JPH06221503A - Waste heat recovery heat exchanger - Google Patents

Waste heat recovery heat exchanger

Info

Publication number
JPH06221503A
JPH06221503A JP2620893A JP2620893A JPH06221503A JP H06221503 A JPH06221503 A JP H06221503A JP 2620893 A JP2620893 A JP 2620893A JP 2620893 A JP2620893 A JP 2620893A JP H06221503 A JPH06221503 A JP H06221503A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
power generation
heat exchanger
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2620893A
Other languages
Japanese (ja)
Inventor
Masahiro Ozawa
政弘 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2620893A priority Critical patent/JPH06221503A/en
Publication of JPH06221503A publication Critical patent/JPH06221503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To change steam temperature characteristics of respective heat transfer systems provided with a plurality of systems. CONSTITUTION:When a flow rate regulating valve 32 is opened to bypass heat transfer medium 15 between the inlet and outlet sides of a heat transfer device 27, positioned at the uppermost stream in the flow direction of waste gas 21, the heat recovery of the heat transfer device 27, positioned at the uppermost stream in the flow direction of the waste gas 21, is reduced while the temperature of waste gas 21 at the outlet side of the heat transfer device 27 is risen and, the heat recovery of another heat transfer device 25, provided at the outlet side, is improved whereby the temperature characteristics of heat medium 15 in respective heat transfer systems A, B are changed relatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排熱回収熱交換器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery heat exchanger.

【0002】[0002]

【従来の技術】現在、ボイラ発電設備とガスタービン発
電設備とを並設することにより、設備全体としての出力
増大を図ると共に、ガスタービン発電設備で発生した排
ガスの熱を利用してボイラ発電設備の蒸気を過熱させる
ことにより、設備全体としての熱効率向上を図るように
した複合発電設備が検討されている。
2. Description of the Related Art At present, by installing a boiler power generation facility and a gas turbine power generation facility in parallel, the output of the entire facility is increased and the heat of exhaust gas generated in the gas turbine power generation facility is used to make the boiler power generation facility. Combined power generation equipment is being studied to improve the thermal efficiency of the entire equipment by overheating the steam of.

【0003】図2は、現在検討中の複合発電設備を示し
ており、図中、1はボイラ発電設備、2はガスタービン
発電設備、3は排熱回収熱交換器である。
FIG. 2 shows a combined power generation facility under consideration. In the figure, 1 is a boiler power generation facility, 2 is a gas turbine power generation facility, and 3 is an exhaust heat recovery heat exchanger.

【0004】そして、上記ボイラ発電設備1では、復水
器4に溜まったボイラ水5を復水ポンプ6で低圧給水加
熱器7へ送り、低圧給水加熱器7で後述する蒸気タービ
ン17,20からの蒸気(いわゆるタービン抽気8)に
より加熱し、脱気器9で脱気した後、給水ポンプ10で
高圧化して高圧給水加熱器11へ送り、高圧給水加熱器
11で前記タービン抽気8によって更に加熱して、ボイ
ラ本体12へと送る。
In the boiler power generation facility 1, the boiler water 5 collected in the condenser 4 is sent to the low-pressure feed water heater 7 by the condensate pump 6, and the low-pressure feed water heater 7 is used by the steam turbines 17 and 20 to be described later. After being deaerated by the deaerator 9, it is pressurized to a high pressure by the feed water pump 10 and sent to the high pressure feed water heater 11, which is further heated by the turbine bleed air 8 by the high pressure feed water heater 11. Then, it is sent to the boiler body 12.

【0005】ボイラ本体12へ送られたボイラ水5は、
節炭器13、蒸発器14で加熱・蒸発され、図示しない
気水分離器で気水分離された後、分離された蒸気15が
過熱器16で過熱され、高圧蒸気タービン17へ送られ
て、発電機18を駆動するのに用いられる。
The boiler water 5 sent to the boiler body 12 is
After being heated / evaporated by the economizer 13 and the evaporator 14 and separated by the steam separator (not shown), the separated steam 15 is superheated by the superheater 16 and sent to the high-pressure steam turbine 17, It is used to drive the generator 18.

【0006】高圧蒸気タービン17を駆動した蒸気15
は、再び、ボイラ本体12の再熱器19へ送られ、再熱
器19で再過熱された後、低圧蒸気タービン20へ送ら
れ、発電機18の駆動に利用された後、前記復水器4へ
送られ、復水器4で凝縮されてボイラ水5とされる。
Steam 15 that drives the high-pressure steam turbine 17
Is again sent to the reheater 19 of the boiler body 12, is reheated by the reheater 19, is sent to the low-pressure steam turbine 20, is used to drive the generator 18, and is then returned to the condenser. 4 and is condensed in the condenser 4 to be boiler water 5.

