウム4水和物435g、酢酸亜鉛2水和物5
0.3gをメトキシエタノール2.5リットルに溶解し
て溶液Aを得た。
Example 11 (1) Production of Target I Indium chloride tetrahydrate 435 g, zinc acetate dihydrate 5
Solution A was obtained by dissolving 0.3 g in 2.5 liters of methoxyethanol.

【0123】一方、しゅう酸2水和物250gをエタノ
ール2.5リットルに溶解して溶液Bを得た。
On the other hand, 250 g of oxalic acid dihydrate was dissolved in 2.5 liter of ethanol to obtain a solution B.

【0124】室温下、容器にエタノール0.5リットル
を入れて撹拌しておき、そこへ同じ流量に制御した溶液
AとBを同時に滴下した。滴下終了後、温度を40℃に
上げて沈澱物を4時間熟成した。その後、沈澱物を濾過
し、エタノールで洗浄し、110℃で12時間乾燥し、
更に、700℃で5時間焼成した。直径2mmのアルミ
ナボールとともに容積800ccのポリイミド製のポッ
トに入れ、エタノールを加えて遊星ボールミルで100
時間粉砕混合した。その後1000℃で5時間仮焼し、
更に遊星ボールミルで24時間粉砕混合した。
At room temperature, 0.5 liter of ethanol was placed in a container and stirred, and solutions A and B controlled to the same flow rate were simultaneously added dropwise thereto. After the dropping was completed, the temperature was raised to 40 ° C. and the precipitate was aged for 4 hours. Then the precipitate was filtered, washed with ethanol and dried at 110 ° C. for 12 hours,
Further, it was baked at 700 ° C. for 5 hours. Alumina balls with a diameter of 2 mm are put in a polyimide pot with a volume of 800 cc, ethanol is added, and a planetary ball mill is used for 100
Milled and mixed for hours. Then calcination at 1000 ℃ for 5 hours,
Further, the mixture was pulverized and mixed with a planetary ball mill for 24 hours.

【0125】この粉末を直径4インチの金型に装入し、
100kg/cm2 の圧力で金型プレス成型機にて予備
成型を行った。その後、冷間静水圧プレス成型機にて4
t/cm2 の圧力で圧密化し、熱間静水圧プレスにて、
1500kgf/cm2 、1450℃で3時間焼成し焼
結体を得た。得られた焼結体のX線回折測定の結果、I
2 3 (ZnO)4 の六方晶層状化合物とIn2 3
との混合物であることが確認された。
This powder was placed in a mold having a diameter of 4 inches,
Pre-molding was performed with a die press molding machine at a pressure of 100 kg / cm 2 . Then, cold isostatic press molding machine 4
Consolidate at a pressure of t / cm 2 and press with a hot isostatic press.
It was fired at 1500 kgf / cm 2 and 1450 ° C. for 3 hours to obtain a sintered body. As a result of X-ray diffraction measurement of the obtained sintered body, I
Hexagonal layered compound of n 2 O 3 (ZnO) 4 and In 2 O 3
It was confirmed to be a mixture with.

【0126】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.85であった。また、焼結体の相対密度は95
%であった。
I in the sintered body thus obtained
The atomic ratio In / (In + Zn) of n was 0.85 as a result of ICP analysis. The relative density of the sintered body is 95
%Met.

【0127】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例6(2)と同様にして膜厚
220nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a thickness of 220 nm was formed in the same manner as in Example 6 (2) except that the sintered body obtained in (1) above was used as the sputtering target. did.

【0128】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.89であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.89.

【0129】このようにして得られた透明導電膜の表面
抵抗は16.0Ω/□であり、可視光透過率は82.4
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は16.4Ω/□と
低く、得られた透明導電膜は耐湿性に優れていることが
確認された。
The transparent conductive film thus obtained had a surface resistance of 16.0 Ω / □ and a visible light transmittance of 82.4.
%Met. Further, the surface resistance was as low as 16.4 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0130】実施例12 (1)ターゲットIIの製造 ドープ元素としてSnを5原子%添加した以外は、実施
例10(1)と同様に粉砕混合、仮焼、成型、焼結を行
なった。得られた焼結体はX線回折測定結果、In2
3 (ZnO)3 の六方晶層状化合物とIn2 3 との混
合物であることが確認された。
Example 12 (1) Manufacture of Target II The same pulverization and mixing, calcination, molding and sintering were carried out as in Example 10 (1) except that 5 atom% of Sn was added as a doping element. The obtained sintered body was In 2 O
It was confirmed to be a mixture of a hexagonal layered compound of 3 (ZnO) 3 and In 2 O 3 .

