JPH06226102A - Catalyst for hydrodesulfurization/denitrification and its preparation - Google Patents

Catalyst for hydrodesulfurization/denitrification and its preparation

Info

Publication number
JPH06226102A
JPH06226102A JP5043289A JP4328993A JPH06226102A JP H06226102 A JPH06226102 A JP H06226102A JP 5043289 A JP5043289 A JP 5043289A JP 4328993 A JP4328993 A JP 4328993A JP H06226102 A JPH06226102 A JP H06226102A
Authority
JP
Japan
Prior art keywords
catalyst
denitrification
oxide
hydrodesulfurization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5043289A
Other languages
Japanese (ja)
Inventor
Toshio Yamaguchi
敏男 山口
Eiji Yamaguchi
英治 山口
Eiji Yokozuka
英治 横塚
Kisao Uekusa
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5043289A priority Critical patent/JPH06226102A/en
Publication of JPH06226102A publication Critical patent/JPH06226102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To ensure that both hydrodesulfurization/denitrification of hydrocarbon oil are performed efficiently at the same time by adequate activities for both chemical reaction and a catalytic preparation step is simplified. CONSTITUTION:An oxide catalyst carrier obtained by adding boric acid to an alumina hydrate, blending, shaping, drying and baking this blend is allowed to carry at least, each one type of active metal component selected from among the VIa group metals and the VIII group metals of a periodic law table. Further, this carrier is dried into a dried state. Application of this catalyst for desulfurization/denitrification test results in significant effects in terms of both desulfurization/denitrification rates compared to a conventional catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオウ化合物、とくに
窒素化合物を多量に含有する炭化水素油を水素加圧下に
処理し、硫化水素とアンモニアに転化させ原料炭化水素
油中のイオウ及び窒素の含有量を同時に低減させるため
に利用される水素化脱硫脱窒素用触媒及びその製造方法
に関するものである。
FIELD OF THE INVENTION The present invention is directed to the treatment of a hydrocarbon oil containing a large amount of sulfur compounds, especially nitrogen compounds, under pressure with hydrogen to convert it into hydrogen sulfide and ammonia, and to convert sulfur and nitrogen in the raw hydrocarbon oil. The present invention relates to a hydrodesulfurization and denitrification catalyst used for simultaneously reducing the content and a method for producing the same.

【0002】[0002]

【従来の技術】従来、炭化水素油中に含まれているイオ
ウ化合物及び窒素化合物を除去する方法として、水素存
在下の高温高圧の反応条件で炭化水素油を触媒に接触さ
せて水素化処理する方法が知られている。水素化脱硫法
は、この水素化処理法の1つであり、その水素化処理用
触媒は多孔性アルミナ触媒担体に、周期律表第VIa族金
属及び第VIII族金属担持させた触媒が一般に使用されて
いる。しかしながら、これらの水素化処理触媒は、水素
化脱硫反応には高活性を示すが、水素化脱窒素反応には
十分な活性を示さない。すなわち、通常用いられている
水素化脱硫条件下においては、水素化脱硫活性に対して
水素化脱窒素活性はきわめて低いものとなるものであ
る。したがって、通常用いられている水素化脱硫触媒を
用いて水素化脱窒素反応を十分に行うためには、高い温
度と圧力あるいは小さい空間速度で処理することが必要
になる。しかしながら、そのような条件下で実際に炭化
水素油を水素化処理した場合には、水素化脱窒素に関し
て満足する結果が得られても、一方では、脱硫あるいは
水素化さらには軟質化が必要以上に進み、その結果とし
て、水素消費量の増大を招き経済的に好ましいことでは
なく、実用的でない。したがって、炭化水素油を水素化
処理してイオウ化合物と窒素化合物を同時に除去するに
は、従来知られている水素化脱硫活性に加えて、C−N
結合を開裂させる水素化脱窒素活性をも具備した触媒が
必要である。
2. Description of the Related Art Conventionally, as a method for removing sulfur compounds and nitrogen compounds contained in a hydrocarbon oil, the hydrocarbon oil is hydrotreated by contacting it with a catalyst under high temperature and high pressure reaction conditions in the presence of hydrogen. The method is known. The hydrodesulfurization method is one of the hydrotreating methods, and as the hydrotreating catalyst, a catalyst in which a group VIa metal and a group VIII metal of the periodic table are supported on a porous alumina catalyst carrier is generally used. Has been done. However, these hydrotreating catalysts show high activity for hydrodesulfurization reaction, but do not show sufficient activity for hydrodenitrogenation reaction. That is, under normally used hydrodesulfurization conditions, the hydrodenitrogenation activity is extremely low with respect to the hydrodesulfurization activity. Therefore, in order to sufficiently carry out the hydrodenitrogenation reaction using the hydrodesulfurization catalyst which is usually used, it is necessary to carry out the treatment at a high temperature and pressure or a small space velocity. However, when a hydrocarbon oil is actually hydrotreated under such conditions, satisfactory results can be obtained with regard to hydrodenitrogenation, but on the other hand, desulfurization or hydrotreating, or even softening is necessary. As a result, the hydrogen consumption increases, which is not economically preferable and impractical. Therefore, in order to hydrotreate a hydrocarbon oil to remove sulfur compounds and nitrogen compounds at the same time, in addition to the conventionally known hydrodesulfurization activity, C--N
What is needed is a catalyst that also has hydrodenitrogenation activity to cleave the bond.

【0003】水素化脱硫・脱窒素の両活性を備えた触媒
は、種々の提案がなされている。たとえば、米国特許第
3,446,730号には、1.2〜2.6の水和水を
有する水酸化アルミニウムを焼成して製造されたアルミ
ナ触媒担体に、ニッケル又は周期律表第VI族金属あるい
はそれら金属の酸化物又は硫化物を担持し、さらに0.
1〜2.0重量%のリン、ケイ素、バリウムからなる促
進剤を添加した触媒が提案されている。又、米国特許第
3,749,664号には、アルミナ、又は、シリカ−
アルミナ触媒担体に、モリブデンとニッケル、又は、コ
バルトとリンとを特定の割合に担持させた触媒が提案さ
れている。又、米国特許第3,954,670号、特開
昭51−100,983号公報には、周期律表第VIa族
金属及び第VIII族金属とアルミナ及びボリアからなる触
媒が水素化脱窒素反応に有効であることを述べている。
さらに、特開昭56−40,432号公報には、酸化チ
タンを担体とし、周期律表第VIa族金属及び第VIII族金
属とリンあるいはホウ素を担持させたものが提案されて
いる。
Various proposals have been made for catalysts having both hydrodesulfurization and denitrification activities. For example, U.S. Pat. No. 3,446,730 discloses an alumina catalyst carrier produced by calcining aluminum hydroxide having water of hydration of 1.2 to 2.6, nickel or Group VI of the periodic table. Supports metals or oxides or sulfides of these metals, and further,
A catalyst having 1 to 2.0% by weight of a promoter composed of phosphorus, silicon and barium has been proposed. Also, U.S. Pat. No. 3,749,664 discloses alumina or silica-
A catalyst in which molybdenum and nickel or cobalt and phosphorus are supported in a specific ratio on an alumina catalyst carrier has been proposed. Further, in U.S. Pat. No. 3,954,670 and Japanese Patent Laid-Open No. 51-100,983, a catalyst comprising a Group VIa metal and a Group VIII metal of the periodic table, alumina and boria is used for hydrodenitrogenation reaction. It is said to be effective.
Further, Japanese Patent Application Laid-Open No. 56-40,432 proposes that titanium oxide is used as a carrier, and Group VIa metal and Group VIII metal of the Periodic Table are supported with phosphorus or boron.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、米国特
許第3,446,730号のものは、触媒担体の特性に
ついては何ら記載されず、しかも処理油に関しては、残
さ油を含めたいかなる溜分にも適用可能であるとしてい
るが、実際は溜出油を対象とするものと解されるもので
ある。又、米国特許第3,446,730号のものは、
触媒担体は、一般的には、0.6〜1.4cc/gの細
孔容積を有するものが好ましいと説明しているが、細孔
構造については検討されておらず炭化水素油の水素化処
理には満足する性能を有していないものである。又、米
国特許第3,954,670号、特開昭51−100,
983号公報のものは、組成及び細孔特性については十
分検討されておらず水素化脱硫触媒としての効果につい
ては何ら記載されていない。さらに、特開昭56−4
0,432号公報のものは、触媒担体として用いる酸化
チタンは高価であり、その物理性質上アルミナに比して
比表面積を大きくしにくく、しかも触媒成分担持後の焼
成処理において比表面積が低下し易く、アルミナのよう
にその細孔分布を所望の範囲に維持することが困難であ
る。
However, U.S. Pat. No. 3,446,730 does not describe the characteristics of the catalyst carrier, and the treated oil is treated in any fraction including the residual oil. Although it is also applicable, it is understood that it actually applies to distillate oil. Also, US Pat. No. 3,446,730 is
Generally, it is described that the catalyst carrier preferably has a pore volume of 0.6 to 1.4 cc / g, but the pore structure has not been examined and hydrogenation of hydrocarbon oil is not considered. It does not have satisfactory performance for processing. Also, U.S. Pat. No. 3,954,670, JP-A-51-100,
The composition of JP-A No. 983 has not been sufficiently examined in terms of composition and pore characteristics, and has no description about the effect as a hydrodesulfurization catalyst. Furthermore, JP-A-56-4
In Japanese Patent Laid-Open No. 0,432, titanium oxide used as a catalyst carrier is expensive, it is difficult to increase the specific surface area compared to alumina due to its physical properties, and the specific surface area decreases in the firing treatment after supporting the catalyst component. It is easy to maintain the pore distribution in a desired range like alumina.