【0007】一方、前記ガスタービン発電設備2で発生
された排ガス21は、排ガスダクト22を介して煙突2
3へと送られて、煙突23から大気へ放出される。
On the other hand, the exhaust gas 21 generated in the gas turbine power generation facility 2 is passed through the exhaust gas duct 22 to the chimney 2
3 is discharged to the atmosphere through the chimney 23.

【0008】途中、排ガス21は、排ガスダクト22に
設けられた排熱回収熱交換器3によって、前記ボイラ発
電設備1の過熱器16、及び、再熱器19の入側から分
岐されてその出側へ戻される蒸気15を、それぞれ、排
熱回収熱交換器3の熱交換器本体30内部に設けられた
過熱器24,25、再熱器26,27などの伝熱装置で
過熱するようになっている。
On the way, the exhaust gas 21 is branched from the inlet side of the superheater 16 and the reheater 19 of the boiler power generation facility 1 by the exhaust heat recovery heat exchanger 3 provided in the exhaust gas duct 22 and its output. The steam 15 returned to the side is superheated by heat transfer devices such as superheaters 24 and 25 and reheaters 26 and 27 provided inside the heat exchanger body 30 of the exhaust heat recovery heat exchanger 3, respectively. Has become.

【0009】そして、排熱回収熱交換器3における蒸気
温度制御は、ボイラ発電設備1の高圧給水加熱器11入
側等からスプレー流路28,29を介してボイラ水5を
取出し、過熱器24,25、再熱器26,27の中間位
置へスプレーすることによって行われていた。
For controlling the steam temperature in the exhaust heat recovery heat exchanger 3, the boiler water 5 is taken out from the inlet side of the high-pressure feed water heater 11 of the boiler power generation facility 1 through the spray passages 28 and 29, and the superheater 24 , 25, and reheaters 26, 27 by spraying to an intermediate position.

【0010】尚、排熱回収熱交換器3には、過熱器2
4,25から成る過熱器系Aと、再熱器26,27から
成る再熱器系Bの二つの伝熱系があり、各伝熱系A,B
を構成する過熱器24,25及び再熱器26,27など
の伝熱装置は、排ガス21の流れ方向に対して交互に位
置するよう配設されている。
The exhaust heat recovery heat exchanger 3 includes a superheater 2
There are two heat transfer systems, a superheater system A composed of 4, 25 and a reheater system B composed of reheaters 26 and 27.
The heat transfer devices such as the superheaters 24 and 25 and the reheaters 26 and 27 that constitute the above are arranged so as to be alternately positioned in the flow direction of the exhaust gas 21.

【0011】又、排熱回収熱交換器3の伝熱系には、上
記した過熱器系Aや再熱器系Bの他にも、ボイラ水5を
利用して排ガス21を冷却するようにした、図示しない
スタックガスクーラから成るガスクーラ系などがある。
In addition to the above-mentioned superheater system A and reheater system B, the boiler water 5 is used in the heat transfer system of the exhaust heat recovery heat exchanger 3 to cool the exhaust gas 21. Also, there is a gas cooler system including a stack gas cooler (not shown).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記従
来の排熱回収熱交換器には、以下のような問題があっ
た。
However, the above-mentioned conventional exhaust heat recovery heat exchanger has the following problems.

【0013】即ち、ボイラ発電設備1では、一般に効率
面、設備面から、図3に実線イ(再熱器19側)、ロ
(過熱器16側)で示すように、高負荷時(a点)には
再熱器19の方が高くなり、低負荷時(b点)には過熱
器16の方が高くなるような蒸気温度特性とすることが
要求される。
That is, in general, in the boiler power generation facility 1, in view of efficiency and facility, as shown by a solid line B (reheater 19 side) and B (superheater 16 side) in FIG. ), The steam temperature characteristics are required such that the reheater 19 has a higher temperature and the superheater 16 has a higher temperature when the load is low (point b).

