JPH06223835A - ガス拡散電極 - Google Patents

ガス拡散電極

Info

Publication number
JPH06223835A
JPH06223835A JP5008355A JP835593A JPH06223835A JP H06223835 A JPH06223835 A JP H06223835A JP 5008355 A JP5008355 A JP 5008355A JP 835593 A JP835593 A JP 835593A JP H06223835 A JPH06223835 A JP H06223835A
Authority
JP
Japan
Prior art keywords
gas supply
supply layer
diffusion electrode
gas diffusion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5008355A
Other languages
English (en)
Inventor
Taizo Yamamoto
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP5008355A priority Critical patent/JPH06223835A/ja
Publication of JPH06223835A publication Critical patent/JPH06223835A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

(57)【要約】 【目的】 ガス拡散電極はガスが侵入する通路を確保す
るためにその厚みが厚く構成されており、しかも、絶縁
性結着剤が多く含まれているために、導電性が劣ってい
た。そこで、導電性の改善されたガス拡散電極を提供す
る。 【構成】 ガス供給層4、触媒層3、及び集電板5より
ガス拡散電極が構成される。触媒層3は、ガス供給層4
の一方の側に接合され、集電板5はガス供給層4の他方
の側に接合されている。このガス供給層4中には、良導
性かつ耐蝕性のある金属又は金属酸化物の微粉末が含有
されている。このガス拡散電極は集電する際の比抵抗が
低いものとなる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、集電抵抗を減少させた
燃料電池、二次電池、電気化学的リアクター、電解用電
極に適用できるガス拡散電極に関する。
【0002】
【従来の技術】燃料電池等に用いられるガス拡散電極の
一般的な構造を図1に示す。図1中、11はガス供給
層、12は触媒層、13は集電板であり、ガス供給層1
1の一方の側に触媒層12が接合され、ガス供給層11
の他方の側に集電板13が接合された構造をもってい
る。このガス供給層11の構成材料には撥水性カーボン
と絶縁性結着材とが使用されており、触媒層12の構成
材料には触媒を付着させた親水性カーボンと絶縁性結着
材等とが使用されている。このようなガス拡散電極は、
例えば、特開昭63−245863号公報、特開昭62
−29069号公報、特開昭62−154571号公報
等に示されている。
【0003】
【発明が解決しようとする課題】触媒層とガス供給層と
の接合部分で発生した電気をガス供給層に接合された集
電板により効率よく集電するためには、ガス供給層が低
抵抗でなければならない。しかしながら、ガス供給層は
ガスが侵入する通路を確保する必要のためにその層厚み
が厚く構成されており、しかも、絶縁性結着剤が多く含
まれているために、ガス拡散層の導電性が劣るという問
題点があった。
【0004】そこで本発明は、導電性の改善されたガス
拡散電極を提供することを目的とする。
【0005】
【課題を解決するための手段】前記した問題点を解決す
るために本発明は、ガス供給層、触媒層、及び集電板よ
り構成され、該ガス供給層の一方の側に前記触媒層が接
合され、該ガス供給層の他方の側に前記集電板が接合さ
れた構造をもつ燃料電池用ガス拡散電極において、ガス
供給層中に電気良導性かつ耐蝕性のある金属又は金属酸
化物の微粉末を含有させることにより集電抵抗を減少さ
せたことを特徴とするガス拡散電極とするものである。
【0006】
【作用】カーボン粉末(黒鉛)とRuO2 とでは、比抵
抗が30倍位カーボンの方が大きいので、ガス供給層中
に電気良導性かつ耐蝕性のある金属又は金属酸化物の微
粉末を含有させることにより、ガス拡散電極の集電抵抗
を減少させることができる。
【0007】
【実施例1】本発明において使用される金属又は金属酸
化物には、電気良導性かつ耐蝕性を有するものが適して
おり、例えば、それら名称及びそれらの一般的な抵抗値
(比抵抗)を例示すれば、RuO2 (3−5×10-5Ω
・cm)、IrO2 (3−6×10-5Ω・cm)、Os
2 (6×10-5Ω・cm)、Ru(7×10-6Ω・c
m)、Ta(12.5×10-6Ω・cm)、Mo(5.
2×10-6Ω・cm)等が挙げられる。
【0008】金属又は金属酸化物を添加する意義は、こ
れらの抵抗値は電極材料であるカーボン粉末に比べて非
常に小さく、例えば、RuO2 では、カーボン粉末(黒
鉛の場合)に比べて比抵抗が30分の1程度で比抵抗が
