JPH06221504A - Waste heat recovery heat exchanger - Google Patents

Waste heat recovery heat exchanger

Info

Publication number
JPH06221504A
JPH06221504A JP2620993A JP2620993A JPH06221504A JP H06221504 A JPH06221504 A JP H06221504A JP 2620993 A JP2620993 A JP 2620993A JP 2620993 A JP2620993 A JP 2620993A JP H06221504 A JPH06221504 A JP H06221504A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
power generation
flow rate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2620993A
Other languages
Japanese (ja)
Inventor
Masahiro Ozawa
政弘 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2620993A priority Critical patent/JPH06221504A/en
Publication of JPH06221504A publication Critical patent/JPH06221504A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To keep the inlet gas temperature of a denitrating device at the optimum value at all times. CONSTITUTION:A part of heat transfer device 29, provided at the outlet side of a denitrating device 28 in a heat exchanger main body 25, is arranged at the inlet side of the denitrating device 28 to permit the regulation of flow rate and/or the distribution of flow rate of heat transfer medium 30 for the heat transfer devices 29, 33 arranged at both sides of the denitrating device 28 by flow rate regulating valves 34-37, 40, 41 provided at the connecting part to a heat medium flow passage 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排熱回収熱交換器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery heat exchanger.

【0002】[0002]

【従来の技術】現在、ボイラ発電設備とガスタービン発
電設備とを並設することにより、設備全体としての出力
増大を図ると共に、ガスタービン発電設備で発生した排
ガスの熱を利用してボイラ発電設備の蒸気を過熱させる
ことにより、設備全体としての熱効率向上を図るように
した複合発電設備が検討されている。
2. Description of the Related Art At present, by installing a boiler power generation facility and a gas turbine power generation facility in parallel, the output of the entire facility is increased and the heat of exhaust gas generated in the gas turbine power generation facility is used to make the boiler power generation facility. Combined power generation equipment is being studied to improve the thermal efficiency of the entire equipment by overheating the steam of.

【0003】図4は、現在検討中の複合発電設備を示し
ており、図中、1はボイラ発電設備、2はガスタービン
発電設備、3は排熱回収熱交換器である。
FIG. 4 shows a combined power generation facility under consideration. In the figure, 1 is a boiler power generation facility, 2 is a gas turbine power generation facility, and 3 is an exhaust heat recovery heat exchanger.

【0004】そして先ず、上記ボイラ発電設備1では、
復水器4に溜まったボイラ水5を復水ポンプ6で低圧給
水加熱器7へ送り、低圧給水加熱器7で後述する蒸気タ
ービン17,20からの蒸気(いわゆるタービン抽気
8)により加熱し、脱気器9で脱気した後、給水ポンプ
10で高圧化して高圧給水加熱器11へ送り、高圧給水
加熱器11で前記タービン抽気8によって更に加熱しボ
イラ本体12へと送る。
First, in the boiler power generation facility 1,
The boiler water 5 collected in the condenser 4 is sent to the low-pressure feed water heater 7 by the condensate pump 6, and is heated by the steam from the steam turbines 17 and 20 (so-called turbine extraction air 8) described later in the low-pressure feed water heater 7. After deaeration with the deaerator 9, the water is pumped to a high pressure by the feed water pump 10 and sent to the high pressure feed water heater 11, which is further heated by the turbine extraction air 8 and sent to the boiler body 12.

【0005】ボイラ本体12へ送られたボイラ水5は、
節炭器13、蒸発器14で加熱・蒸発され、図示しない
気水分離器で気水分離された後、分離された蒸気15が
過熱器16で過熱され、高圧蒸気タービン17へ送られ
て、発電機18を駆動するのに用いられる。
The boiler water 5 sent to the boiler body 12 is
After being heated / evaporated by the economizer 13 and the evaporator 14 and separated by the steam separator (not shown), the separated steam 15 is superheated by the superheater 16 and sent to the high-pressure steam turbine 17, It is used to drive the generator 18.