【0014】従って、ボイラ発電設備1の蒸気15の一
部を過熱している排熱回収熱交換器3でも、ボイラ発電
設備1と同様の、高負荷時には再熱器系Bの方が高くな
り、低負荷時には過熱器系Aの方が高くなるような蒸気
温度特性を持たせる必要があるが、上記排熱回収熱交換
器3では、最終の再熱器27が最終の過熱器25よりも
排ガス21の流れ方向上流側の、より高温の排ガス21
と熱交換できる位置に配置されているので、再熱器系B
の収熱が常に過熱器系Aの収熱よりも上回ってしまうこ
ととなり、よって、排熱回収熱交換器3における蒸気温
度特性を、図3に実線イ、ロで示すものと同じにするこ
とができなかった。
Therefore, even in the exhaust heat recovery heat exchanger 3 that partially heats the steam 15 of the boiler power generation facility 1, the reheater system B becomes higher at the time of high load, similar to the boiler power generation facility 1. It is necessary to have the steam temperature characteristic that the superheater system A becomes higher when the load is low, but in the exhaust heat recovery heat exchanger 3, the final reheater 27 is more than the final superheater 25. Higher temperature exhaust gas 21 on the upstream side in the flow direction of the exhaust gas 21
It is located in a position where it can exchange heat with the reheater system B.
The heat collection temperature of the exhaust heat recovery heat exchanger 3 is always the same as that shown by the solid lines a and b in FIG. 3. I couldn't.

【0015】尚、図3中、破線ハは排熱回収熱交換器3
の過熱器系Aの蒸気温度特性である。
In FIG. 3, the broken line C indicates the exhaust heat recovery heat exchanger 3
2 is a steam temperature characteristic of the superheater system A.

【0016】本発明は、上述の実情に鑑み、複数系統設
けられた各伝熱系の蒸気温度特性を変更させ得るように
した排熱回収熱交換器を提供することを目的とするもの
である。
In view of the above situation, it is an object of the present invention to provide an exhaust heat recovery heat exchanger capable of changing the steam temperature characteristic of each heat transfer system provided in a plurality of systems. .

【0017】[0017]

【課題を解決するための手段】本発明は、熱交換器本体
に、ガスタービン発電設備からの排ガスと、ボイラ発電
設備からのボイラ水或いは蒸気とを熱交換させるための
伝熱系を複数系統設けると共に、複数の伝熱系を構成す
る伝熱装置のうち、排ガスの流れ方向最上流に位置する
伝熱装置の入出側間にバイパス流路を接続し、バイパス
流路に流量調整弁を設けたことを特徴とする排熱回収熱
交換器にかかるものである。
According to the present invention, a plurality of heat transfer systems are provided in a heat exchanger body for exchanging heat between exhaust gas from a gas turbine power generation facility and boiler water or steam from a boiler power generation facility. In addition to providing a heat transfer device that constitutes a plurality of heat transfer systems, a bypass flow path is connected between the inlet and outlet sides of the heat transfer device located in the uppermost stream of the exhaust gas flow direction, and a flow rate adjustment valve is provided in the bypass flow path. The present invention relates to an exhaust heat recovery heat exchanger.

【0018】[0018]

【作用】本発明の作用は以下の通りである。The operation of the present invention is as follows.

【0019】ボイラ発電設備とガスタービン発電設備と
を並設することにより出力増大を図ると共に、ガスター
ビン発電設備からの排ガスとボイラ発電設備からのボイ
ラ水或いは蒸気を、排熱回収熱交換器の複数系統設けら
れた伝熱系で熱交換させることにより、設備全体として
の熱効率の向上を図るようにする。
The output is increased by arranging the boiler power generation equipment and the gas turbine power generation equipment in parallel, and the exhaust gas from the gas turbine power generation equipment and the boiler water or steam from the boiler power generation equipment are transferred to the exhaust heat recovery heat exchanger. By exchanging heat with a heat transfer system provided in a plurality of systems, the thermal efficiency of the entire equipment is improved.

【0020】ここで、各伝熱系における蒸気温度特性を
変化したい場合には、流量調整弁を開き、バイパス流路
を介して、排ガスの流れ方向最上流に位置する伝熱装置
の入出側間に伝熱媒体をバイパスさせる。
Here, when it is desired to change the steam temperature characteristic in each heat transfer system, the flow rate adjusting valve is opened, and the heat transfer device between the inlet and outlet sides of the heat transfer device located at the uppermost stream in the exhaust gas flow direction is opened via the bypass flow path. To bypass the heat transfer medium.

【0021】すると、排ガスの流れ方向最上流に位置す
る伝熱装置の収熱が低下し、且つ、当該伝熱装置の出側
の排ガスの温度が上昇して出側に設けられた別の伝熱系
を構成する伝熱装置の収熱が向上するので、各伝熱系に
おける伝熱媒体の温度特性が相対的に変化される。
Then, the heat collection of the heat transfer device located in the uppermost stream in the flow direction of the exhaust gas decreases, and the temperature of the exhaust gas on the outlet side of the heat transfer device rises to cause another heat transfer on the outlet side. Since the heat collection of the heat transfer device constituting the heat system is improved, the temperature characteristics of the heat transfer medium in each heat transfer system are relatively changed.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は、本発明の一実施例である。FIG. 1 shows an embodiment of the present invention.