【0131】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結
果、0.85であった。また、Snの原子比Sn/(I
n+Zn+Sn)は0.05であった。また、焼結体の
相対密度は92%であった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.85 as a result of ICP analysis. Further, the atomic ratio of Sn is Sn / (I
n + Zn + Sn) was 0.05. The relative density of the sintered body was 92%.

【0132】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用いた以外は実施例6(2)と同様にして膜厚
230nmの透明導電膜を成膜した。
(2) Production of transparent conductive film A transparent conductive film having a film thickness of 230 nm was formed in the same manner as in Example 6 (2) except that the sintered body obtained in (1) above was used as a sputtering target. did.

【0133】このようにして得られた透明導電膜は、X
線回折測定の結果、非晶質であることが確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.89であった。
The transparent conductive film thus obtained is X
As a result of line diffraction measurement, it was confirmed to be amorphous. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.89.

【0134】このようにして得られた透明導電膜の表面
抵抗は14.3Ω/□であり、可視光透過率は83.0
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後でも表面抵抗は14.9Ω/□と
低く、得られた透明導電膜は、耐湿性に優れていること
が確認された。
The transparent conductive film thus obtained had a surface resistance of 14.3 Ω / □ and a visible light transmittance of 83.0.
%Met. Further, the surface resistance was as low as 14.9 Ω / □ even after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and it was confirmed that the obtained transparent conductive film had excellent humidity resistance.

【0135】比較例1 (1)ターゲットの製造 酸化インジウム278gと酸化亜鉛11gを用いた他
は、実施例5(1)と同様に粉砕混合、仮焼、焼結を行
なった。得られた焼結体はX線回折測定結果、In2
3 であることが確認された。
Comparative Example 1 (1) Production of Target In the same manner as in Example 5 (1) except that 278 g of indium oxide and 11 g of zinc oxide were used, pulverization and mixing, calcination and sintering were performed. The obtained sintered body was In 2 O
It was confirmed to be 3 .

【0136】このようにして得られた焼結体におけるI
nの原子比In/(In+Zn)は、ICP分析の結果
0.93であった。また、焼結体の相対密度は90%で
あった。
I in the thus obtained sintered body
The atomic ratio In / (In + Zn) of n was 0.93 as a result of ICP analysis. The relative density of the sintered body was 90%.

【0137】(2)透明導電膜の製造 上記(1)で得られた焼結体をスパッタリングターゲッ
トとして用い、基板温度を80℃にした以外は、実施例
6(2)と同様にして、膜厚200nmの透明導電膜を
成膜した。
(2) Production of transparent conductive film A film was formed in the same manner as in Example 6 (2), except that the sintered body obtained in (1) above was used as a sputtering target and the substrate temperature was set to 80 ° C. A transparent conductive film having a thickness of 200 nm was formed.

【0138】このようにして得られた透明導電膜は、X
線回折測定の結果、In2 3 の結晶が確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)はICP分析の結果、0.97であった。
The transparent conductive film thus obtained is X
As a result of the line diffraction measurement, crystals of In 2 O 3 were confirmed. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.97.

【0139】このようにして得られた透明導電膜の表面
抵抗は210.0Ω/□であり、可視光透過率は81.
8%であった。また、40℃、90%RHの条件での耐
湿性試験1000時間後には表面抵抗は380Ω/□と
なり、得られた透明導電膜は化学的安定性に欠けてい
た。
The surface resistance of the transparent conductive film thus obtained was 210.0 Ω / □, and the visible light transmittance was 81.
It was 8%. Further, the surface resistance was 380 Ω / □ after 1000 hours of the humidity resistance test under the conditions of 40 ° C. and 90% RH, and the obtained transparent conductive film lacked chemical stability.