【0006】高圧蒸気タービン17を駆動した蒸気15
は、再び、ボイラ本体12の再熱器19へ送られ、再熱
器19で再過熱された後、低圧蒸気タービン20へ送ら
れ、発電機18の駆動に利用された後、前記復水器4へ
送られ、復水器4で凝縮されてボイラ水5とされる。
Steam 15 that drives the high-pressure steam turbine 17
Is again sent to the reheater 19 of the boiler body 12, is reheated by the reheater 19, is sent to the low-pressure steam turbine 20, is used to drive the generator 18, and is then returned to the condenser. 4 and is condensed in the condenser 4 to be boiler water 5.

【0007】一方、前記ガスタービン発電設備2で発生
された排ガス21は、排ガスダクト22を介して煙突2
3へと送られて、煙突23から大気へ放出される。
On the other hand, the exhaust gas 21 generated in the gas turbine power generation facility 2 is passed through the exhaust gas duct 22 to the chimney 2
3 is discharged to the atmosphere through the chimney 23.

【0008】途中、排ガス21は、排ガスダクト22に
設けられた排熱回収熱交換器3によって、前記ボイラ発
電設備1の過熱器16、及び、再熱器19の入側から分
岐され、その出側へ戻される蒸気15を、排熱回収熱交
換器3の熱交換器本体25内部に配設された過熱器2
6、再熱器27でそれぞれ過熱し、その後、蒸気15の
過熱に利用された排ガス21は、熱交換器本体25の過
熱器26出側に設けられた脱硝装置28によって脱硝さ
れ、更に、脱硝装置28の出側に設けられたスタックガ
スクーラなどの伝熱装置29でボイラ水5などの伝熱媒
体30によって温度を低下されるようになっている。
On the way, the exhaust gas 21 is branched by the exhaust heat recovery heat exchanger 3 provided in the exhaust gas duct 22 from the inlet side of the superheater 16 and the reheater 19 of the boiler power generation facility 1, and the outlet thereof. The steam 15 returned to the side is provided with the superheater 2 disposed inside the heat exchanger body 25 of the exhaust heat recovery heat exchanger 3.
6. The exhaust gas 21, which is overheated by the reheater 27 and then used for overheating the steam 15, is denitrified by the denitrification device 28 provided on the outlet side of the superheater 26 of the heat exchanger body 25, and further denitrified. A heat transfer device 29 such as a stack gas cooler provided on the outlet side of the device 28 reduces the temperature by a heat transfer medium 30 such as boiler water 5.

【0009】尚、31はボイラ発電設備1の高圧給水加
熱器11の入側からスタックガスクーラなどの伝熱装置
29へボイラ水5などの伝熱媒体30を送る伝熱媒体流
路、伝熱媒体流路31の途中に設けられた流量調整弁3
2であり、図5に実線イで示すように、スタックガスク
ーラなどの伝熱装置29に対し、ガスタービン発電設備
2の負荷に比例させてボイラ水5を供給するようになっ
ている。
Reference numeral 31 denotes a heat transfer medium flow path or heat transfer medium for sending a heat transfer medium 30 such as boiler water 5 from an inlet side of the high pressure feed water heater 11 of the boiler power generation facility 1 to a heat transfer device 29 such as a stack gas cooler. Flow rate adjusting valve 3 provided in the middle of the flow path 31
2, the boiler water 5 is supplied to the heat transfer device 29 such as a stack gas cooler in proportion to the load of the gas turbine power generation facility 2, as indicated by the solid line a in FIG.

【0010】又、脱硝装置28の出側に設けられる伝熱
装置29としては、スタックガスクーラ以外にも、蒸気
を過熱するための過熱器や再熱器などの場合がある。
The heat transfer device 29 provided on the outlet side of the denitration device 28 may be a superheater or a reheater for superheating steam other than the stack gas cooler.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の排熱回収熱交換器には、以下のような問題があっ
た。
However, the above-mentioned conventional exhaust heat recovery heat exchanger has the following problems.

【0012】即ち、ガスタービン発電設備2は、部分負
荷時でも排ガス21の温度が高くなるような場合があ
り、又、排ガス21の流量も負荷の低下ほどには低下し
ない傾向があるので、通常の制御だけでは、過熱器26
や再熱器27の収熱量を適正に保ったり、脱硝装置28
の入口ガス温度を適正値に保つことが困難である。
That is, in the gas turbine power generation equipment 2, the temperature of the exhaust gas 21 may become high even under partial load, and the flow rate of the exhaust gas 21 tends not to decrease as much as the load decreases. Only the control of the superheater 26
, The reheater 27 can properly maintain the heat collection amount, and the denitration device 28
It is difficult to keep the inlet gas temperature of the appropriate value.