【0005】このように、触媒担体としては、アルミナ
あるいはシリカを主成分とするものが多く、それらを改
良したものが用いられている。しかしながら、前述のよ
うな触媒は、いずれも水素化処理反応における脱硫、脱
窒素活性をもたせるために、種々の工夫が施されてはい
るが、未だ十分なものとはなっていないという問題があ
る。
As described above, many of the catalyst carriers mainly contain alumina or silica, and improved ones thereof are used. However, although the above-mentioned catalysts have been variously devised in order to have desulfurization and denitrification activities in the hydrotreating reaction, there is a problem that they are not yet sufficient. .

【0006】本発明は、炭化水素油の水素化脱硫及び脱
窒素の両活性を具え、かつ、触媒製造工程を簡略化させ
た触媒及びその製造方法を提供することを目的とするも
のである。
It is an object of the present invention to provide a catalyst having both activities of hydrodesulfurization and denitrification of hydrocarbon oil and simplifying the catalyst production process, and a production method thereof.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記問題
を解決し、前記目的を達成するために、ボリアとアルミ
ナとからなる組成物に注目し、鋭意研究の結果、触媒担
体であるボリアとアルミナとからなる組成物は、特定範
囲の細孔容積の比率と、特定範囲の有効な平均細孔直径
が存在することを見出し、前記触媒担体に活性金属を担
持させて乾燥処理し、乾燥状態とした触媒とすることに
よって目的を達し得ることを見出して本発明を完成する
に至った。すなわち、本発明は、ボリアとアルミナとか
らなる酸化物触媒担体に活性金属成分として周期律表第
VIa族金属及び第VIII族金属それぞれの少なくとも1種
類を担持した乾燥物である水素化脱硫脱窒素用触媒であ
り、アルミナ水和物にホウ酸を添加して混練し、成型
し、乾燥し、焼成して得た酸化物触媒担体に、活性金属
成分として周期律表第VIa族金属及び第VIII族金属それ
ぞれの少なくとも1種を担持させ、乾燥処理して乾燥物
状態とする水素化脱硫脱窒素用触媒の製造方法である。
DISCLOSURE OF THE INVENTION In order to solve the above problems and achieve the above objects, the present inventors have paid attention to a composition consisting of boria and alumina, and as a result of earnest research, found that they are catalyst carriers. The composition consisting of boria and alumina, the ratio of the pore volume of the specific range, and found that there is an effective average pore diameter of the specific range, the active metal is supported on the catalyst carrier and dried, The present invention has been completed by finding that the purpose can be achieved by using a dried catalyst. That is, the present invention relates to an oxide catalyst carrier composed of boria and alumina as an active metal component in the periodic table.
A catalyst for hydrodesulfurization and denitrification, which is a dried product carrying at least one kind of each of Group VIa metal and Group VIII metal, wherein boric acid is added to alumina hydrate, kneaded, molded, and dried, Hydrodesulfurization and denitrification, in which at least one of Group VIa metal and Group VIII metal of the Periodic Table is carried as an active metal component on the oxide catalyst support obtained by calcination, and dried to be in a dried state. It is a method for producing a catalyst for use.

【0008】しかして、本発明における酸化物触媒担体
は、ボリアとアルミナとからなり、Bとして3〜
15重量%の範囲であり、該酸化物触媒の細孔構造が、
水銀圧入法で測定される細孔分布で平均細孔直径が80
〜110オングストローム、かつ、平均細孔直径±10
オングストロームの細孔が占める容積が全細孔容積の少
なくとも60%以上であるとき最終的に得られる乾燥触
媒の脱硫、脱窒素がもっとも優れている。このような細
孔分布が狹く、平均細孔直径が所望値のボリアとアルミ
ナとからなる酸化物触媒担体は、たとえば、硫酸アルミ
ニウム水溶液とアルミン酸ナトリウム水溶液とを混合し
て加水分解し、生成したアルミナ水和物スラリーをろ過
・洗浄して、NaOとして0.05重量%、SO
して0.20重量%を含むアルミナ水和物を得、該アル
ミナ水和物に酸化物触媒担体としたときのボリア含有量
がBとして3〜15重量%となるようにホウ酸水
溶液を添加し、成型可能な水分まで捏和し、十分可塑化
した後、円筒状、球状、三つ葉型、四つ葉型など一般的
な触媒担体形状の所望型形状に成型する。その後、乾燥
−焼成する方法によって製造することができる。なお、
前記アルミナ水和物を得る加水分解反応時にグルコン
酸、酒石酸などの有機酸を添加すると、細孔分布を特定
の範囲に集中した触媒を得るためには効果的である。
又、前記酸化物触媒担体組成物を製造する際に使用する
ボリア原料としては、たとえば、ホウ酸、四ホウ酸、ホ
ウ酸アンモニウムなどの水可溶性塩が挙げられ、アルミ
ナ原料としては、たとえば、硝酸アルミニウム、硫酸ア
ルミニウム、塩化アルミニウム、アルミン酸ナトリウム
など及びこれらの水可溶性塩類が挙げられる。
Therefore, the oxide catalyst carrier in the present invention is composed of boria and alumina and has a B 2 O 3 content of 3 to 3.
15% by weight, and the pore structure of the oxide catalyst is
Pore distribution measured by mercury porosimetry has an average pore diameter of 80.
~ 110 angstrom and average pore diameter ± 10
The desulfurization and denitrification of the finally obtained dry catalyst are most excellent when the volume occupied by the angstrom pores is at least 60% or more of the total pore volume. Such an oxide catalyst support having a narrow pore distribution and an average pore diameter of boria and alumina having a desired value is, for example, produced by mixing an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate and hydrolyzing the mixture. The resulting alumina hydrate slurry is filtered and washed to obtain an alumina hydrate containing 0.05% by weight of Na 2 O and 0.20% by weight of SO 4 , and an oxide catalyst carrier is added to the alumina hydrate. Then, the boric acid aqueous solution is added so that the boria content is 3 to 15% by weight as B 2 O 3 , and the water content is kneaded to a moldable water content and sufficiently plasticized, and then cylindrical, spherical, and trilobal. Molded into a desired shape of a general catalyst carrier shape such as a mold or a four-leaf mold. Then, it can be manufactured by a method of drying and firing. In addition,
When an organic acid such as gluconic acid or tartaric acid is added during the hydrolysis reaction for obtaining the alumina hydrate, it is effective to obtain a catalyst having a pore distribution concentrated in a specific range.
Examples of the boria raw material used in producing the oxide catalyst support composition include water-soluble salts such as boric acid, tetraboric acid and ammonium borate, and examples of the alumina raw material include nitric acid. Examples thereof include aluminum, aluminum sulfate, aluminum chloride, sodium aluminate and the like, and water-soluble salts thereof.

