JPH06231809A - Metallic air battery - Google Patents

Metallic air battery

Info

Publication number
JPH06231809A
JPH06231809A JP3413993A JP3413993A JPH06231809A JP H06231809 A JPH06231809 A JP H06231809A JP 3413993 A JP3413993 A JP 3413993A JP 3413993 A JP3413993 A JP 3413993A JP H06231809 A JPH06231809 A JP H06231809A
Authority
JP
Japan
Prior art keywords
air
fluorosilicone
battery
air battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3413993A
Other languages
Japanese (ja)
Inventor
Eiji Endo
栄治 遠藤
Yutaka Furukawa
豊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3413993A priority Critical patent/JPH06231809A/en
Publication of JPH06231809A publication Critical patent/JPH06231809A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/128

Abstract

PURPOSE:To selectively absorb oxygen in air and prevent the intrusion of water vapor and carbon dioxide gas to maintain battery high performance for a long time, by using cross-linked fluorosilicone for a water repellent layer forming the air electrode of a metallic air battery. CONSTITUTION:A metallic air battery, in which oxygen in air is used as an oxidant, is formed of an air chamber 1, air electrodes 2, 3, and 4 composed of three layers, an electrolyte chamber 5 filled with an electrolyte, and an anode 6. The air electrodes are composed of a water repellent layer 2 for preventing the leakage of an electrolyte to outside and passing air to a catalyst layer; an Ni mesh layer 3 in order to become a collector and to hold strength; and a catalyst layer 4 including a catalyst. The layer 2 is formed by cross- linking fluorosilicone polymer having a vinyl group, by silicone having silicone- hydrogen atomic bonding. Fluorosilicone has excellent oxygen-permeability and low permeability for water vapor and carbon dioxide gas. Consequently, a metallic air battery having high performance for a long time can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気中の酸素を酸化剤と
して使用する金属空気電池に関する。
FIELD OF THE INVENTION The present invention relates to a metal-air battery using oxygen in the air as an oxidant.

【0002】[0002]

【従来の技術】金属空気電池は、アノードに亜鉛、アル
ミニウム、鉄等の金属を用い、正極活物質として空気中
の酸素を使用しているため理論上非常に高いエネルギー
密度が得られる。このような金属空気電池の代表的な構
造は、図1に示すように空気室1、3層からなる空気極
(2、3、4)、電解液が充填された電解室5及びアノ
ード6からなっている。空気極は、電解液が外部に漏れ
るのを防ぎ、触媒層に空気を通過させる撥水層2、集電
体と強度保持を目的とするNi等の金属メッシュ層3、
触媒を含んだ触媒層4の3層から構成される。
2. Description of the Related Art A metal-air battery has a theoretically very high energy density because it uses a metal such as zinc, aluminum, or iron for the anode and oxygen in the air as a positive electrode active material. As shown in FIG. 1, a typical structure of such a metal-air battery includes an air electrode (2, 3, 4) composed of air chambers 1 and 3 layers, an electrolytic chamber 5 filled with an electrolytic solution, and an anode 6. Has become. The air electrode is a water repellent layer 2 that prevents the electrolyte from leaking to the outside and allows air to pass through the catalyst layer, a current collector and a metal mesh layer 3 of Ni or the like for the purpose of maintaining strength,
It is composed of three layers of a catalyst layer 4 containing a catalyst.

【0003】この空気極においては、内部の電解液の蒸
気圧に応じて水蒸気の出入りがあり、電池内電解液の濃
度変化、体積変化が起こり、これが電池諸特性に影響を
与えていた。すなわち、電解液の相対湿度が47〜59
%より高いと、外部の湿気を取り込み電解液濃度の低下
と体積膨張とが起こり、放電性能の低下、電解液の漏液
を生じていた。一方、相対湿度が前記以下の場合には電
解液の蒸発が起こり、内部抵抗の増大や放電性能の低下
をもたらしていた。したがって、環境雰囲気によって著
しい影響を受け易いため長期間保存後の特性に問題があ
った。さらに炭酸ガスの電池内への侵入により生成した
炭酸塩が酸素の放電反応を阻害し、性能が低下するとい
う問題があった。
In this air electrode, water vapor flows in and out according to the vapor pressure of the electrolytic solution inside, causing a change in the concentration and volume of the electrolytic solution in the battery, which affects various characteristics of the battery. That is, the relative humidity of the electrolytic solution is 47 to 59.
If it is higher than 0.1%, external humidity is taken in, the concentration of the electrolytic solution is reduced and the volume is expanded, the discharge performance is reduced, and the electrolytic solution leaks. On the other hand, when the relative humidity is less than the above, evaporation of the electrolytic solution occurs, causing an increase in internal resistance and a decrease in discharge performance. Therefore, there is a problem in the characteristics after long-term storage because it is easily affected by the environmental atmosphere. Further, there is a problem that the carbonate generated by the invasion of carbon dioxide gas into the battery hinders the oxygen discharge reaction and the performance is lowered.