【0013】特に、脱硝装置28では、入口ガス温度が
適正値に保たれなくなると、脱硝性能が低下したり、脱
硝触媒が劣化損傷したりするので、脱硝装置28の保護
上問題があった。
In particular, in the denitration device 28, if the inlet gas temperature cannot be maintained at an appropriate value, the denitration performance will deteriorate and the denitration catalyst will deteriorate and be damaged.

【0014】本発明は、上述の実情に鑑み、脱硝装置の
入口ガス温度を常に適正値に保ち得るようにした排熱回
収熱交換器を提供することを目的とするものである。
In view of the above situation, it is an object of the present invention to provide an exhaust heat recovery heat exchanger capable of always maintaining the inlet gas temperature of the denitration device at an appropriate value.

【0015】[0015]

【課題を解決するための手段】本発明は、ガスタービン
発電設備からの排ガスとボイラ発電設備からの蒸気とを
熱交換させる排熱回収熱交換器において、熱交換器本体
内部の脱硝装置の出側に設けられる伝熱装置の一部を分
割して、分割された伝熱装置を脱硝装置の入側に配置
し、脱硝装置両側に配置された伝熱装置を、伝熱媒体流
路に対し直列或いは並列に接続すると共に、各伝熱装置
の伝熱媒体流路との接続部分に流量調整弁を設けたこと
を特徴とする排熱回収熱交換器にかかるものである。
SUMMARY OF THE INVENTION The present invention relates to an exhaust heat recovery heat exchanger for exchanging heat between exhaust gas from a gas turbine power generation facility and steam from a boiler power generation facility. Part of the heat transfer device provided on the side, the divided heat transfer device is placed on the inlet side of the denitration device, and the heat transfer devices placed on both sides of the denitration device are connected to the heat transfer medium flow path. The present invention relates to an exhaust heat recovery heat exchanger characterized in that it is connected in series or in parallel, and a flow rate adjusting valve is provided at a connection portion of each heat transfer device with a heat transfer medium flow path.

【0016】[0016]

【作用】本発明の作用は以下の通りである。The operation of the present invention is as follows.

【0017】ガスタービン発電設備からの排ガスとボイ
ラ発電設備からの蒸気とを排熱回収熱交換器で熱交換さ
せることにより、設備全体の熱効率の向上が図られる。
By exchanging heat between the exhaust gas from the gas turbine power generation facility and the steam from the boiler power generation facility in the exhaust heat recovery heat exchanger, the thermal efficiency of the entire facility can be improved.

【0018】そして、熱交換器本体内部の脱硝装置の出
側に設けられる伝熱装置の一部を脱硝装置の入側へ配置
し、伝熱媒体流路との接続部分に設けられた流量調整弁
によって、脱硝装置両側に配置された伝熱装置に対する
伝熱媒体の流量や流量配分を調整することにより、脱硝
装置入口における排ガスの温度を適正値に保たせること
ができる。
Then, a part of the heat transfer device provided on the outlet side of the denitration device inside the heat exchanger body is arranged on the inlet side of the denitration device, and the flow rate adjustment provided on the connection portion with the heat transfer medium flow path is adjusted. The temperature of the exhaust gas at the inlet of the denitration device can be maintained at an appropriate value by adjusting the flow rate and the flow distribution of the heat transfer medium with respect to the heat transfer devices arranged on both sides of the denitration device by the valve.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1・図2は、本発明の第一の実施例であ
る。
1 and 2 show a first embodiment of the present invention.