【0009】水素化活性金属成分として用いられる周期
律表第VIa族金属としては、クロム、モリブデン、タン
グステンなどが挙げられ、とくにモリブデンが好まし
く、第VIII族金属としては、鉄、コバルト、ニッケルが
挙げられ、とくにニッケル及び/又はコバルトが好まし
く、これらを組合せて用いるのがもっとも好ましい。活
性金属の担持量は、第VIa金属は、酸化物換算で触媒全
重量に対して17〜28重量%、第VIII族金属は、酸化
物換算で3〜8重量%の範囲が望ましい。なお、第VIa
金属原料としては、たとえば、三酸化モリブデンが挙げ
られ、第VIII族金属としては、炭酸ニッケル、炭酸コバ
ルトなどが挙げれる。
As the Group VIa metal of the periodic table used as the hydrogenation active metal component, chromium, molybdenum, tungsten and the like can be mentioned, and molybdenum is particularly preferable. As the Group VIII metal, iron, cobalt and nickel can be mentioned. In particular, nickel and / or cobalt are preferable, and it is most preferable to use a combination thereof. The amount of the active metal supported is preferably in the range of 17 to 28% by weight based on the total weight of the catalyst in terms of oxide, and 3 to 8% by weight of the group VIII metal in terms of oxide. In addition, VIa
Examples of the metal raw material include molybdenum trioxide, and examples of the Group VIII metal include nickel carbonate and cobalt carbonate.

【0010】本発明の触媒は、前記のような所望の細孔
構造を有するボリアとアルミナとからなる酸化物触媒担
体に活性成分を担持させるために、たとえば、三酸化モ
リブデン及び炭酸ニッケル、炭酸コバルトを水に懸濁さ
せたスラリーに、クエン酸、酒石酸などの有機酸を添加
して加熱溶解させた含浸液を用意して、この液中に前記
酸化物触媒担体を浸漬して含浸液を吸収させて所望量の
活性金属成分を担持可能とするように含浸液の濃度を調
整するか、あるいは、含浸液全量が前記酸化物触媒担体
に丁度吸着可能な量として用意して全量を吸着させるか
した後に、乾燥することによって製造することができ
る。乾燥温度は、担持した活性金属が酸化物に変化しな
い温度であればいかなる温度でもよい。
The catalyst of the present invention comprises, for example, molybdenum trioxide, nickel carbonate, and cobalt carbonate in order to support the active component on the oxide catalyst carrier composed of boria and alumina having the above-mentioned desired pore structure. Prepare an impregnating solution by adding an organic acid such as citric acid or tartaric acid to a slurry prepared by suspending it in water and dissolving it by heating, and immersing the oxide catalyst carrier in this solution to absorb the impregnating solution. Or adjust the concentration of the impregnating liquid so that the desired amount of the active metal component can be supported, or whether the total amount of the impregnating liquid is prepared so that it can be adsorbed on the oxide catalyst carrier and the whole amount is adsorbed. After that, it can be manufactured by drying. The drying temperature may be any temperature as long as it does not change the supported active metal into an oxide.

【0011】[0011]

【作用】ボリア−アルミナからなる酸化物触媒担体のボ
リアの含有量を前記範囲を好ましいとしたのは、この組
成であると脱窒素活性について飛躍的向上が認められ、
この向上は、酸化物触媒担体の持つ酸特性効果であると
考えられるからである。又、この酸化物触媒担体の細孔
直径や細孔分布について前記範囲を好ましいとしたの
は、脱硫及び脱窒素に有効な細孔径を有する細孔をでき
るだけ多くし、他の有害な反応を抑制するためには、そ
の細孔分布が狹く、かつ、平均細孔直径が特定な値であ
ることが必要であるからであって、これによって本発明
触媒における物理性状を得ることもできるものである。
又、触媒担体の平均細孔直径が80オングストロームよ
り小さいときは、反応物質の触媒粒子内での拡散抵抗が
大きくなり、水素化脱硫・脱窒素の両活性が低下し、他
方平均細孔直径が110オングストロームより大きいと
きは、反応物質が一度に多量に細孔内に侵入し、その分
解による炭素質の析出が水素化脱硫・脱窒素の両活性を
低下させることになるからである。又、平均細孔直径±
10オングストロームの細孔の占める容積が全細孔容積
の60%未満のとき、すなわち細孔分布が特定の範囲に
集中していないときには、たとえ平均細孔直径が80〜
110オングストロームの範囲に入っていたとしても炭
化水素油の水素化脱硫脱窒素反応に有効な細孔が減少す
るので両活性が低下するものである。
The content of boria in the oxide catalyst carrier composed of boria-alumina is preferably set within the above range because a dramatic improvement in denitrification activity is observed with this composition.
This improvement is considered to be due to the acid characteristic effect of the oxide catalyst carrier. In addition, the above range is preferable for the pore diameter and pore distribution of this oxide catalyst carrier, because the number of pores having a pore diameter effective for desulfurization and denitrification is increased as much as possible to suppress other harmful reactions. In order to do so, the pore distribution must be narrow, and the average pore diameter must have a specific value, which also makes it possible to obtain the physical properties of the catalyst of the present invention. is there.
When the average pore diameter of the catalyst carrier is smaller than 80 angstrom, the diffusion resistance of the reactant in the catalyst particles becomes large, the hydrodesulfurization / denitrification activities are decreased, and the average pore diameter becomes smaller. When it is larger than 110 angstrom, a large amount of the reaction substance penetrates into the pores at one time, and the decomposition of the carbonaceous matter reduces the hydrodesulfurization / denitrification activities. Also, the average pore diameter ±
When the volume occupied by 10 angstrom pores is less than 60% of the total pore volume, that is, when the pore distribution is not concentrated in a specific range, even if the average pore diameter is 80 to
Even if it is in the range of 110 angstroms, the number of pores effective for the hydrodesulfurization and denitrification reaction of the hydrocarbon oil is reduced, so that both activities are reduced.

【0012】活性金属成分を前記範囲が好ましいとした
のは、活性金属成分の下限は水素化脱硫脱窒素活性の所
望値の発生に必要な最低限の値であり、上限は、これ以
上添加量を増加しても水素化脱硫脱窒素活性の増加が見
込められないからである。
The above range of the active metal component is preferable because the lower limit of the active metal component is the minimum value required to generate the desired value of the hydrodesulfurization and denitrification activity, and the upper limit is the addition amount. This is because an increase in hydrodesulfurization and denitrification activity cannot be expected even if is increased.