【0004】[0004]

【発明が解決しようとする課題】本発明は空気中の酸素
ガスを十分な速度で選択的に電池に取り入れ、空気中の
水蒸気及び炭酸ガスの電池への侵入を長期にわたり防止
することにより、長期使用における性能を改善した金属
空気電池を目的とする。
SUMMARY OF THE INVENTION According to the present invention, oxygen gas in the air is selectively taken into the battery at a sufficient rate to prevent the ingress of water vapor and carbon dioxide in the air into the battery for a long time. A metal-air battery with improved performance in use.

【0005】[0005]

【課題を解決するための手段】本発明は、空気電極にお
ける撥水層がフルオロシリコーン(オルガノポリシロキ
サン)からなることを特徴とする金属空気電池を提供す
る。
The present invention provides a metal-air battery characterized in that the water-repellent layer in the air electrode is made of fluorosilicone (organopolysiloxane).

【0006】本発明で使用されるフルオロシリコーンと
しては、分子量として好ましくは103 〜107 、特に
は104 〜105 の、フッ素原子を有するシリコーンを
使用することができ、構造上特に限定を受けるものでは
ないが、特性上、架橋したフルオロシリコーンを使用す
ることが望ましい。
As the fluorosilicone used in the present invention, a silicone having a fluorine atom having a molecular weight of preferably 10 3 to 10 7 , particularly 10 4 to 10 5 , can be used, and the structure is not particularly limited. Although not subject, it is desirable to use crosslinked fluorosilicone due to its properties.

【0007】架橋したフルオロシリコーンとしてはシラ
ノール基を有するフルオロシリコーン重合体を3官能以
上の加水分解性の基を有する架橋剤を用いて架橋したも
の、(メタ)アクリレート基を有するフルオロシリコー
ン重合体を紫外線により架橋したもの、ビニル基を有す
るフルオロシリコーンを好ましくは触媒量の遷移金属化
合物存在に、珪素−水素結合を有するシリコーンで架橋
したもの等が例示される。このうちビニル基を有するフ
ルオロシリコーン重合体を珪素−水素原子結合を有する
シリコーンで架橋したものは架橋中に副生物が発生せ
ず、膜にした場合ピンホールができにくい等の利点を有
する他、大面積の膜を容易に製造できることから特に好
ましい。
As the crosslinked fluorosilicone, a fluorosilicone polymer having a silanol group and a fluorosilicone polymer having a (meth) acrylate group, which are crosslinked with a crosslinking agent having a trifunctional or higher functional hydrolyzable group, are used. Examples thereof include those crosslinked by ultraviolet rays, those in which fluorosilicone having a vinyl group is crosslinked with silicone having a silicon-hydrogen bond, preferably in the presence of a catalytic amount of a transition metal compound. Of these, those obtained by crosslinking a fluorosilicone polymer having a vinyl group with a silicone having a silicon-hydrogen atom bond do not generate by-products during the crosslinking, and have the advantage that pinholes are less likely to occur when formed into a film. It is particularly preferable because a large-area membrane can be easily manufactured.

【0008】上記したビニル基を有するフルオロシリコ
ーン(成分A)の代表例は、次の化3で表わされる。
A typical example of the above-mentioned fluorosilicone having a vinyl group (component A) is represented by the following chemical formula 3.

【0009】[0009]

【化3】 上記において、Rf は、含フッ素アルキル基又は1価の
含フッ素ポリエーテル基、R1 〜R8 は炭素数1〜8の
1価の有機基(そのうちの少なくとも1個はビニル基を
有する)であり、互いに同一又は異なる基である。p,
q,rは、p≧1、q≧0、r≧0を満足する整数であ
り、好ましくはpは1〜500、qは0〜1000、r
は0〜5である。上記化1のフルオロシリコーン(成分
A)の具体例は 以下の化4のものが例示される。
[Chemical 3] In the above, R f is a fluorine-containing alkyl group or a monovalent fluorine-containing polyether group, R 1 to R 8 are monovalent organic groups having 1 to 8 carbon atoms (at least one of which has a vinyl group) And are the same or different groups from each other. p,
q and r are integers satisfying p ≧ 1, q ≧ 0 and r ≧ 0, preferably p is 1 to 500, q is 0 to 1000, r
Is 0-5. Specific examples of the fluorosilicone (component A) of the above chemical formula 1 include those of the following chemical formula 4.