【0021】図中、2はガスタービン発電設備、3は排
熱回収熱交換器、21はガスタービン発電設備2で発生
された排ガス、22はガスタービン発電設備2に接続さ
れた排ガスダクト、23は排ガス21を大気へ放出する
ための煙突、25は排熱回収熱交換器3の熱交換器本
体、26,27は熱交換器本体25内部に設けられた過
熱器と再熱器を略記したもの、28は過熱器26や再熱
器27の下流に設けられた脱硝装置、29は脱硝装置2
8の出側に設けられたスタックガスクーラや過熱器や再
熱器などの伝熱装置、30は伝熱装置29へ供給される
ボイラ水や蒸気などの伝熱媒体、31は伝熱媒体流路、
32は伝熱媒体流路31の途中に設けられた流量調整弁
であり、図5に示すようにガスタービン発電設備2の負
荷に比例して伝熱媒体30の供給量が増加するように制
御されている。
In the figure, 2 is a gas turbine power generation facility, 3 is an exhaust heat recovery heat exchanger, 21 is an exhaust gas generated in the gas turbine power generation facility 2, 22 is an exhaust gas duct connected to the gas turbine power generation facility 2, and 23 Is a chimney for releasing the exhaust gas 21 to the atmosphere, 25 is a heat exchanger main body of the exhaust heat recovery heat exchanger 3, and 26 and 27 are abbreviated superheaters and reheaters provided inside the heat exchanger main body 25. No. 28 is a denitration device provided downstream of the superheater 26 and the reheater 27, and 29 is a denitration device 2
A heat transfer device such as a stack gas cooler or a superheater or a reheater provided on the outlet side of 8, a heat transfer medium such as boiler water or steam supplied to the heat transfer device 29, and a heat transfer medium passage 31 ,
Reference numeral 32 is a flow rate adjusting valve provided in the middle of the heat transfer medium flow path 31, and is controlled so that the supply amount of the heat transfer medium 30 increases in proportion to the load of the gas turbine power generation equipment 2 as shown in FIG. Has been done.

【0022】尚、上記以外の設備全体の構成については
図4と同様である。
The structure of the entire equipment other than the above is the same as that of FIG.

【0023】熱交換器本体25内部の脱硝装置28出側
に設けられる伝熱装置29の一部を分割して、分割され
た伝熱装置33を脱硝装置28の入側に配置し、脱硝装
置28両側の伝熱装置29,33を伝熱媒体流路31に
対して直列に接続し、各伝熱装置29,33の入口部及
び出口部における伝熱媒体流路31との接続部分に流量
調整弁34〜37を設けると共に、前記入口部及び出口
部間にバイパス流路38,39を接続し、各バイパス流
路38,39に流量調整弁40,41を設ける。
A part of the heat transfer device 29 provided on the outlet side of the denitration device 28 inside the heat exchanger body 25 is divided, and the divided heat transfer device 33 is arranged on the inlet side of the denitration device 28 to remove the denitration device. 28 The heat transfer devices 29 and 33 on both sides are connected in series to the heat transfer medium flow passage 31, and the flow rates are connected to the heat transfer medium flow passage 31 at the inlet and outlet of each heat transfer device 29 and 33. The adjusting valves 34 to 37 are provided, the bypass flow paths 38 and 39 are connected between the inlet part and the outlet part, and the flow rate adjusting valves 40 and 41 are provided to the bypass flow paths 38 and 39.

【0024】更に、熱交換器本体25内部における分割
された伝熱装置33と脱硝装置28との間に、脱硝装置
28入口における排ガス21の温度を検出する温度検出
器42を設け、且つ、伝熱媒体流路31における分割さ
れた伝熱装置33の出側に伝熱媒体30の温度を検出す
る温度検出器43を設け、ガスタービン発電設備2の負
荷信号48、及び、各温度検出器42,43からの温度
検出信号44,45を入力して各流量調整弁34〜3
7,40,41へ開度調整指令46を送る演算制御装置
47を設ける。
Further, a temperature detector 42 for detecting the temperature of the exhaust gas 21 at the inlet of the denitration device 28 is provided between the divided heat transfer device 33 and the denitration device 28 inside the heat exchanger main body 25, and the heat transfer is performed. A temperature detector 43 that detects the temperature of the heat transfer medium 30 is provided on the outlet side of the divided heat transfer device 33 in the heat medium flow path 31, and the load signal 48 of the gas turbine power generation equipment 2 and each temperature detector 42. , 43 to input the temperature detection signals 44, 45 to the flow rate adjusting valves 34-3.
An arithmetic and control unit 47 is provided which sends an opening adjustment command 46 to 7, 40 and 41.

【0025】次に、作動について説明する。Next, the operation will be described.