【0013】このように製造された本発明触媒は、炭化
水素油の水素化脱硫脱窒素反応において、従来技術によ
って得られた触媒を硫化処理したものより優れた活性を
示す。その理由は、確言はし得ないが、硫化処理工程に
おいて、活性金属成分が硫化物形態に変るが、その際に
生成する粒子の凝集が防止でき、該硫化物の粒径が小さ
く、かつ、高分酸状態になっているためではないかと推
測されるものである。
The catalyst of the present invention thus produced exhibits a higher activity in the hydrodesulfurization and denitrification reaction of hydrocarbon oil than that obtained by subjecting the catalyst obtained by the prior art to sulfurization treatment. The reason for this cannot be assured, but in the sulfurization treatment step, the active metal component changes to a sulfide form, but it is possible to prevent aggregation of particles generated at that time, and the particle diameter of the sulfide is small, and It is presumed that it is because of the high acid state.

【0014】[0014]

【実施例】次に、本発明の実施例を述べる。 実施例 1 1) 酸化物担体の調製:内容積100lのかきまぜ機付
きステンレス製反応槽に、水49.5lと濃度50%の
グルコン酸溶液204g(加水分解で生成するAl
に対して0.05重量%)をいれ、70℃まで加熱し
て保持し、かきまぜながらAlとして774gを
含む硫酸アルミニウム水溶液9540gと、Al
として1275gを含むアルミン酸ナトリウム水溶液を
pH8.5〜9.0の範囲で同時又はほぼ同時に全量滴
下してpH8.8のアルミナ水和物スラリーを得た。次
に該スラリーを30分間熟成した後、NaOとして
0.1重量%以下、SOとして0.5重量%以下にな
るまでろ過・洗浄して得られたアルミナ水和物ケーキ5
000g(Alとして20重量%)に、ホウ酸1
97g(Bとして111g)を加え、加温ジャケ
ット付きニーダー中で加熱捏和し、B−Al
濃度として63重量%の可塑性のある捏和物を得、つ
いでこの捏和物を直径1.5mmφのダイスを有する押
出成型機によって成型し、乾燥後、電気炉で800℃で
2時間焼成してBとして10重量%を含むボリア
とアルミナとからなる酸化物触媒担体Aを得た。
EXAMPLES Next, examples of the present invention will be described. Example 1 1) Preparation of oxide carrier: In a stainless steel reaction tank with an internal volume of 100 l equipped with a stirrer, 49.5 l of water and 204 g of a gluconic acid solution having a concentration of 50% (Al 2 O produced by hydrolysis)
3 placed 0.05 wt%) with respect to, and held by heating to 70 ° C., and aqueous aluminum sulfate solution 9540g containing 774g as Al 2 O 3 with stirring, Al 2 O 3
As a result, an aqueous sodium aluminate solution containing 1275 g was added dropwise at the same time or almost at the same time in the range of pH 8.5 to 9.0 to obtain an alumina hydrate slurry having a pH of 8.8. Next, the slurry was aged for 30 minutes, and then filtered and washed until Na 2 O was 0.1 wt% or less and SO 4 was 0.5 wt% or less.
000 g (20% by weight as Al 2 O 3 ), 1 boric acid
97 g (111 g as B 2 O 3 ) was added, and the mixture was kneaded by heating in a kneader with a heating jacket, and B 2 O 3 -Al 2 O was added.
A kneaded product having a plasticity of 3 % by weight as a concentration of 3 was obtained, and then the kneaded product was molded by an extruder having a die having a diameter of 1.5 mmφ, dried, and then baked in an electric furnace at 800 ° C. for 2 hours. As a result, an oxide catalyst carrier A composed of boria containing 10% by weight of B 2 O 3 and alumina was obtained.

【0015】得られた酸化物触媒担体Aについて水銀圧
入法で細孔構造を測定した結果、平均細孔直径は100
オングストロームであり、平均細孔直径±10オングス
トロームの範囲の容積が、全細孔容積が占める容積の6
3%であった。
With respect to the obtained oxide catalyst carrier A, the pore structure was measured by the mercury porosimetry method. As a result, the average pore diameter was 100.
And the volume in the range of the average pore diameter ± 10 Å is 6 times the volume occupied by the total pore volume.
It was 3%.

【0016】2) 触媒の調製:三酸化モリブデン39.
7g、炭酸ニッケル13.4gを水50gに懸濁し、酒
石酸2.0gを添加して加熱下で溶解した後、冷却し、
触媒担体の吸水量に見合う液量に水で液量調節した含浸
液を1)で得た酸化物触媒担体A100gに含浸させ、2
時間放置後、110℃で16時間乾燥処理して触媒Jを
得た。得られた触媒Jの活性金属担持量は、MoO
7重量%、NiO5重量%であった。
2) Preparation of catalyst: molybdenum trioxide 39.
7 g and 13.4 g of nickel carbonate were suspended in 50 g of water, 2.0 g of tartaric acid was added and dissolved under heating, and then cooled,
100 g of the oxide catalyst carrier A obtained in 1) was impregnated with the impregnating solution whose water volume was adjusted to match the water absorption of the catalyst carrier, and 2
After being left for an hour, it was dried at 110 ° C. for 16 hours to obtain a catalyst J. The active metal supported amount of the obtained catalyst J was MoO 3 2
It was 7% by weight and 5% by weight of NiO.

【0017】3) 触媒の性能評価:得られた触媒Jにつ
いて、触媒充填量15mlの固定床流通反応槽を用い、
炭化水素の水素化脱硫・脱窒素活性を求めた。
3) Evaluation of catalyst performance: For the obtained catalyst J, a fixed bed flow reactor with a catalyst loading of 15 ml was used.
Hydrodesulfurization / denitrification activity of hydrocarbons was determined.

【0018】触媒の硫化条件は、ジメチルジサルファイ
ドを2.5重量%添加した軽油で水素/油供給比200
Nl/l、LHSV=2.0hr−1、圧力30Kg/
cmGの条件下100℃から315℃まで7時間かけ
て昇温し、保持して16時間予備硫化を行った。
The catalyst sulfurization conditions are as follows: Light oil containing 2.5% by weight of dimethyl disulfide added, hydrogen / oil supply ratio of 200
Nl / l, LHSV = 2.0 hr -1 , pressure 30 Kg /
The temperature was raised from 100 ° C. to 315 ° C. over 7 hours under the condition of cm 2 G, and the temperature was maintained and pre-sulfurized for 16 hours.

【0019】触媒の評価は、イオウ分1.15重量%、
窒素分68重量ppmを含むクエート常圧軽油を用い、
反応条件は、圧力30Kg/cmG、LHSV=2.
0hr−1、水素/油供給比300Nl/l、反応温度
350℃で行った。反応開始から50時間後の処理油中
のイオウ分及び窒素含有量を分析して、脱硫活性、脱窒
素活性を求め、結果を表1に示す。なお、イオウ分の分
析は、(株)堀場制作所製SLFA−920型を用い、
窒素分の分析は、三菱化成(株)製TN−05型を用い
て行った。
The catalyst was evaluated by sulfur content of 1.15% by weight,
Using quat atmospheric gas oil containing 68 ppm by weight of nitrogen,
The reaction conditions are as follows: pressure 30 Kg / cm 2 G, LHSV = 2.
It was carried out at 0 hr −1 , hydrogen / oil supply ratio of 300 Nl / l, and reaction temperature of 350 ° C. The sulfur content and nitrogen content in the treated oil 50 hours after the start of the reaction were analyzed to determine the desulfurization activity and denitrification activity, and the results are shown in Table 1. For analysis of sulfur content, SLFA-920 type manufactured by Horiba Ltd. was used.
The nitrogen content was analyzed using TN-05 type manufactured by Mitsubishi Kasei.