【0140】比較例2 比較例1(1)の焼結体をスパッタリングターゲットと
して用いた他は、実施例4(2)と同様にして、膜厚2
00nmの透明導電膜を成膜した。
Comparative Example 2 A film having a film thickness of 2 was formed in the same manner as in Example 4 (2) except that the sintered body of Comparative Example 1 (1) was used as a sputtering target.
A transparent conductive film having a thickness of 00 nm was formed.

【0141】このようにして得られた透明導電膜は、X
線回折測定の結果、In2 3 の結晶が確認された。ま
た、この透明導電膜におけるInの原子比In/(In
+Zn)は、ICP分析の結果、0.97であった。
The transparent conductive film thus obtained is X
As a result of the line diffraction measurement, crystals of In 2 O 3 were confirmed. Further, the atomic ratio of In in the transparent conductive film In / (In
As a result of ICP analysis, + Zn) was 0.97.

【0142】このようにして得られた透明導電膜の表面
抵抗は1100.0Ω/□であり、可視光透過率は8
2.5%であった。また、40℃、90%RHの条件で
の耐湿性試験1000時間後には表面抵抗は1300Ω
/□となり、得られた透明導電膜は化学的安定性に欠け
ていた。
The transparent conductive film thus obtained had a surface resistance of 1100.0 Ω / □ and a visible light transmittance of 8
It was 2.5%. Further, the surface resistance is 1300Ω after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH.
/, And the obtained transparent conductive film lacked chemical stability.

【0143】比較例3 Snを10原子%添加したITOをターゲットとして用
いた他は、実施例6(2)と同様にして、膜厚200n
mの透明導電膜を成膜した。
Comparative Example 3 A film thickness of 200 n was obtained in the same manner as in Example 6 (2) except that ITO containing 10 atomic% of Sn was used as a target.
m transparent conductive film was formed.

【0144】このようにして得られた透明導電膜は、X
線回折測定の結果、In2 3 の結晶が確認された。
The transparent conductive film thus obtained is X
As a result of the line diffraction measurement, crystals of In 2 O 3 were confirmed.

【0145】このようにして得られた透明導電膜の表面
抵抗は28.0Ω/□であり、可視光透過率は82.6
%であった。また、40℃、90%RHの条件での耐湿
性試験1000時間後には表面抵抗は56.2Ω/□と
なり、得られた透明導電膜は化学的安定性に欠けてい
た。
The transparent conductive film thus obtained had a surface resistance of 28.0 Ω / □ and a visible light transmittance of 82.6.
%Met. Further, the surface resistance was 56.2 Ω / □ after 1000 hours of humidity resistance test under the conditions of 40 ° C. and 90% RH, and the obtained transparent conductive film lacked chemical stability.

【0146】[0146]