【0026】ボイラ発電設備1及びガスタービン発電設
備2で発電を行わせる過程、及び、排熱回収熱交換器3
でガスタービン発電設備2からの排ガス21とボイラ発
電設備1の蒸気5とを熱交換させる過程については図4
のものと同様なので説明を省略する。
The process of generating power in the boiler power generation facility 1 and the gas turbine power generation facility 2, and the exhaust heat recovery heat exchanger 3
The process of exchanging heat between the exhaust gas 21 from the gas turbine power generation facility 2 and the steam 5 of the boiler power generation facility 1 in FIG.
The description is omitted because it is the same as the above.

【0027】本発明では、以下のようにして脱硝装置2
8入口における排ガス21の温度を適正値に保つように
する。
In the present invention, the denitration device 2 is operated as follows.
The temperature of the exhaust gas 21 at the eight inlets is maintained at an appropriate value.

【0028】即ち、図示しない制御装置により伝熱媒体
流路31の途中に設けられた流量調整弁32が制御さ
れ、図5に実線イで示すように、ガスタービン発電設備
2の負荷に比例して伝熱媒体30の供給量が増加してい
る場合に、先ず、演算制御装置47がガスタービン発電
設備2の負荷信号48に応じて、各流量調整弁34〜3
7,40,41へ開度調整指令46を送り、各流量調整
弁34〜37,40,41の開度を調節して、例えば、
図5に破線ロで示すように、伝熱装置29,33への基
本的な伝熱媒体30の分配量を制御させる(破線ロの下
側の部分ハが脱硝装置28出側の伝熱装置29への伝熱
媒体30の分配量を、又、破線ロの上側の部分ニが脱硝
装置28入側の伝熱装置33への伝熱媒体30の分配量
を示す)。
That is, the flow control valve 32 provided in the middle of the heat transfer medium flow path 31 is controlled by a control device (not shown), and as shown by the solid line a in FIG. 5, it is proportional to the load of the gas turbine power generation equipment 2. When the supply amount of the heat transfer medium 30 is increasing, first, the arithmetic and control unit 47 responds to the load signal 48 of the gas turbine power generation facility 2 by the flow rate adjusting valves 34 to 3 respectively.
The opening adjustment command 46 is sent to 7, 40, 41 to adjust the opening of each of the flow rate adjusting valves 34 to 37, 40, 41.
As shown by the broken line B in FIG. 5, the basic distribution amount of the heat transfer medium 30 to the heat transfer devices 29 and 33 is controlled (the lower part of the broken line B is the heat transfer device on the outlet side of the denitration device 28). 29, and the upper part D of the broken line B indicates the distribution amount of the heat transfer medium 30 to the heat transfer device 33 on the inlet side of the denitration device 28).

【0029】上記伝熱装置29,33への伝熱媒体30
の基本的な分配量の制御は、例えば、ガスタービン発電
設備2の負荷が低い間は、流量調整弁34,36,41
を開いて伝熱装置29へ伝熱媒体30を流すと共に、流
量調整弁35,37,40を閉じて伝熱装置33へ伝熱
媒体30が流れないようにし、又、ガスタービン発電設
備2の負荷が或るレベル以上になったら、流量調整弁3
4〜37を開くと共に流量調整弁40,41を閉じて伝
熱装置29,33へ伝熱媒体30が流れるようにするこ
とにより行う。
Heat transfer medium 30 to the heat transfer devices 29, 33
The basic control of the distribution amount is, for example, when the load on the gas turbine power generation equipment 2 is low, the flow rate adjusting valves 34, 36, 41
Is opened to flow the heat transfer medium 30 to the heat transfer device 29, and the flow rate adjusting valves 35, 37 and 40 are closed to prevent the heat transfer medium 30 from flowing to the heat transfer device 33. When the load exceeds a certain level, the flow control valve 3
4 to 37 are opened and the flow rate adjusting valves 40 and 41 are closed to allow the heat transfer medium 30 to flow to the heat transfer devices 29 and 33.

【0030】そして、上記基本的な分配量の制御と並行
して、脱硝装置28入口における排ガス21の温度を適
正値に保つための制御を行わせる。
Then, in parallel with the above basic control of the distribution amount, control for maintaining the temperature of the exhaust gas 21 at the inlet of the denitration device 28 at an appropriate value is performed.