【0020】表1に示す脱硫活性は、後述する比較例で
得られた触媒Wを100としたときの反応速度定数の相
対活性値で示すこととし、速度次数は、脱硫反応速度が
原料油のイオウ濃度の1.75乗に比例するものとし
て、 Km=LHSV・(1/n−1)・{(1/Sn−1
−(1/Son−1)} の式を用いて求めた。ここに、nは、速度次数1.7
5、LHSVは、液空間速度(hr−1)、Sは、処理
油中のイオウ濃度(%)、Soは、原料油中のイオウ濃
度(%)である。
The desulfurization activity shown in Table 1 is shown by the relative activity value of the reaction rate constant when the catalyst W obtained in the comparative example described below is 100, and the rate order is the desulfurization reaction rate of the feed oil. As proportional to the 1.75th power of the sulfur concentration, Km = LHSV. (1 / n-1). {(1 / Sn-1 )
It was calculated using the formula − (1 / Son −1 )}. Here, n is the velocity order 1.7.
5, LHSV is the liquid hourly space velocity (hr −1 ), S is the sulfur concentration (%) in the treated oil, and So is the sulfur concentration (%) in the feed oil.

【0021】又、脱窒素活性は、触媒Wを100とした
ときの反応速度定数の相対活性値で示すこととし、速度
次数は、脱窒素反応速度が原料油の窒素濃度の1.0乗
に比例するものとして、Km=LHSV・1n(No/
N)の式を用いて求めた。LHSVは液空間速度(hr
−1)、Noは処理油中の窒素濃度(%)、Nは原料油
中の窒素濃度(%)である。
The denitrification activity is represented by the relative activity value of the reaction rate constant when the catalyst W is 100, and the rate order is such that the denitrification reaction rate is 1.0 power of the nitrogen concentration of the feed oil. As proportionality, Km = LHSV.1n (No /
It was determined using the formula of N). LHSV is the liquid hourly space velocity (hr
-1 ), No is the nitrogen concentration (%) in the treated oil, and N is the nitrogen concentration (%) in the feed oil.

【0022】触媒Wの脱硫・脱窒素活性を100とした
のは、この触媒は、従来の水素化処理触媒の製法にした
がって調製したものであるからである。 実施例 2 1) 酸化物触媒担体の調製:実施例1−1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を55gとした以外
は、実施例1−1)と同様にして酸化物触媒担体Bを得
た。平均細孔直径は、105オングストロームであり、
平均細孔直径±10オングストロームの範囲の容積が、
全細孔容積の65%であった。
The desulfurization / denitrification activity of the catalyst W was set to 100 because this catalyst was prepared according to the conventional method for producing a hydrotreating catalyst. Example 21 1) Preparation of oxide catalyst support: In the same manner as in Example 1-1) except that the addition amount of boric acid added to the alumina hydrate obtained in Example 1-1) was 55 g. Oxide catalyst carrier B was obtained. The average pore diameter is 105 Å,
Volumes in the range of average pore diameter ± 10 angstroms
It was 65% of the total pore volume.

【0023】2) 触媒の調製:1)で得た酸化物触媒担体
B100gを使用した以外は、実施例1−2)と同様にし
て触媒Kを得た。得られた触媒Kの活性金属担持量は、
MoOが27重量%、NiOが5重量%であった。
2) Preparation of catalyst: A catalyst K was obtained in the same manner as in Example 1-2) except that 100 g of the oxide catalyst carrier B obtained in 1) was used. The amount of active metal supported on the obtained catalyst K was
MoO 3 was 27% by weight and NiO was 5% by weight.

【0024】3) 触媒の性能評価:得られた触媒Kにつ
いて、実施例1−3)と同様にして性能評価を行い結果を
表に示す。 実施例 3 1) 酸化物触媒担体の調製:実施例1−1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を312gとした以
外は、実施例1−1)と同様にして酸化物触媒担体Cを得
た。平均細孔直径は、90オングストロームであり、平
均細孔直径±10オングストロームの範囲が、全細孔容
積が占める容積の60%を占めていた。
3) Evaluation of catalyst performance: The obtained catalyst K was evaluated for performance in the same manner as in Example 1-3), and the results are shown in the table. Example 3 1) Preparation of oxide catalyst support: In the same manner as in Example 1-1) except that the amount of boric acid added to the alumina hydrate obtained in Example 1-1) was 312 g. Oxide catalyst carrier C was obtained. The average pore diameter was 90 Å, and the range of the average pore diameter ± 10 Å occupied 60% of the volume occupied by the total pore volume.

【0025】2) 触媒の調製:1)で得られた酸化物触媒
担体100gを使用した以外は、実施例1−2)と同様に
処理して触媒Lを得た。触媒Lの活性金属担持量は、M
oO27重量%、NiO5重量%であった。
2) Preparation of catalyst: A catalyst L was obtained by treating in the same manner as in Example 1-2) except that 100 g of the oxide catalyst carrier obtained in 1) was used. The amount of active metal supported on the catalyst L is M
It was 27% by weight of oO 3 and 5% by weight of NiO.

【0026】3) 触媒の性能評価:得られた触媒Lにつ
いて、実施例1−3)と同様にして性能評価を行い結果を
表1に示す。 実施例 4 三酸化モリブデン32.0g、炭酸ニッケル18.2g
とし、実施例1−2)と同様にして含浸液を調製した以外
は、実施例1−3)と同様にして酸化物触媒担体A100
gに含浸させて同様にして触媒Sを得た。触媒Sの活性
金属担持量は、MoO23重量%、NiO7重量%で
あった。
3) Performance evaluation of catalyst: The performance of the obtained catalyst L was evaluated in the same manner as in Example 1-3), and the results are shown in Table 1. Example 4 32.0 g of molybdenum trioxide, 18.2 g of nickel carbonate
And the oxide catalyst support A100 was prepared in the same manner as in Example 1-3), except that the impregnation liquid was prepared in the same manner as in Example 1-2).
A catalyst S was obtained in the same manner by impregnating g. The active metal loadings of catalyst S were 23% by weight of MoO 3 and 7% by weight of NiO.

【0027】得られた触媒Sについて、実施例1−3)と
同様にして性能評価を行い結果を表1に示す。 実施例 5 三酸化モリブデン23.1g、炭酸ニッケル9.3とし
た以外は、実施例4と同様にして触媒Tを得た。触媒T
の活性金属担持量は、MoO18重量%、NiO4重
量%であった。
The performance of the obtained catalyst S was evaluated in the same manner as in Example 1-3), and the results are shown in Table 1. Example 5 A catalyst T was obtained in the same manner as in Example 4 except that 23.1 g of molybdenum trioxide and 9.3 nickel carbonate were used. Catalyst T
The amount of active metal supported was 18% by weight of MoO 3 and 4% by weight of NiO.

【0028】得られた触媒Tについて、実施例1−3)と
同様にして性能評価を行い結果を表1に示す。 実施例 6 実施例1−2)における炭酸ニッケルの代りに、炭酸コバ
ルト13.4gを使用した以外は、実施例1と同様に処
理して触媒Vを得た。触媒Vの活性金属担持量は、Mo
27重量%、CoO5重量%であった。
The performance of the obtained catalyst T was evaluated in the same manner as in Example 1-3), and the results are shown in Table 1. Example 6 A catalyst V was obtained by treating in the same manner as in Example 1 except that 13.4 g of cobalt carbonate was used instead of the nickel carbonate in Example 1-2). The amount of active metal supported on the catalyst V is Mo.
It was 27% by weight of O 3 and 5% by weight of CoO.