【0010】[0010]

【化4】 [Chemical 4]

【0011】上記含フッ素アルキル基としてはCn
2n+1CH2 CH2 −(nは1〜18の整数) 、(CF
32 CFCn2nCH2 CH2 −(nは上記と同じ)
、HCn2nCH2 CH2 −(nは上記と同じ) が例示
され、含フッ素ポリエーテル基としては−CH2 CH2
CF(CF3 )[OCF2 CF(CF3 )]m F(mは
0〜10の整数)、−CH2 CH2 CH2 OCH2 CF
(CF3 )[OCF2 CF(CF3 )]m F(mは上記
と同じ)、F(CF2 CF2 CF2 O)l CF2 CF2
CH2 CH2 CH2 −(lは1〜11の整数)等が例示
される。
The fluorine-containing alkyl group is C n F
2n + 1 CH 2 CH 2 — (n is an integer of 1 to 18), (CF
3 ) 2 CFC n F 2n CH 2 CH 2- (n is the same as above)
, HC n F 2n CH 2 CH 2 — (n is the same as above), and the fluorine-containing polyether group is —CH 2 CH 2
CF (CF 3) [OCF 2 CF (CF 3)] m F (m is 0-10 integer), - CH 2 CH 2 CH 2 OCH 2 CF
(CF 3 ) [OCF 2 CF (CF 3 )] m F (m is the same as above), F (CF 2 CF 2 CF 2 O) 1 CF 2 CF 2
CH 2 CH 2 CH 2 - ( l is 1 to 11 integer), and the like.

【0012】上記ビニル基を有するフルオロシリコーン
(成分A)の架橋には、上記のように1分子中に平均2
個以上の珪素−水素原子を有するシリコーン(成分B)
が使用される、かかるシリコーン(成分B)は、成分A
のビニル基との間にハイドロシリレーションと呼ばれる
反応を起こし、架橋が生じ架橋剤たるシリコーン(成分
B)は、特に限定されるものでないが相溶性を確実にす
るために、フッ素を含有することが望ましい。架橋剤シ
リコーンは架橋させるに十分な量を使用すればよく、通
常は架橋のビニル基1個に対して珪素−水素原子結合好
ましくは0.5〜2.0個になるように使用される。上
記架橋剤たるシリコーン(成分B)の代表例は以下の化
5で示される。
For the crosslinking of the fluorosilicone having a vinyl group (component A), an average of 2 molecules per molecule is used as described above.
Silicone Having More Than One Silicon-Hydrogen Atom (Component B)
Such silicone (component B) is used as component A
The silicone (component B), which is a cross-linking agent that undergoes a reaction called hydrosilylation with the vinyl group of, and is a cross-linking agent, contains fluorine in order to ensure compatibility, but is not particularly limited. Is desirable. The cross-linking agent silicone may be used in an amount sufficient for cross-linking, and is usually used so that the number of silicon-hydrogen atom bonds is preferably 0.5 to 2.0 per one vinyl group in the cross-linking. A typical example of the above-mentioned cross-linking agent silicone (component B) is shown in Chemical formula 5 below.

【0013】[0013]

【化5】 化5においてRf は含フッ素アルキル基、または1価の
含フッ素ポリエーテル基であり、その具体例は上記成分
Aの場合と同じである。p´,q´,r´はp´≧0、
q´≧0、r´≧1を満足する整数であり、p´は0〜
100、q´は0〜150、r´は1〜50である。
[Chemical 5] In Chemical formula 5, R f is a fluorine-containing alkyl group or a monovalent fluorine-containing polyether group, and specific examples thereof are the same as those of the above component A. p ', q', r'is p '≧ 0,
It is an integer satisfying q ′ ≧ 0 and r ′ ≧ 1, and p ′ is 0 to
100 and q'are 0 to 150, and r'is 1 to 50.