【0031】即ち、演算制御装置47は、温度検出器4
2により、常時、脱硝装置28入口における排ガス21
の温度を検出させ、温度検出器42からの温度検出信号
44に基づいて、前記各流量調整弁34〜37,40,
41への開度調整指令46を補正し、各流量調整弁34
〜37,40,41の調整開度を変更させる。
That is, the arithmetic and control unit 47 includes the temperature detector 4
2, the exhaust gas 21 at the inlet of the denitration device 28 is constantly
Of the flow rate adjusting valves 34 to 37, 40, and 40 based on the temperature detection signal 44 from the temperature detector 42.
41 to correct the opening adjustment command 46, and each flow rate adjustment valve 34
The adjustment opening of 37, 40, 41 is changed.

【0032】その結果、脱硝装置28入口における排ガ
ス21の温度が適正値よりも高い場合には、入側の伝熱
装置33に対する伝熱媒体30の流量、或いは、流量配
分が多くなるようにし、反対に、脱硝装置28入口にお
ける排ガス21の温度が適正値よりも低い場合には、入
側の伝熱装置33に対する伝熱媒体30の流量、或い
は、流量配分が少なくなるようにする。
As a result, when the temperature of the exhaust gas 21 at the inlet of the denitration device 28 is higher than the proper value, the flow rate of the heat transfer medium 30 or the flow rate distribution to the heat transfer device 33 on the inlet side is increased. On the contrary, when the temperature of the exhaust gas 21 at the inlet of the denitration device 28 is lower than the appropriate value, the flow rate of the heat transfer medium 30 or the flow rate distribution to the heat transfer device 33 on the inlet side is reduced.

【0033】これによって、脱硝装置28入口における
排ガス21の温度が常に適正値に保たれる。
As a result, the temperature of the exhaust gas 21 at the inlet of the denitration device 28 is always kept at an appropriate value.

【0034】尚、演算制御装置47は、温度検出器43
によって伝熱媒体流路31における伝熱装置33出側の
伝熱媒体30の温度を監視し、該温度が伝熱媒体30の
適正温度範囲から外れないように上記各制御を行わせ
る。
The arithmetic and control unit 47 includes a temperature detector 43.
The temperature of the heat transfer medium 30 on the output side of the heat transfer device 33 in the heat transfer medium flow path 31 is monitored by the above, and the above respective controls are performed so that the temperature does not deviate from the appropriate temperature range of the heat transfer medium 30.

【0035】図3は、本発明の第二の実施例であり、伝
熱装置29,33を並列に接続した以外は上記実施例と
同様の構成を備えており、同様の作用効果を得ることが
できる。
FIG. 3 shows a second embodiment of the present invention, which has the same configuration as that of the above-mentioned embodiment except that the heat transfer devices 29 and 33 are connected in parallel to obtain the same effect. You can

【0036】図中、49,50,51,52は、伝熱装
置29,33に対する伝熱媒体30の流量や流量配分を
調整するための流量調整弁である。
In the figure, 49, 50, 51 and 52 are flow rate adjusting valves for adjusting the flow rate and flow rate distribution of the heat transfer medium 30 to the heat transfer devices 29 and 33.

【0037】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、流量調整弁は手動操作しても良いこ
と、その他、本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiment, the flow rate adjusting valve may be manually operated, and other various changes may be made without departing from the scope of the present invention. Of course you can get it.

【0038】[0038]

【発明の効果】以上説明したように、本発明の排熱回収
熱交換器によれば、脱硝装置の入口ガス温度を常に適正
値に保つことができるという優れた効果を奏し得る。
As described above, according to the exhaust heat recovery heat exchanger of the present invention, the excellent effect that the inlet gas temperature of the denitration device can be always maintained at an appropriate value can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の概略系統図である。FIG. 1 is a schematic system diagram of a first embodiment of the present invention.

【図2】図1の制御回路図である。FIG. 2 is a control circuit diagram of FIG.

【図3】本発明の第二の実施例の概略系統図である。FIG. 3 is a schematic system diagram of a second embodiment of the present invention.