【0029】得られた触媒Vについて、実施例1−3)と
同様にして性能評価を行い結果を表1に示す。 比較例 1 1) 触媒担体の調製:実施例1−1)と同様にして得たア
ルミナ水和物スラリーをろ過・洗浄して得られたアルミ
ナ水和物ケーキ2500gを加温ジャケット付きニーダ
ー中で加熱捏和し、Al濃度として60重量%の
可塑性のある捏和物を得、ついでこの捏和物を直径1.
5mmφのダイスを有する押出成型機によって成型して
乾燥後、電気炉で500℃で2時間焼成してアルミナ触
媒担体Dを得た。平均細孔直径は100オングストロー
ムであり、平均細孔直径±10オングストロームの範囲
の容積が、全細孔容積の65%を占めていた。
The performance of the obtained catalyst V was evaluated in the same manner as in Example 1-3), and the results are shown in Table 1. Comparative Example 1 1) Preparation of catalyst carrier: 2500 g of an alumina hydrate cake obtained by filtering and washing the alumina hydrate slurry obtained in the same manner as in Example 1-1) was placed in a kneader with a heating jacket. The mixture was heated and kneaded to obtain a kneaded product having a plasticity of 60% by weight as an Al 2 O 3 concentration, and then the kneaded product had a diameter of 1.
The alumina catalyst carrier D was obtained by molding with an extruder having a 5 mmφ die, drying, and firing at 500 ° C. for 2 hours in an electric furnace. The average pore diameter was 100 Å, and the volume in the range of the average pore diameter ± 10 Å occupied 65% of the total pore volume.

【0030】2) 触媒の調製:1)で得た触媒担体Dを使
用した以外は、実施例1−2)と同様に処理して触媒Mを
得た。活性金属担持量は、MoOが27重量%、Ni
Oが5重量%であった。
2) Preparation of catalyst: A catalyst M was obtained by treating in the same manner as in Example 1-2) except that the catalyst carrier D obtained in 1) was used. The amount of active metal supported is 27% by weight of MoO 3 and Ni.
O was 5% by weight.

【0031】3) 触媒の性能評価:触媒Mについて、実
施例1−1)と同様にして性能評価を行い結果を表2に示
す。 比較例 2 1) 触媒担体の調製:反応槽内にグルコン酸を添加しな
かった以外は、実施例1−1)と同様に処理して、B
として10重量%を含むボリアとアルミナとからなる
触媒担体Eを得た。触媒担体Eの平均細孔直径は97オ
ングストロームであり、平均細孔直径±10オングスト
ロームの範囲の容積が、全細孔容積の45%であった。
3) Evaluation of catalyst performance: With respect to the catalyst M, performance evaluation was performed in the same manner as in Example 1-1), and the results are shown in Table 2. Comparative Example 2 1) Preparation of catalyst carrier: B 2 O was treated in the same manner as in Example 1-1) except that gluconic acid was not added to the reaction tank.
As 3 was obtained a catalyst carrier E consisting of boria containing 10% by weight and alumina. The average pore diameter of the catalyst carrier E was 97 Å, and the volume in the range of the average pore diameter ± 10 Å was 45% of the total pore volume.

【0032】2) 触媒の調製及び性能評価:触媒担体E
を使用した以外は、実施例1−2)と同様に処理して触媒
Nを得た。得られた触媒Nについて、実施例1−3)と同
様にして性能評価を行い結果を表2に示す。 比較例 3 1) 触媒担体の調製:実施例1−1)と同様にして得た成
型乾燥体の焼成温度を500℃として触媒担体Fを得
た。触媒担体Fの平均細孔直径は、73オングストロー
ムであり、平均細孔直径±10オングストロームの範囲
の容積が、全細孔容積の64%であった。
2) Preparation of catalyst and performance evaluation: Catalyst carrier E
A catalyst N was obtained by the same treatment as in Example 1-2) except that was used. The performance of the obtained catalyst N was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 3 1) Preparation of catalyst carrier: A catalyst carrier F was obtained by setting the calcining temperature of the molded dried body obtained in the same manner as in Example 1-1) to 500 ° C. The average pore diameter of the catalyst carrier F was 73 Å, and the volume within the range of the average pore diameter ± 10 Å was 64% of the total pore volume.

【0033】2) 触媒の調製及び性能評価:触媒担体F
を使用した以外は、実施例1−2)と同様に処理して触媒
Oを得た。得られた触媒Oについて、実施例1−3)と同
様にして性能試験を行い結果を表2に示す。 比較例 4 1) 触媒担体の調製:実施例1−1)と同様にして得た成
型乾燥体の焼成温度を900℃として触媒担体Gを得
た。触媒担体Gの平均細孔直径は、115オングストロ
ームであり、平均細孔直径±10オングストロームの範
囲の容積が、全細孔容積の63%であった。
2) Preparation of catalyst and performance evaluation: Catalyst carrier F
A catalyst O was obtained by treating in the same manner as in Example 1-2) except that was used. A performance test was conducted on the obtained catalyst O in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 4 1) Preparation of catalyst carrier: A catalyst carrier G was obtained by setting the calcining temperature of the dried molded product obtained in the same manner as in Example 1-1) to 900 ° C. The average pore diameter of the catalyst carrier G was 115 Å, and the volume in the range of average pore diameter ± 10 Å was 63% of the total pore volume.

【0034】2) 触媒の調製及び性能評価:触媒担体G
を使用した以外は、実施例1−2)と同様に処理して触媒
Pを得た。得られた触媒Pについて、実施例1−3)と同
様にして性能評価を行い結果を表2に示す。 比較例 5 1) 触媒担体の調製:実施例1−1)と同様にして得たア
ルミナ水和物に添加するホウ酸の添加量を18gに変え
た以外は同様に処理して、Bとして1重量%を含
むボリアとアルミナとからなる触媒担体Hを得た。触媒
担体Hの平均細孔直径は、104オングストロームであ
り、平均細孔直径±10オングストロームの範囲の容積
が、全細孔容積の66%であった。
2) Preparation of catalyst and performance evaluation: Catalyst carrier G
A catalyst P was obtained by treating in the same manner as in Example 1-2) except that was used. The performance of the obtained catalyst P was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 5 1) Preparation of catalyst carrier: B 2 O was treated in the same manner except that the amount of boric acid added to the alumina hydrate obtained in the same manner as in Example 1-1) was changed to 18 g. As 3 was obtained a catalyst carrier H consisting of boria containing 1% by weight and alumina. The average pore diameter of the catalyst carrier H was 104 Å, and the volume within the range of the average pore diameter ± 10 Å was 66% of the total pore volume.

【0035】2) 触媒の調製及び性能評価:触媒担体H
を使用した以外は、実施例1−2)と同様に処理して触媒
Qを得た。得られた触媒Qについて、実施例1−3)と同
様にして性能評価を行い結果を表2に示す。 比較例 6 1) 触媒担体の調製:実施例1−1)と同様にして得たア
ルミナ水和物に添加するホウ酸の添加量を443gとし
た以外は同様に処理して、Bとして20重量%を
含むボリアとアルミナとからなる触媒担体Iを得た。触
媒担体Iの平均細孔直径は、83オングストロームであ
り、平均細孔直径±10オングストロームの範囲の容積
が、全細孔容積の60%であった。
2) Preparation of catalyst and performance evaluation: Catalyst carrier H
Was treated in the same manner as in Example 1-2) except that the catalyst Q was used. The performance of the obtained catalyst Q was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 6 1) Preparation of catalyst carrier: B 2 O 3 was treated in the same manner except that the amount of boric acid added to the alumina hydrate obtained in the same manner as in Example 1-1) was 443 g. As a result, a catalyst carrier I composed of boria containing 20% by weight and alumina was obtained. The average pore diameter of the catalyst carrier I was 83 Å, and the volume in the range of the average pore diameter ± 10 Å was 60% of the total pore volume.