【0014】成分Aのビニル基と、成分Bの珪素−水素
原子の架橋反応を促進するために好ましくは遷位金属触
媒が使用される。繊維金属触媒としては、ヘキサクロロ
白金酸などの白金化合物、あるいはこれらの化合物と比
較的低分子量のビニル基含有オルガノシロキサンとの錯
体をが用いるのが好ましい。触媒使用量は架橋を促進す
るに十分な量を使用すればよいが、上記反応系に通常は
1〜100ppmの範囲で用いられる。
To promote the crosslinking reaction between the vinyl group of component A and the silicon-hydrogen atom of component B, a transition metal catalyst is preferably used. As the fiber metal catalyst, it is preferable to use a platinum compound such as hexachloroplatinic acid, or a complex of these compounds and a vinyl group-containing organosiloxane having a relatively low molecular weight. The catalyst may be used in an amount sufficient to promote crosslinking, but it is usually used in the reaction system in the range of 1 to 100 ppm.

【0015】その他の成分として高分子均質層の機械強
度を向上させるために、SiO 0.5単位、SiO単
位、SiO 1.5単位、SiO2 単位からなるレジン
成分を添加してもよい。この成分もAの相溶性を確実に
するためにフッ素を含有することが望ましい。また、こ
の成分は成分A、Bと共架橋させると、特に機械強度の
向上がはかれるので、CH2 =CH−Si基やHSi基
を含むことが望ましい。使用量は特に限定される物でな
いが、成分Aに対して5〜40重量部が好適な量として
用いられる。
As another component, in order to improve the mechanical strength of the polymer homogeneous layer, a resin component composed of SiO 0.5 unit, SiO unit, SiO 1.5 unit and SiO 2 unit may be added. It is desirable that this component also contains fluorine in order to ensure the compatibility of A. Further, when this component is co-crosslinked with the components A and B, the mechanical strength is particularly improved, so that it is preferable to contain a CH 2 ═CH—Si group or an HSi group. The amount used is not particularly limited, but 5 to 40 parts by weight with respect to the component A is used as a suitable amount.

【0016】さらに、上記成分を混合してから高温で架
橋されるまでの間、室温における硬化の進行を抑制する
目的で、3−メチル−1−ブチン−3−オール等のアセ
チレン基を有する化合物をポットライフ向上剤として加
えてもよい。また、これらの組成物の室温における粘度
を、10,000センチポイズ以下とすると無溶媒で製
膜することが可能となり、コストや環境上の観点から利
点がある。
Further, a compound having an acetylene group such as 3-methyl-1-butyn-3-ol for the purpose of suppressing the progress of curing at room temperature from the mixing of the above components to the crosslinking at a high temperature. May be added as a pot life improver. Further, if the viscosity of these compositions at room temperature is 10,000 centipoise or less, it becomes possible to form a film without a solvent, which is advantageous from the viewpoint of cost and environment.

【0017】作製された膜は単独で使用してもよいし、
これを支持、補強する役割を果たす多孔質樹脂フィルム
の上に積層して使用してもよい。多孔質樹脂フィルムと
しては、ポリテトラフルオロエチレン、ポリスルホン、
ポリプロピレン、ポリエステル、ポリアミド、ポリオレ
フィン、ポリアクリレート、ポリメタクリレート、シリ
コーン、ポリカーボネートなどが例示される。
The produced membrane may be used alone or
You may laminate | stack and use it on the porous resin film which plays a role of supporting and reinforcing this. As the porous resin film, polytetrafluoroethylene, polysulfone,
Examples include polypropylene, polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, silicone, and polycarbonate.

【0018】上記フルオロシリコーンからなる撥水層
は、好ましくは10-3〜102 μm特には0.1〜10
μmからなる膜状物から構成される。かかる撥水層を使
用して空気電極を作製する方法及び空気電極を使用して
金属空気電池を作製する方法は、既知の手段、例えば特
開平4−188575号公報、特開平4−188576
号公報などが採用される。
The water-repellent layer made of the above fluorosilicone is preferably 10 −3 to 10 2 μm, particularly 0.1 to 10 μm.
It is composed of a film-like material made of μm. A method for producing an air electrode using such a water-repellent layer and a method for producing a metal-air battery using the air electrode are known means, for example, JP-A-4-188575 and JP-A-4-188576.
No. Gazette is adopted.