【図4】現在検討中の複合発電設備の全体概略系統図で
ある。
FIG. 4 is an overall schematic system diagram of a combined cycle power generation facility currently under consideration.

【図5】ガスタービン発電設備の負荷と伝熱媒体の供給
量との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the load of the gas turbine power generation equipment and the amount of heat transfer medium supplied.

【符号の説明】[Explanation of symbols]

1 ボイラ発電設備 2 ガスタービン発電設備 3 排熱回収熱交換器 15 蒸気 21 排ガス 25 熱交換器本体 28 脱硝装置 29,33 伝熱装置 31 伝熱媒体流路 34〜37,40,41,49〜52 流量調整弁 1 Boiler Power Generation Equipment 2 Gas Turbine Power Generation Equipment 3 Exhaust Heat Recovery Heat Exchanger 15 Steam 21 Exhaust Gas 25 Heat Exchanger Main Body 28 Denitration Device 29,33 Heat Transfer Device 31 Heat Transfer Medium Flow Path 34-37,40,41,49〜 52 Flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン発電設備からの排ガスとボ
イラ発電設備からの蒸気とを熱交換させる排熱回収熱交
換器において、熱交換器本体内部の脱硝装置の出側に設
けられる伝熱装置の一部を分割して、分割された伝熱装
置を脱硝装置の入側に配置し、脱硝装置両側に配置され
た伝熱装置を、伝熱媒体流路に対し直列或いは並列に接
続すると共に、各伝熱装置の伝熱媒体流路との接続部分
に流量調整弁を設けたことを特徴とする排熱回収熱交換
器。
1. In an exhaust heat recovery heat exchanger for exchanging heat between exhaust gas from a gas turbine power generation facility and steam from a boiler power generation facility, a heat transfer device provided on the outlet side of a denitration device inside a heat exchanger body. A part is divided, the divided heat transfer device is arranged on the inlet side of the denitration device, and the heat transfer devices arranged on both sides of the denitration device are connected in series or in parallel to the heat transfer medium passage, An exhaust heat recovery heat exchanger characterized in that a flow rate adjusting valve is provided at a connection portion of each heat transfer device with a heat transfer medium flow path.
JP2620993A 1993-01-21 1993-01-21 Waste heat recovery heat exchanger Pending JPH06221504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2620993A JPH06221504A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2620993A JPH06221504A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPH06221504A true JPH06221504A (en) 1994-08-09

Family

ID=12187062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2620993A Pending JPH06221504A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPH06221504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189491B1 (en) * 1996-12-12 2001-02-20 Siemens Aktiengesellschaft Steam generator
JP2007163126A (en) * 2005-12-12 2007-06-28 General Electric Co <Ge> Composite cycle power generation system improved in efficiency
DE102009012320A1 (en) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Flow evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189491B1 (en) * 1996-12-12 2001-02-20 Siemens Aktiengesellschaft Steam generator
JP2007163126A (en) * 2005-12-12 2007-06-28 General Electric Co <Ge> Composite cycle power generation system improved in efficiency
DE102009012320A1 (en) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Flow evaporator

Similar Documents

Publication Publication Date Title
EP0290220B1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
US5375410A (en) Combined combustion and steam turbine power plant
US5293842A (en) Method for operating a system for steam generation, and steam generator system
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
US5992138A (en) Method for operating a gas and steam-turbine plant and plant working according to the method
JP3919883B2 (en) Combined cycle power plant
JPH06221504A (en) Waste heat recovery heat exchanger
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JPH11200889A (en) Gas turbine combined power generation system
JP2766687B2 (en) Combined power plant
JPH06241005A (en) Compound generating equipment
JPS61108814A (en) Gas-steam turbine composite facility
JP3133183B2 (en) Combined cycle power plant
JP3803228B2 (en) Cogeneration system
JP2683178B2 (en) Exhaust Reburning Combined Plant Operating Method and Exhaust Reburning Combined Plant
JP3745419B2 (en) Waste heat recovery boiler
JPH074605A (en) Composite power-generating plant
JPH06221503A (en) Waste heat recovery heat exchanger
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JP3068972B2 (en) Combined cycle power plant
JPS59147907A (en) Feedwater heating system of steam turbine plant
JPH0861012A (en) Evaporation amount control device for exhaust gas boiler