【発明の効果】以上説明したように、本発明によれば、
ITO膜よりも耐湿性に優れるとともにITO膜と同等
の導電性および光透過率を有する透明導電膜を得るため
のターゲットおよびその製造方法が提供された。
As described above, according to the present invention,
A target and a method for manufacturing the same have been provided for obtaining a transparent conductive film that is superior in moisture resistance to an ITO film and has conductivity and light transmittance equivalent to those of an ITO film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 InとZnを主成分とし、一般式In2
3 (ZnO)m (m=2〜20)で表される六方晶層
状化合物を含む酸化物の焼結体からなることを特徴とす
るターゲット。
1. A general formula In 2 containing In and Zn as main components.
A target comprising an oxide sintered body containing a hexagonal layered compound represented by O 3 (ZnO) m (m = 2 to 20).
【請求項2】 請求項1に記載の六方晶層状化合物が、
正三価以上の原子価を有する元素の少なくとも1種を、
六方晶層状化合物を形成する全カチオン元素の合量に対
して20原子%以下でドープしたものであることを特徴
とするターゲット。
2. The hexagonal layered compound according to claim 1,
At least one element having a valence of positive trivalence or more,
A target which is doped at 20 atomic% or less based on the total amount of all cationic elements forming a hexagonal layered compound.
【請求項3】 InとZnの原子比[In/(In+Z
n)]が0.2〜0.85である請求項1または2に記
載のターゲット。
3. An atomic ratio of In and Zn [In / (In + Z
n)] is 0.2 to 0.85, The target according to claim 1 or 2.
【請求項4】 インジウム化合物と亜鉛化合物とを混合
する工程と、前記工程で得られた混合物を仮焼する工程
と、前記工程で得られた仮焼物を成型し焼結して、In
とZnを主成分とし、一般式In2 3 (ZnO)
m (m=2〜20)で表される六方晶層状化合物を含む
焼結体を得る工程とを含むことを特徴とするターゲット
の製造方法。
4. A step of mixing an indium compound and a zinc compound, a step of calcining the mixture obtained in the step, and a step of molding and sintering the calcined material obtained in the step
And Zn as main components, and has the general formula In 2 O 3 (ZnO)
and a step of obtaining a sintered body containing the hexagonal layered compound represented by m (m = 2 to 20).
【請求項5】 インジウム化合物と亜鉛化合物に、正三
価以上の原子価を有する元素の少なくとも1種を加えて
混合する工程と、前記工程で得られた混合物を仮焼する
工程と、前記工程で得られた仮焼物を成型し焼結して、
InとZnを主成分とし、一般式In2 3 (ZnO)
m (m=2〜20)で表される六方晶層状化合物に、正
三価以上の原子価を有する元素の少なくとも1種を全カ
チオン元素の合量に対して20原子%以下でドープした
化合物を含む焼結体を得る工程とを含むことを特徴とす
るターゲットの製造方法。
5. A step of adding at least one element having a valence of at least positive trivalence to an indium compound and a zinc compound and mixing, a step of calcining the mixture obtained in the step, and a step of The obtained calcined product is molded and sintered,
The main component is In and Zn, and the general formula is In 2 O 3 (ZnO).
A compound obtained by doping a hexagonal layered compound represented by m (m = 2 to 20) with at least one element having a valence of at least positive trivalence at 20 atom% or less based on the total amount of all cationic elements. And a step of obtaining a sintered body containing the target.
JP5315084A 1992-12-15 1993-12-15 Target and manufacturing method thereof Expired - Lifetime JP2695605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315084A JP2695605B2 (en) 1992-12-15 1993-12-15 Target and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33474592 1992-12-15
JP4-334745 1992-12-15
JP5315084A JP2695605B2 (en) 1992-12-15 1993-12-15 Target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06234565A true JPH06234565A (en) 1994-08-23
JP2695605B2 JP2695605B2 (en) 1998-01-14