【0019】[0019]

【実施例】 合成例1(成分Aの合成) 充分に窒素置換された、撹拌器、温度計を備えた200
ccの4つ口フラスコに、[C81724 (CH
3 )SiO][(CH32 SiO]2 を120g
(0.18mol)、(CH2 =CH)(CH32
iOSi(CH32(CH=CH2 )を0.512g
(2.75mmol)を入れた。内温を50℃に保持し
た後、CF3 SO3 H60mgを導入した。4時間後に
モノマーの消失を確認し、NaHCO3 0.7gを入れ
反応を停止した。濾過によりNaHCO3 を除去した
後、180℃/3mmHgで低沸物を除去した。得られ
た生成物はNMR,IRにより下式6で示される構造で
あることが確認され、粘度は2500センチポイズであ
った。
Examples Synthesis Example 1 (Synthesis of Component A) 200 fully equipped with a stirrer and thermometer
[C 8 F 17 C 2 H 4 (CH
3 ) 120 g of SiO] [(CH 3 ) 2 SiO] 2
(0.18mol), (CH 2 = CH) (CH 3) 2 S
0.512 g of iOSi (CH 3 ) 2 (CH = CH 2 )
(2.75 mmol) was added. After maintaining the internal temperature at 50 ° C., 60 mg of CF 3 SO 3 H was introduced. After 4 hours, the disappearance of the monomer was confirmed, and 0.7 g of NaHCO 3 was added to stop the reaction. After removing NaHCO 3 by filtration, low-boiling substances were removed at 180 ° C./3 mmHg. The obtained product was confirmed by NMR and IR to have a structure represented by the following formula 6, and the viscosity was 2500 centipoise.

【0020】[0020]

【化6】 [Chemical 6]

【0021】合成例2(成分Aの合成) 充分に窒素置換された、撹拌器、温度計を備えた1Lの
フラスコに、[C4924 (CH3 )SiO]3
を500g(0.544mol)、[(CH32 Si
O]4 を484g(1.63mol)、(CH2 =C
H)(CH32SiOSi(CH32 (CH=CH2
)を3.8g(0.020mol)を入れた。内温を
50℃に保持した後、CF3 SO3 Hを3.8g導入し
た。4時間後にモノマーの消失を確認し、NaHCO3
5.6gを入れ反応を停止した。濾過によりNaHCO
3 を除去した後、180℃/3mmHgで低沸物を除去
した。得られた生成物はNMR,IRにより下記化7で
示される構造であることが確認され、粘度は2500セ
ンチポイズであった。
Synthesis Example 2 (Synthesis of Component A) [C 4 F 9 C 2 H 4 (CH 3 ) SiO] 3 was placed in a 1 L flask, which was fully purged with nitrogen and equipped with a stirrer and a thermometer.
500 g (0.544 mol) of [(CH 3 ) 2 Si
O] 4 (484 g (1.63 mol), (CH 2 = C
H) (CH 3 ) 2 SiOSi (CH 3 ) 2 (CH = CH 2
) Was added in an amount of 3.8 g (0.020 mol). After keeping the internal temperature at 50 ° C., 3.8 g of CF 3 SO 3 H was introduced. After 4 hours, the disappearance of the monomer was confirmed, and NaHCO 3
The reaction was stopped by adding 5.6 g. NaHCO by filtration
After removing 3 , low-boiling substances were removed at 180 ° C./3 mmHg. The product thus obtained was confirmed by NMR and IR to have the structure shown in Chemical formula 7 below, and the viscosity was 2500 centipoise.

【0022】[0022]

【化7】 [Chemical 7]

【0023】合成例3(成分Bの合成) 充分に窒素置換された、撹拌器、温度計を備えた500
mlの4つ口フラスコに、[C4924 (CH
3 )SiO]3 を130g(0.142mol)、
[(CH32 SiO]4 を126g(0.425mo
l)、[H(CH3 )SiO]4 を76.6g(0.3
18mol)、(CH33 SiOSi(CH33
17.3g(0.107mol)を入れた。内温を50
℃に保持した後、CF3 SO3 Hを0.18g導入し
た。4時間後にモノマーの消失を確認し、NaHCO3
2.01gを入れ反応を停止した。濾過によりNaHC
3 を除去した後、180℃/3mmHgで低沸物を除
去した。得られた生成物はNMR,IRにより調べたと
ころ、下記化8で示される構造であることが確認され、
粘度は33センチポイズであった。
Synthesis Example 3 (Synthesis of Component B) 500 fully agitated and equipped with a stirrer and a thermometer
[C 4 F 9 C 2 H 4 (CH
3 ) SiO] 3 130 g (0.142 mol),
126 g (0.425 mo) of [(CH 3 ) 2 SiO] 4
l), 76.6 g (0.3%) of [H (CH 3 ) SiO] 4
18 mol), were placed (CH 3) 3 SiOSi (CH 3) 3 and 17.3 g (0.107 mol). Internal temperature 50
After holding at 0 ° C, 0.18 g of CF 3 SO 3 H was introduced. After 4 hours, the disappearance of the monomer was confirmed, and NaHCO 3
The reaction was stopped by adding 2.01 g. NaHC by filtration
After removing O 3 , low-boiling substances were removed at 180 ° C./3 mmHg. When the obtained product was examined by NMR and IR, it was confirmed that it had the structure shown in the following Chemical formula 8,
The viscosity was 33 centipoise.