【0036】2) 触媒の調製及び性能評価:触媒担体I
を使用した以外は、実施例1−2)と同様に処理して触媒
Rを得た。得られた触媒Rについて、実施例1−3)と同
様にして性能評価を行い結果を表2に示す。 比較例 7 三酸化モリブデン18.3g、炭酸ニッケル6.7gと
した以外は、実施例1−2)と同様にして触媒Uを得た。
触媒Uについて、実施例1−3)と同様にして性能評価を
行い結果を表2に示す。 比較例 8 実施例1で得た乾燥状態の触媒Aを500℃で2時間焼
成して触媒Wを得た。触媒Wについて実施例1−3)と同
様にして性能評価を行い結果を表2に示す。
2) Preparation of catalyst and performance evaluation: Catalyst support I
A catalyst R was obtained by treating in the same manner as in Example 1-2) except that was used. The performance of the obtained catalyst R was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 7 A catalyst U was obtained in the same manner as in Example 1-2) except that 18.3 g of molybdenum trioxide and 6.7 g of nickel carbonate were used.
The performance of the catalyst U was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2. Comparative Example 8 The catalyst A in the dried state obtained in Example 1 was calcined at 500 ° C. for 2 hours to obtain a catalyst W. The performance of the catalyst W was evaluated in the same manner as in Example 1-3), and the results are shown in Table 2.

【0037】[0037]

【表1】 [Table 1]

【表2】 これらの結果から、本発明触媒である触媒J、K、L
は、酸化物に換算したモリブデン、ニッケルの含有量が
同一であり、酸化物触媒担体のボリアとアルミナの組成
比及び平均細孔直径及び細孔分布、活性金属担持量に関
して、いずれも本発明の範囲を満足するもので高い脱硫
・脱窒素活性を示すことが明らかである。
[Table 2] From these results, the catalysts of the present invention, catalysts J, K and L
The content of molybdenum and nickel converted to oxides is the same, and with respect to the composition ratio of boria and alumina of the oxide catalyst support, the average pore diameter and pore distribution, and the active metal supported amount, all of the present invention It is clear that when the content is within the range, high desulfurization and denitrification activity is exhibited.

【0038】触媒Mは、活性金属成分の担持量及び触媒
担体の平均細孔直径及び細孔分布に関しては、いずれも
本発明の範囲に入るが、触媒担体成分中にボリアが含ま
れていないために、触媒Mの脱硫活性は高いが、脱窒素
活性がいちじるしく低い値を示している。
The catalyst M is within the scope of the present invention with respect to the amount of the active metal component supported and the average pore diameter and pore distribution of the catalyst carrier, but since the catalyst carrier component does not contain boria. Moreover, although the desulfurization activity of the catalyst M is high, the denitrification activity is extremely low.

【0039】触媒Nは、活性金属成分の担持量及び触媒
担体のボリアとアルミナとの組成比については本発明の
範囲に入るが、触媒担体の平均細孔直径±10オングス
トロームの細孔容積/全細孔容積(%)値が45%しか
なく、細孔分布が広いので、この触媒Nの脱硫・脱窒素
活性は、細孔分布の狹い触媒Jより低い値を示してい
る。
The catalyst N is within the scope of the present invention in terms of the amount of the active metal component supported and the composition ratio of boria and alumina of the catalyst carrier, but the mean pore diameter of the catalyst carrier is ± 10 angstroms / total pore volume. Since the pore volume (%) value is only 45% and the pore distribution is wide, the desulfurization / denitrification activity of this catalyst N is lower than that of the narrow catalyst J of pore distribution.

【0040】触媒O、Pは、触媒担体のボリアとアルミ
ナとの組成比、平均細孔直径±10オングストロームの
細孔容積/全細孔容積(%)値、及び、活性金属成分の
担持量に関してはいずれも本発明の範囲に入るが、触媒
担体の平均細孔直径が本発明の範囲外であるために、触
媒O、Pの脱硫・脱窒素活性は触媒Jより低い値を示し
ている。
The catalysts O and P are related to the composition ratio of boria and alumina of the catalyst carrier, the average pore diameter ± 10 angstrom pore volume / total pore volume (%) value, and the amount of the active metal component supported. Both are within the scope of the present invention, but the desulfurization / denitrification activities of catalysts O and P are lower than those of catalyst J because the average pore diameter of the catalyst carrier is outside the scope of the present invention.

【0041】触媒Q、Rは、触媒担体の平均細孔直径及
び細孔分布、活性金属成分の担持量に関してはいずれも
本発明の範囲に入るが、触媒担体のボリアとアルミナと
の組成比が本発明の範囲外であるために、触媒Q、Rの
脱硫・脱窒素活性は、触媒Jより低い値を示している。
The catalysts Q and R are all within the scope of the present invention with respect to the average pore diameter and pore distribution of the catalyst carrier and the amount of the active metal component supported, but the composition ratio of boria to alumina of the catalyst carrier is large. Since they are outside the scope of the present invention, the desulfurization / denitrification activities of the catalysts Q and R are lower than those of the catalyst J.

【0042】触媒S、Tは、本発明の触媒であって、酸
化物触媒担体のボリアとアルミナとの組成比及び平均細
孔直径及び細孔分布に関しては本発明の範囲を満足する
ものであるが、酸化物に換算したモリブデン、ニッケル
の含有量を変えたものであり、触媒Sは、触媒Jに比較
してモリブデンを減らし、ニッケルを増した触媒であ
り、触媒Tは、触媒Jに比較し、モリブデン、ニッケル
を減らした触媒であるが、本発明の範囲内であり、十分
に高い脱硫・脱窒素活性を有している。
The catalysts S and T are the catalysts of the present invention, and satisfy the ranges of the present invention with respect to the composition ratio of boria and alumina of the oxide catalyst carrier, the average pore diameter and the pore distribution. Is different in the content of molybdenum and nickel converted to oxides, the catalyst S is a catalyst in which molybdenum is reduced and nickel is increased compared to the catalyst J, and the catalyst T is compared to the catalyst J. However, the catalyst has reduced molybdenum and nickel, but is within the scope of the present invention and has sufficiently high desulfurization / denitrification activity.

【0043】触媒Uは、触媒Jに比較してモリブデン、
ニッケルをさらに減らした触媒であるが、活性金属成分
含有量が本発明の範囲外であるために、脱硫・脱窒素活
性がともに低い値を示している。
Compared to catalyst J, catalyst U contains molybdenum,
Although it is a catalyst in which nickel is further reduced, the desulfurization and denitrification activities both show low values because the active metal component content is outside the range of the present invention.

【0044】本発明の触媒である触媒Vは、酸化物触媒
担体のボリアとアルミナとの組成比及び平均細孔直径及
び細孔分布、活性金属成分担持量に関してはもちろん本
発明の範囲に入っており、活性金属としてモリブデン、
コバルトを担持したものである。ニッケルの代りにコバ
ルトを担持させても、脱硫・脱窒素活性とともに高いこ
とが明らかである。
The catalyst V of the present invention falls within the scope of the present invention with respect to the composition ratio of boria and alumina of the oxide catalyst carrier, the average pore diameter and the pore distribution, and the amount of the active metal component supported. And molybdenum as the active metal,
It carries cobalt. It is clear that even when cobalt is supported instead of nickel, it has high desulfurization and denitrification activities.