Family

ID=26568174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315084A Expired - Lifetime JP2695605B2 (en) 1992-12-15 1993-12-15 Target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2695605B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669830B1 (en) 1999-11-25 2003-12-30 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and process for producing the sputtering target
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
US6998070B2 (en) 2001-07-17 2006-02-14 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
JPWO2004079038A1 (en) * 2003-03-04 2006-06-08 株式会社日鉱マテリアルズ Sputtering target, thin film for optical information recording medium, and manufacturing method thereof
JP2007009284A (en) * 2005-06-30 2007-01-18 Idemitsu Kosan Co Ltd Method for manufacturing sintered compact target of indium oxide-zinc oxide
JP2007056352A (en) * 2005-08-26 2007-03-08 Hakusui Tech Co Ltd Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film
WO2007069415A1 (en) 2005-12-13 2007-06-21 Idemitsu Kosan Co., Ltd. Sintered body for vacuum vapor deposition
JP2007254282A (en) * 1995-04-18 2007-10-04 Tosoh Corp Process of preparing sintered ito compact
JP2008013653A (en) * 2006-07-05 2008-01-24 Nissha Printing Co Ltd Ink for forming transparent conductive film and its manufacturing method
WO2008078486A1 (en) * 2006-12-25 2008-07-03 Idemitsu Kosan Co., Ltd. Method for producing transparent conductive film
US7648657B2 (en) 2005-07-15 2010-01-19 Idemitsu Kosan Co., Ltd. In Sm oxide sputtering target
WO2010024034A1 (en) * 2008-08-27 2010-03-04 出光興産株式会社 Sputtering target and oxide semiconductor thin film formed therefrom
JP2011098855A (en) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd Indium oxide-zinc oxide-based sintered compact target and method of manufacturing the same
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8038911B2 (en) 2006-08-10 2011-10-18 Idemitsu Kosan Co., Ltd. Lanthanoid-containing oxide target
US8153033B2 (en) 2005-03-09 2012-04-10 Idemitsu Kosan Co., Ltd. Amorphous transparent conductive film, target and production method for amorphous conductive film
US8304359B2 (en) 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
US8383019B2 (en) 2005-09-20 2013-02-26 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8524123B2 (en) 2005-09-01 2013-09-03 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8637124B2 (en) 2005-09-22 2014-01-28 Idemitsu Kosan Co., Ltd. Oxide material and sputtering target
US8641930B2 (en) 2009-11-19 2014-02-04 Idemitsu Kosan Co., Ltd. In—Ga—Zn type oxide sputtering target
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same
US8784699B2 (en) 2009-11-19 2014-07-22 Idemitsu Kosan Co., Ltd. In-Ga-Zn-type oxide, oxide sintered body, and sputtering target
JPWO2014112368A1 (en) * 2013-01-15 2017-01-19 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and manufacturing method thereof
KR20190062155A (en) 2017-11-27 2019-06-05 제이엑스금속주식회사 Izo target and manufacturing method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100476017C (en) 2003-03-04 2009-04-08 日矿金属株式会社 Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
CN101208451B (en) 2005-06-23 2010-06-16 日矿金属株式会社 Sputtering target and thin film for optical information recording medium
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157618A (en) * 1985-09-18 1987-07-13 セイコーエプソン株式会社 Manufacture of transparent conductive film
JPH0350148A (en) * 1989-07-19 1991-03-04 Tosoh Corp Zinc oxide sintered compact, production and its application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157618A (en) * 1985-09-18 1987-07-13 セイコーエプソン株式会社 Manufacture of transparent conductive film
JPH0350148A (en) * 1989-07-19 1991-03-04 Tosoh Corp Zinc oxide sintered compact, production and its application