【0024】[0024]

【化8】 [Chemical 8]

【0025】合成例4(レジン成分の合成) 撹拌器、温度計を備えた500mlの4つ口フラスコ
に、(CH33 SiOSi(CH33 を13.1g
(0.080mol)、(CH2 =CH)(CH32
SiO(CH32 (CH=CH2 )を60.0g
(0.322mol)、[C4924 (CH3
SiO(CH2 CH33 を300g(0.731mo
l)、CF3 SO3 Hを0.25g入れた。内温を50
℃に保持した後、H2 Oを60.4gを滴下した。4時
間後にモノマーの消失を確認し、KOHの10%メタノ
ール溶液5.6gを入れ、80℃で3時間反応させた。
室温に冷却後、KOHをH3 PO4 で中和した。180
℃/3mmHgで低沸物を除去した。得られた生成物は
NMR,IRにより調べたところ、下記化9で示される
構造であることが確認され、粘度は4000センチポイ
ズであった。
Synthesis Example 4 (Synthesis of Resin Component) In a 500 ml four-necked flask equipped with a stirrer and a thermometer, 13.1 g of (CH 3 ) 3 SiOSi (CH 3 ) 3 was added.
(0.080 mol), (CH 2 = CH) (CH 3 ) 2
60.0 g of SiO (CH 3 ) 2 (CH = CH 2 )
(0.322 mol), [C 4 F 9 C 2 H 4 (CH 3 )
300 g (0.731 mo) of SiO (CH 2 CH 3 ) 3
1) and 0.25 g of CF 3 SO 3 H was added. Internal temperature 50
After holding at 0 ° C, 60.4 g of H 2 O was added dropwise. After 4 hours, the disappearance of the monomer was confirmed, and 5.6 g of a 10% methanol solution of KOH was added, and the mixture was reacted at 80 ° C. for 3 hours.
After cooling to room temperature, KOH was neutralized with H 3 PO 4 . 180
Low-boiling substances were removed at ℃ / 3mmHg. When the obtained product was examined by NMR and IR, it was confirmed that it had the structure shown in Chemical formula 9 below, and the viscosity was 4000 centipoise.

【0026】[0026]

【化9】 [Chemical 9]

【0027】実施例1 以下のようにして、空気極を作製した。まず触媒層を炭
素粉末に白金を担持させたものとフッ素樹脂をボールミ
ル中にて混合後加熱圧縮しシート状とした。この触媒層
のシートをNiメッシュに圧着させた。
Example 1 An air electrode was prepared as follows. First, a catalyst layer was prepared by mixing platinum powder supported on carbon powder with a fluororesin in a ball mill, followed by heating and compression to form a sheet. The sheet of the catalyst layer was pressed onto the Ni mesh.

【0028】一方、合成例1で得た成分Aを100g、
合成例4で得たレジン成分20g、塩化白金酸の10%
イソプロパノール溶液13mg、3−メチル−1−ブチ
ン−3−オール2.4mgを添加し、十分に撹拌した。
これに合成例3で得た成分Bを15.7gを入れ、さら
に十分撹拌した。このものの粘度は2000センチポイ
ズであった。このフルオロシリコーン組成物を前記Ni
メッシュの触媒層の付着していない面に、厚さ2μmと
なるようにコーティングした後、160℃の炉で5分間
保持、架橋させ、撥水層とした。
On the other hand, 100 g of the component A obtained in Synthesis Example 1,
20 g of the resin component obtained in Synthesis Example 4, 10% of chloroplatinic acid
13 mg of isopropanol solution and 2.4 mg of 3-methyl-1-butyn-3-ol were added, and the mixture was sufficiently stirred.
To this was added 15.7 g of the component B obtained in Synthesis Example 3, and the mixture was further stirred. The viscosity of this product was 2000 centipoise. This fluorosilicone composition is
The surface of the mesh on which the catalyst layer was not adhered was coated so as to have a thickness of 2 μm, and then held in a furnace at 160 ° C. for 5 minutes for crosslinking to form a water repellent layer.