【0045】触媒Wは、触媒担体のボリアとアルミナの
組成比、平均細孔直径及び細孔分布活性金属成分の担持
量に関してはいずれも本発明の範囲に入るが、焼成した
触媒である。
The catalyst W is a calcined catalyst, although the composition ratio of boria to alumina of the catalyst carrier, the average pore diameter and the amount of the active metal component having pore distribution are all within the scope of the present invention.

【0046】[0046]

【発明の効果】本発明は、特定の酸化物触媒担体に活性
金属を担持し、乾燥物としたので、従来提案されている
水素化脱硫・脱窒素触媒に較べて、効率よく脱硫・脱窒
素を同時に行い得るものであって、本発明触媒を使用す
ることによって、イオウ含有量、窒素含有量の低い燃料
を製造し得るなど顕著な効果が認められる。
INDUSTRIAL APPLICABILITY According to the present invention, an active metal is supported on a specific oxide catalyst carrier to obtain a dried product, so that desulfurization / denitrogenation is performed more efficiently than the conventionally proposed hydrodesulfurization / denitrogenation catalyst. By using the catalyst of the present invention, remarkable effects such as the ability to produce a fuel having a low sulfur content and a low nitrogen content are recognized.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ボリアとアルミナとからなる酸化物触媒
担体に活性金属成分として周期律表第VIa族金属及び第
VIII族金属それぞれの少なくとも1種類を担持した乾燥
物であることを特徴とする水素化脱硫脱窒素用触媒。
1. A group VIa metal and a group VIa metal of the periodic table as active metal components in an oxide catalyst carrier composed of boria and alumina.
A catalyst for hydrodesulfurization and denitrification, which is a dried product carrying at least one kind of each of Group VIII metals.
【請求項2】 ボリアとアルミナとからなる酸化物触媒
担体のボリアの含有量がBとして3〜15重量%
の範囲であり、該酸化物触媒担体の物理性状が水銀圧入
法で測定した細孔分布で平均細孔直径が80〜110オ
ングストロームであり、かつ、平均細孔直径±10オン
グストロームの範囲の細孔容積が全細孔容積の60%以
上であることを特徴とする請求項1記載の水素化脱硫脱
窒素用触媒。
2. The oxide catalyst carrier comprising boria and alumina having a boria content of 3 to 15% by weight as B 2 O 3.
In which the average physical diameter of the oxide catalyst support is 80 to 110 angstroms in the pore distribution measured by mercury porosimetry, and the average pore diameter is ± 10 angstroms. The catalyst for hydrodesulfurization and denitrification according to claim 1, wherein the volume is 60% or more of the total pore volume.
【請求項3】 活性金属成分としての周期律表第VIa族
金属はモリブデンであり、第VIII族金属がニッケル及び
コバルトのうちの少なくとも1種であり、担持量が、モ
リブデンが酸化物換算で17〜28重量%であり、ニッ
ケル及びコバルトのうちの少なくとも1種が酸化物換算
で3〜8重量%であることを特徴とする請求項1又は2
記載の水素化脱硫脱窒素用触媒。
3. The metal of Group VIa of the periodic table as an active metal component is molybdenum, the metal of Group VIII is at least one of nickel and cobalt, and the loading amount of molybdenum is 17 in terms of oxide. 3 to 8% by weight, and at least one of nickel and cobalt is 3 to 8% by weight in terms of oxide.
A catalyst for hydrodesulfurization and denitrification according to the description.
【請求項4】 アルミナ水和物にホウ酸を添加して混練
し、成型し、乾燥し、焼成して得た酸化物触媒担体に、
活性金属成分として周期律表第VIa族金属及び第VIII族
金属それぞれの少なくとも1種を担持させ、乾燥処理し
て乾燥物状態とすることを特徴とする水素化脱硫脱窒素
用触媒の製造方法。
4. An oxide catalyst support obtained by adding boric acid to alumina hydrate, kneading, molding, drying and firing,
A method for producing a catalyst for hydrodesulfurization and denitrification, comprising supporting at least one metal selected from Group VIa metals and Group VIII metals of the periodic table as an active metal component, and drying the mixture to obtain a dried product.
【請求項5】 酸化物触媒担体のボリアの含有量がB
として3〜15重量%であり、該酸化物触媒担体の
物理性状が水素圧入法によって測定した細孔分布で平均
細孔直径が80〜110オングストロームであり、か
つ、平均細孔直径±10オングストロームの範囲の細孔
容積が全細孔容積の60%以上であることを特徴とする
請求項4記載の水素化脱硫脱窒素用触媒の製造方法。
5. The boric acid content of the oxide catalyst support is B 2
O 3 is 3 to 15% by weight, the physical property of the oxide catalyst carrier is 80 to 110 angstroms in the pore distribution measured by the hydrogen injection method, and the average pore diameter is ± 10. The method for producing a catalyst for hydrodesulfurization and denitrification according to claim 4, wherein the pore volume in the range of angstrom is 60% or more of the total pore volume.
【請求項6】 活性金属成分としての周期律表第VIa族
金属がモリブデンであり、第VIII族金属がニッケル及び
コバルトのうちの少なくとも1種であり、担持量がモリ
ブデンが酸化物換算で17〜28重量%であり、ニッケ
ル及びニッケルのうち少なくとも1種が酸化物換算で3
〜8重量%であることを特徴とする請求項4又は5記載
の水素化脱硫脱窒素用触媒の製造方法。
6. The Group VIa metal of the periodic table as an active metal component is molybdenum, the Group VIII metal is at least one of nickel and cobalt, and the supported amount of molybdenum is 17 to 10 in terms of oxide. 28% by weight, and at least one of nickel and nickel is 3 in terms of oxide.
The method for producing a catalyst for hydrodesulfurization and denitrification according to claim 4 or 5, characterized in that the content is -8% by weight.
JP5043289A 1993-02-08 1993-02-08 Catalyst for hydrodesulfurization/denitrification and its preparation Pending JPH06226102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043289A JPH06226102A (en) 1993-02-08 1993-02-08 Catalyst for hydrodesulfurization/denitrification and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043289A JPH06226102A (en) 1993-02-08 1993-02-08 Catalyst for hydrodesulfurization/denitrification and its preparation

Publications (1)

Publication Number Publication Date
JPH06226102A true JPH06226102A (en) 1994-08-16

Family

ID=12659647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043289A Pending JPH06226102A (en) 1993-02-08 1993-02-08 Catalyst for hydrodesulfurization/denitrification and its preparation

Country Status (1)

Country Link
JP (1) JPH06226102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026866A1 (en) * 1996-12-18 1998-06-25 Petroleum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174432B1 (en) 1995-12-18 2001-01-16 Petroeum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
WO1998026866A1 (en) * 1996-12-18 1998-06-25 Petroleum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same

Similar Documents

Publication Publication Date Title
CN100496719C (en) Heavy fractional oil hydrogenation catalyst and production thereof
JP4643805B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
CN1169337A (en) Catalyst treated by distillate added with hydrogen and preparation method thereof
JP2002028491A (en) Formed catalyst for hydrogenation treatment and producing method thereof
JPH10296091A (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JPH06226102A (en) Catalyst for hydrodesulfurization/denitrification and its preparation
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
JP2817558B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP3263940B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oils
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP3303533B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JPH04166233A (en) Production of catalyst for hydrogenation treatment
JPH07155615A (en) Hydrodesulfurizing/hydrodenitrifying catalyst and production thereof
JP2000328067A (en) Hydrogenation catalyst for medium-gravity distllate of coal liquefation oil
CN1448477A (en) Heavy raw oil hydrogenating treatment catalyst and its preparing method
JPH07299364A (en) Catalyst for hydrodesulfurization and denitrification and its production
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method