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254282A (en) * 1995-04-18 2007-10-04 Tosoh Corp Process of preparing sintered ito compact
EP1752430A1 (en) 1999-11-25 2007-02-14 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and process for producing the sputtering target
US6669830B1 (en) 1999-11-25 2003-12-30 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and process for producing the sputtering target
US6998070B2 (en) 2001-07-17 2006-02-14 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
JP2009062618A (en) * 2003-03-04 2009-03-26 Nikko Kinzoku Kk Sputtering target, thin film for optical information recording medium, and process for producing the same
JPWO2004079038A1 (en) * 2003-03-04 2006-06-08 株式会社日鉱マテリアルズ Sputtering target, thin film for optical information recording medium, and manufacturing method thereof
JP4699504B2 (en) * 2003-03-04 2011-06-15 Jx日鉱日石金属株式会社 Sputtering target, thin film for optical information recording medium, and manufacturing method thereof
JP4611198B2 (en) * 2003-03-04 2011-01-12 Jx日鉱日石金属株式会社 Sputtering target for forming amorphous protective film for optical information recording medium, amorphous protective film for optical information recording medium, and manufacturing method thereof
JP2009080924A (en) * 2003-03-04 2009-04-16 Nikko Kinzoku Kk Sputtering target, thin film for optical information recording medium and process for producing the same
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
JP4628685B2 (en) * 2004-02-17 2011-02-09 Jx日鉱日石金属株式会社 Sputtering target for optical information recording medium and optical information recording medium
US8773628B2 (en) 2004-03-09 2014-07-08 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8507111B2 (en) 2004-03-09 2013-08-13 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8153033B2 (en) 2005-03-09 2012-04-10 Idemitsu Kosan Co., Ltd. Amorphous transparent conductive film, target and production method for amorphous conductive film
JP4504271B2 (en) * 2005-06-30 2010-07-14 出光興産株式会社 Method for producing indium oxide-zinc oxide sintered target
JP2007009284A (en) * 2005-06-30 2007-01-18 Idemitsu Kosan Co Ltd Method for manufacturing sintered compact target of indium oxide-zinc oxide
US7648657B2 (en) 2005-07-15 2010-01-19 Idemitsu Kosan Co., Ltd. In Sm oxide sputtering target
JP2007056352A (en) * 2005-08-26 2007-03-08 Hakusui Tech Co Ltd Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film
US8920683B2 (en) 2005-09-01 2014-12-30 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8524123B2 (en) 2005-09-01 2013-09-03 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US9202603B2 (en) 2005-09-20 2015-12-01 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8383019B2 (en) 2005-09-20 2013-02-26 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8637124B2 (en) 2005-09-22 2014-01-28 Idemitsu Kosan Co., Ltd. Oxide material and sputtering target
US8304359B2 (en) 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
WO2007069415A1 (en) 2005-12-13 2007-06-21 Idemitsu Kosan Co., Ltd. Sintered body for vacuum vapor deposition
JP2008013653A (en) * 2006-07-05 2008-01-24 Nissha Printing Co Ltd Ink for forming transparent conductive film and its manufacturing method
US8038911B2 (en) 2006-08-10 2011-10-18 Idemitsu Kosan Co., Ltd. Lanthanoid-containing oxide target
WO2008078486A1 (en) * 2006-12-25 2008-07-03 Idemitsu Kosan Co., Ltd. Method for producing transparent conductive film
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same
JPWO2010024034A1 (en) * 2008-08-27 2012-01-26 出光興産株式会社 Sputtering target and oxide semiconductor thin film comprising the same
JP5438011B2 (en) * 2008-08-27 2014-03-12 出光興産株式会社 Sputtering target and oxide semiconductor thin film comprising the same
WO2010024034A1 (en) * 2008-08-27 2010-03-04 出光興産株式会社 Sputtering target and oxide semiconductor thin film formed therefrom
JP2011098855A (en) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd Indium oxide-zinc oxide-based sintered compact target and method of manufacturing the same
US8641930B2 (en) 2009-11-19 2014-02-04 Idemitsu Kosan Co., Ltd. In—Ga—Zn type oxide sputtering target
US8784699B2 (en) 2009-11-19 2014-07-22 Idemitsu Kosan Co., Ltd. In-Ga-Zn-type oxide, oxide sintered body, and sputtering target
JPWO2014112368A1 (en) * 2013-01-15 2017-01-19 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and manufacturing method thereof
KR20190062155A (en) 2017-11-27 2019-06-05 제이엑스금속주식회사 Izo target and manufacturing method of the same

Also Published As

Publication number Publication date
JP2695605B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2695605B2 (en) Target and manufacturing method thereof
JP3179287B2 (en) Conductive transparent substrate and method for producing the same
EP0677593B1 (en) Transparent conductive film, transparent conductive base material, and conductive material
Hajizadeh-Oghaz et al. Synthesis and characterization of Y 2 O 3 nanoparticles by sol–gel process for transparent ceramics applications
JP3746094B2 (en) Target and manufacturing method thereof
TWI433823B (en) Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film
JP5089386B2 (en) In / Sm oxide sputtering target
WO2023098706A1 (en) Zinc-doped indium oxide powder, sputtering target material, and preparation methods therefor
JP2010018457A (en) Oxide sintered compact, and sputtering target composed of the same
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
US20100129286A1 (en) Methods of controlling the morphology of perovskite submicron-sized particles
EP2868631A1 (en) Zinc oxide powder and process for manufacturing same
TWI429776B (en) Tin oxide - Magnesium oxide sputtering target and transparent semiconductor film
WO2009128495A1 (en) Sputtering target
KR100891952B1 (en) Oxide-based target for transparent conductive film and method for manufacturing the same, and oxide-based transparent conductive film
JP3289335B2 (en) Method for producing indium oxide powder and ITO sintered body
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JPH06236710A (en) Conductive material and manufacture and manufacture thereof
JPH06234522A (en) Electrically conductive material and its production
JP3590646B2 (en) Conductive material and method of manufacturing the same
CN101223296A (en) In sm oxide sputtering target
CN115974137A (en) Zn-doped indium tin oxide powder and preparation method thereof
KR101514945B1 (en) Manufacturing method of gallium oxide nano particle using diethylene glycol and gallium oxide therefrom
JPH11302074A (en) Production of compound oxide sintered body
TW201434753A (en) ITO powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 16

EXPY Cancellation because of completion of term