【0029】このようにして作製した空気極を用い亜鉛
空気電池を作製した。図1に本実施例における亜鉛空気
電池の構成を示し図に従って動作を説明する。6は亜鉛
カソード、5は電解液を満たした電解液槽、2、3、4
はそれぞれ撥水層、Niメッシュ層、触媒層である、1
は空気室である。
A zinc-air battery was produced using the air electrode thus produced. FIG. 1 shows the configuration of the zinc-air battery in this embodiment, and the operation will be described with reference to the drawing. 6 is a zinc cathode, 5 is an electrolytic solution tank filled with an electrolytic solution, 2, 3, 4
Are a water repellent layer, a Ni mesh layer, and a catalyst layer, respectively, 1
Is an air chamber.

【0030】実施例2 実施例1で用いた成分Aを合成例2で示した構造のもの
に変えた以外は同様にして亜鉛空気電池を作製した。
Example 2 A zinc-air battery was prepared in the same manner except that the component A used in Example 1 was changed to the structure shown in Synthesis Example 2.

【0031】比較例 実施例1で用いたフルオロシリコーン撥水層をゴアテッ
クス(ジャパンゴアテックス社製)に変えて亜鉛空気電
池を作製した。次に本発明の効果を明らかにするため、
電池作成直後での電池を作動させたときの電流密度、2
0℃で低湿度(20%RH)及び高湿度(80%RH)
中で1週間保存した後の電流密度を表1に示す。
Comparative Example A zinc-air battery was manufactured by changing the fluorosilicone water repellent layer used in Example 1 to GORE-TEX (manufactured by Japan GORE-TEX). Next, in order to clarify the effect of the present invention,
Current density when the battery is operated immediately after battery creation, 2
Low humidity (20% RH) and high humidity (80% RH) at 0 ℃
Table 1 shows the current densities after storage in the glass for 1 week.

【0032】[0032]

【表1】 [Table 1]

【0033】これより、本発明における電池は、湿度の
変化による特性変化が非常に少なく、電池特性が極めて
安定していることがわかる。
From this, it can be seen that the battery of the present invention has very little change in characteristics due to changes in humidity, and the battery characteristics are extremely stable.

【0034】[0034]

【発明の効果】フルオロシリコーンは酸素透過性に極め
て優れ、水蒸気及び炭酸ガスの透過性が非常に小さいこ
とから、長期の安定性が非常に優れた金属空気電池が得
られる。
EFFECTS OF THE INVENTION Fluorosilicone has extremely excellent oxygen permeability and extremely low permeability of water vapor and carbon dioxide gas, so that a metal-air battery having excellent long-term stability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の代表的金属空気電池の構造説明図FIG. 1 is a structural explanatory view of a typical metal-air battery of the present invention.

【符号の説明】[Explanation of symbols]

1:空気室 2:撥水層 3:集電体 4:触媒層 5:電解室 6:アノード 1: Air chamber 2: Water repellent layer 3: Current collector 4: Catalyst layer 5: Electrolytic chamber 6: Anode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】空気電極における撥水層がフルオロシリコ
ーンからなることを特徴とする金属空気電池。
1. A metal-air battery, wherein the water-repellent layer in the air electrode is made of fluorosilicone.
【請求項2】フルオロシリコーンが、架橋したフルオロ
シリコーンである請求項1の金属空気電池。
2. The metal-air battery according to claim 1, wherein the fluorosilicone is a crosslinked fluorosilicone.
【請求項3】架橋したフルオロシリコーンが、下記の化
1で表わされるビニル基を有するフルオロシリコーンと
化2で表わされる架橋剤との反応物である請求項2の金
属空気電池。 【化1】 ただし、化1においてRf は、含フッ素アルキル基又は
1価の含フッ素ポリエーテル基、R1 〜R8 は炭素数1
〜8の1価の有機基であり、そのうちの少なくとも1個
はビニル基を有し、かつこれらは互いに同一又は異なる
基である。p,q,rは、p≧1、q≧0、r≧0を満
足する整数である。 【化2】 化2においてRf は、含フッ素アルキル基又は1価のポ
リエーテル基であり、p´,q´,r´は、p´≧1、
q´≧0、r´≧1を満足する整数である。
3. The metal-air battery according to claim 2, wherein the crosslinked fluorosilicone is a reaction product of a fluorosilicone having a vinyl group represented by Chemical formula 1 below and a crosslinking agent represented by Chemical formula 2 below. [Chemical 1] However, in Chemical formula 1, R f is a fluorine-containing alkyl group or a monovalent fluorine-containing polyether group, and R 1 to R 8 are C 1
~ 8 monovalent organic groups, at least one of which has a vinyl group, and these groups are the same or different from each other. p, q, and r are integers that satisfy p ≧ 1, q ≧ 0, and r ≧ 0. [Chemical 2] In Chemical formula 2, R f is a fluorine-containing alkyl group or a monovalent polyether group, p ′, q ′, and r ′ are p ′ ≧ 1,
It is an integer that satisfies q ′ ≧ 0 and r ′ ≧ 1.
JP3413993A 1993-01-29 1993-01-29 Metallic air battery Pending JPH06231809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3413993A JPH06231809A (en) 1993-01-29 1993-01-29 Metallic air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3413993A JPH06231809A (en) 1993-01-29 1993-01-29 Metallic air battery