小さく、またカーボン粉末(黒鉛の場合)に比べて比重
が小さく、製造される電極の厚みを小さくできる点であ
る。
【0009】次に本発明を図に基づいてさらに詳細に説
明する。図2は、本発明のガス拡散電極を用いたメタノ
ール燃料電池の一例を示す。図2中、6はガス拡散電極
からなるメタノール極であり、7はそれに対向する空気
極である。メタノール極6と空気極7との間は、電解質
室8が形成され、メタノール極6の他方の側に燃料室9
が、また空気極7の他方の側には空気室10が形成され
ている。
【0010】図3に、図2中のAの部分の拡大を示す。
ガス拡散電極であるメタノール極6は、図3に示すよう
に触媒層3(左半分)と、ガス供給層4(右半分)と集
電板5とからなる。前記触媒層3は、触媒2を担持した
導電性多孔質体または微粉体に絶縁性撥水性樹脂を分散
混合して結着することにより半撥水性の多孔質体又は微
粉体の触媒層3が得られる。この触媒層3には電解液を
含浸することのできる親水性部分と、ガス通路となる撥
水性部分とから構成される。
【0011】前記ガス供給層4は、触媒2を担持してい
ない導電性多孔質体または微粉体に撥水性樹脂を分散混
合し、さらにこの混合物に電気良導性かつ耐蝕性のある
金属又は金属酸化物の微粉末を添加することにより得ら
れる。本発明のガス拡散電極は、上記触媒層3とガス供
給層4およびSUS製の集電板5の3者が、まずコール
ドプレスされて接合され、さらにこれらをホットプレス
して接合することにより形成される。
【0012】前記撥水性樹脂としてはポリテトラフルオ
ロエチレン(PTFEと略す)等が用いられ、導電性微
粉体としては、カーボンブラック等が用いられる。さら
にPTFEとカーボンブラックの混合物に電気良導性か
つ耐蝕性のある金属又は金属酸化物の微粉末(Ru
2 、IrO2 、OsO2 、Ru、Ta、Mo等)を添
加する。
【0013】この電気良導性かつ耐蝕性のある金属又は
金属酸化物の微粉末の添加量は、PTFEとカーボンブ
ラックの混合物に対して、重量比を約10%とすると集
電抵抗がもっとも低くなり最適である。 (1)RuO2 微粉末添加ガス供給層作成法 撥水性カーボンブラック微粉末とPTFE微粉末を重量
比3.5:6.5を予め水に分散させておき、水を溶媒
として超音波分散させ、原料分散液を得た。
【0014】次に、この原料分散液を濾過し、乾燥して
ケーキを作成した。平均粒径1〜3μmのRuO2 微粉
末を前記乾燥ケーキの全体重量に対して、添加量がそれ
ぞれ0,5,10,15,20重量%となるように添加
して、添加量が異なる5種類のものをそれぞれ調製し、
混練したのち圧延してシート状に成形し、乾燥させた。
【0015】(2)触媒層用原料調製法 Ptが担持された親水性カーボンブラック微粉末と、P
TFEが担持された撥水性カーボンブラック微粉末を
6:4の重量比でミキサーで混合した。 (3)電極組立法 前記(1)で作成されたガス供給層のシートとSUS製
集電板とを400kg/cm2 にてコールドプレスした
後、ガス供給層の上に前記(2)で調製した触媒層(粉
末混合物)を重ね、100kg/cm2 にて再度コール
ドプレスを行う。
【0016】上記SUS製集電板には、特願平4−22
3737号に記載された集電板、即ち、複数個の導電性
の網状開口部と導電性の板状部を備え該板状部が前記開
口部周縁を形成するように構成された集電板を用いる。
次に、各層中に含まれている結着剤すなわちPTFEを
溶かして電極全体を固定する目的で、電極全体を345
℃、5kg/cm2 にてホットプレスする。
【0017】(4)抵抗値の比較データ ガス供給層に前記のとおり、RuO2 微粉末を乾燥ケー
キの全体重量に対して、添加量がそれぞれ5,10,1
5,20重量%となる添加量の電極材料により製造され
た電極と、RuO2 微粉末の無添加の材料により製造さ
れた電極の電極全体としての抵抗値を2M H2 SO4
中での電流遮断法により求めたところ、次の表1に示す
ような比抵抗値が得られた。なお、この場合の測定値は
電極の厚みを考慮せず、面積抵抗値(単位;Ω・c
2 )を得た。また表1の実験結果を図4にグラフとし
て示した。
【0018】
【表1】
【0019】表1によれば、RuO2 微粉末の乾燥ケー
キの全体重量に対する添加量が、次第に多くなると比抵
抗値が減少し、10重量%の時に最小の比抵抗値が得ら
れた。また、RuO2 微粉末の添加量が10重量%を越
えると次第に比抵抗値が高くなり、さらに添加量が15
重量%を越える場合には、添加しない場合よりも抵抗値
が上がってしまうので添加する効果はないことがわか
る。
【0020】
【発明の効果】電解液に侵されず、集電する際の比抵抗
のより低い燃料電池用ガス拡散電極を提供することがで
きる。
【図面の簡単な説明】
【図1】燃料電池等に用いられるガス拡散電極の一般的
な構造を示す。
【図2】本発明のガス拡散電極を用いたメタノール燃料
電池の一例を示す。
【図3】本発明のガス拡散電極を示す。
【図4】RuO2 微粉末の添加量に対する比抵抗に及ぼ
す添加効果を示すグラフ。
【符号の説明】
1 CO2 2 触媒 3 触媒層 4 ガス供給層 5 集電板 6 メタノール極 7 空気極 8 電解質室 9 燃料室 10 空気室