Publications (1)

Publication Number Publication Date
JPH06231809A true JPH06231809A (en) 1994-08-19

Family

ID=12405887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3413993A Pending JPH06231809A (en) 1993-01-29 1993-01-29 Metallic air battery

Country Status (1)

Country Link
JP (1) JPH06231809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558828B1 (en) 2000-05-26 2003-05-06 Eveready Battery Company, Inc. Zn/air cell performance in extreme humidity by controlling hydrophobic layer porosity
WO2013106063A1 (en) * 2012-01-13 2013-07-18 Dickson Richard M Metal-air battery and methods for forming improved metal-air batteries
JP2015079591A (en) * 2013-10-15 2015-04-23 日産自動車株式会社 Positive electrode for air batteries, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558828B1 (en) 2000-05-26 2003-05-06 Eveready Battery Company, Inc. Zn/air cell performance in extreme humidity by controlling hydrophobic layer porosity
WO2013106063A1 (en) * 2012-01-13 2013-07-18 Dickson Richard M Metal-air battery and methods for forming improved metal-air batteries
JP2015079591A (en) * 2013-10-15 2015-04-23 日産自動車株式会社 Positive electrode for air batteries, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
US5968681A (en) Polyether copolymer and polymer solid electrolyte
CA2253863C (en) Cross-linked solid polyelectrolyte and use thereof
KR100701549B1 (en) Proton conducting film, method for producing the same, and fuel cell using the same
EP2468798B1 (en) Solid electrolyte membrane for fuel cell and process for producing same
WO2003088272A1 (en) Ion-conductive electrolyte and cell employing the same
WO2000008654A1 (en) Composition for electrolyte, electrolyte and process for producing the same, and cell containing the same
JP3078066B2 (en) Air battery
JP2000123632A (en) Polymer solid electrolyte and its application
JP3875256B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
KR20140127840A (en) Halogenated organosilicon electrolytes, methods of using them, and electrochemical devices containing them
JPH0635545B2 (en) Ion conductive polymer composition
JP4828096B2 (en) Proton conductive polymer composition containing sulfonic acid group, solid electrolyte membrane and polymer electrolyte fuel cell
US6656252B2 (en) Polymer separation membrane
JPH02291603A (en) Ion conductive polymer electrolyte and battery using it
JPH06231809A (en) Metallic air battery
JP4394906B2 (en) FUEL CELL ELECTRODE, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
JPWO2006095639A1 (en) Dye-sensitized solar cell sealing agent composition
JP3071262B2 (en) Curable composition for solid electrolyte and polymer solid electrolyte
JP4811575B2 (en) Curable resin composition for electrolyte membrane, method for producing electrolyte membrane, and method for producing electrolyte membrane / electrode assembly
JP2010195987A (en) Silane-treated electrolyte membrane and method for producing the same
JP2005074317A (en) Gas separation membrane
US8232324B2 (en) Electrolyte membrane-forming curable resin composition, and preparation of electrolyte membrane and electrolyte membrane/electrode assembly
JPH0821389B2 (en) Battery
JP4548999B2 (en) Non-aqueous gel-like ion conductive composition derived from piperazine derivative, battery and electrochemical device using the same