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 ガス供給層、触媒層、及び集電板より構
    成され、該ガス供給層の一方の側に前記触媒層が接合さ
    れ、該ガス供給層の他方の側に前記集電板が接合された
    構造をもつ燃料電池用ガス拡散電極において、ガス供給
    層中に電気良導性かつ耐蝕性のある金属又は金属酸化物
    の微粉末を含有させることにより集電抵抗を減少させた
    ことを特徴とするガス拡散電極。
JP5008355A 1993-01-21 1993-01-21 ガス拡散電極 Pending JPH06223835A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5008355A JPH06223835A (ja) 1993-01-21 1993-01-21 ガス拡散電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5008355A JPH06223835A (ja) 1993-01-21 1993-01-21 ガス拡散電極

Publications (1)

Publication Number Publication Date
JPH06223835A true JPH06223835A (ja) 1994-08-12

Family

ID=11690928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5008355A Pending JPH06223835A (ja) 1993-01-21 1993-01-21 ガス拡散電極

Country Status (1)

Country Link
JP (1) JPH06223835A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020358A1 (de) * 1995-11-28 1997-06-05 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Gasdiffusionselektrode für polymerelektrolytmembran-brennstoffzellen
JP2003027269A (ja) * 2001-07-11 2003-01-29 Choichi Furuya 触媒含有ガス拡散電極
WO2003049935A1 (fr) * 2001-12-13 2003-06-19 Beijing Meiliyuan Tech. Co., Ltd Feuille de micropoudre compacte inorganique, son procede de production et produit ainsi obtenu
JP2009152143A (ja) * 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
WO2012023535A1 (ja) * 2010-08-16 2012-02-23 Matsumoto Hiroshige 水電解セル
JP2020105617A (ja) * 2018-12-28 2020-07-09 富士電機株式会社 調湿素子及び調湿ユニット

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020358A1 (de) * 1995-11-28 1997-06-05 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Gasdiffusionselektrode für polymerelektrolytmembran-brennstoffzellen
JP2003027269A (ja) * 2001-07-11 2003-01-29 Choichi Furuya 触媒含有ガス拡散電極
WO2003049935A1 (fr) * 2001-12-13 2003-06-19 Beijing Meiliyuan Tech. Co., Ltd Feuille de micropoudre compacte inorganique, son procede de production et produit ainsi obtenu
JP2009152143A (ja) * 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
WO2012023535A1 (ja) * 2010-08-16 2012-02-23 Matsumoto Hiroshige 水電解セル
JP2012041578A (ja) * 2010-08-16 2012-03-01 Hiroshige Matsumoto 水電解セル
JP2020105617A (ja) * 2018-12-28 2020-07-09 富士電機株式会社 調湿素子及び調湿ユニット
CN112752870A (zh) * 2018-12-28 2021-05-04 富士电机株式会社 湿度调节元件及湿度调节单元

Similar Documents

Publication Publication Date Title
JP3211997B2 (ja) 固体ポリマー燃料電池用電極の製造方法
US5865968A (en) Gas diffusion electrodes
US3935029A (en) Method of fabricating a carbon - polytetrafluoroethylene electrode - support
US3248267A (en) Catalytic electrode and fuel cell containing the same
TW488109B (en) Electrochemical electrode for fuel cell
US7226689B2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
EP1169743B1 (en) Gas difffusion substrates
JPH07296818A (ja) 高分子固体電解質燃料電池用電極及びそれと高分子固体電解質との接合体
JPH05283082A (ja) ガス拡散電極及びその製造方法
JPWO2003077336A1 (ja) 高分子電解質型燃料電池の製造方法及び、高分子電解質膜型燃料電池
JP3504021B2 (ja) 電気化学装置用電極とその製造方法
KR101357146B1 (ko) 연료전지용 전극, 이를 구비한 전극-막 접합체, 이를구비한 연료전지 및 연료전지용 전극의 제조방법
JP2002536565A (ja) 不織ウェブ
JP4428774B2 (ja) 燃料電池電極の製造方法
JPH06223835A (ja) ガス拡散電極
US3553022A (en) Electrochemical cell
US3704171A (en) Catalytic membrane air electrodes for fuel cells and fuel cells containing same
JP4781016B2 (ja) 燃料電池用ガス拡散電極の製造方法
JP2001076734A (ja) 固体高分子型燃料電池
US20020094472A1 (en) Electrode, method of producing the same, and solid-state high molecular weight electrolyte type fuel cell employing the electrode
JPH0587950B2 (ja)
US5270126A (en) Phosphoric acid fuel cell, matrix thereof and method for making the matrix
JP2001126737A (ja) 燃料電池用電極、その製造方法並びに燃料電池
JP3495668B2 (ja) 燃料電池の製造方法
JPH0722020B2 (ja) ガス拡散電極の製造方法