【0024】図中、2はガスタービン発電設備、3は排
熱回収熱交換器、15は排熱回収熱交換器3で過熱され
る蒸気、21はガスタービン発電設備2で発生した排ガ
ス、22はガスタービン発電設備2の排ガスダクト、2
3は排ガスダクト22を流れる排ガス21を大気に放出
させる煙突である。
In the figure, 2 is a gas turbine power generation facility, 3 is an exhaust heat recovery heat exchanger, 15 is steam superheated in the exhaust heat recovery heat exchanger 3, 21 is exhaust gas generated in the gas turbine power generation facility 2, 22 Is an exhaust gas duct of the gas turbine power generation facility 2, 2
Reference numeral 3 denotes a chimney that discharges the exhaust gas 21 flowing through the exhaust gas duct 22 to the atmosphere.

【0025】24,25は排熱回収熱交換器3の熱交換
器本体30内部に設けられた過熱器などの伝熱装置、2
6,27は熱交換器本体30内部に過熱器24,25と
交互に配置された再熱器などの伝熱装置、28,29は
スプレー流路、Aは過熱器24,25から成る過熱器
系、Bは再熱器26,27から成る再熱器系である。
Reference numerals 24 and 25 denote heat transfer devices such as a superheater provided inside the heat exchanger body 30 of the exhaust heat recovery heat exchanger 3.
Reference numerals 6 and 27 denote heat transfer devices such as reheaters, which are alternately arranged with the superheaters 24 and 25 inside the heat exchanger body 30, 28 and 29 are spray passages, and A is a superheater composed of the superheaters 24 and 25. System B is a reheater system consisting of reheaters 26 and 27.

【0026】そして、排熱回収熱交換器3の熱交換器本
体30内部に設けられた各伝熱装置24,25,26,
27のうち、排ガス21の流れ方向最上流に位置する伝
熱装置(即ち、最終の再熱器27)の入出側間にバイパ
ス流路31を接続し、該バイパス流路31に流量調整弁
32を設ける。
The heat transfer devices 24, 25, 26 provided inside the heat exchanger body 30 of the exhaust heat recovery heat exchanger 3
A bypass flow passage 31 is connected between the inlet and outlet sides of the heat transfer device (that is, the final reheater 27) located in the uppermost stream of the exhaust gas 21 in the flow direction of the exhaust gas 21, and the flow control valve 32 is connected to the bypass flow passage 31. To provide.

【0027】次に、作動について説明する。Next, the operation will be described.

【0028】ボイラ発電設備1及びガスタービン発電設
備2で発電を行わせる過程、及び、排熱回収熱交換器3
でガスタービン発電設備2からの排ガス21とボイラ発
電設備1の蒸気15とを熱交換させる過程については図
2と同様なので説明を省略する。
The process of generating electricity in the boiler power generation facility 1 and the gas turbine power generation facility 2, and the exhaust heat recovery heat exchanger 3
The process of exchanging heat between the exhaust gas 21 from the gas turbine power generation facility 2 and the steam 15 of the boiler power generation facility 1 is the same as in FIG.

【0029】本発明では、以下のようにして排熱回収熱
交換器3の過熱器系Aと再熱器系Bの蒸気温度特性を変
化させる。
In the present invention, the steam temperature characteristics of the superheater system A and the reheater system B of the exhaust heat recovery heat exchanger 3 are changed as follows.

【0030】即ち、高負荷時には、流量調整弁32を閉
じて、バイパス流路31に蒸気15が流れないようにす
る。
That is, when the load is high, the flow rate adjusting valve 32 is closed to prevent the steam 15 from flowing into the bypass passage 31.

【0031】すると、最終の再熱器27が排ガス21の
流れ方向の最も上流に位置し、最終の過熱器25がその
下流に位置するため、最終の再熱器27内部を流れる蒸
気15が最終の過熱器25内部を流れる蒸気15よりも
高温の排ガス21によって熱交換されることとなり、再
熱器系Bの方が過熱器系Aよりも収熱が良くなるので、
再熱器系Bの方が過熱器系Aよりも高い蒸気温度特性が
得られる。
Then, since the final reheater 27 is located at the most upstream in the flow direction of the exhaust gas 21 and the final superheater 25 is located downstream thereof, the steam 15 flowing inside the final reheater 27 is the final product. Since the heat is exchanged by the exhaust gas 21 having a temperature higher than that of the steam 15 flowing inside the superheater 25, the reheater system B has a better heat collection than the superheater system A.
The reheater system B has higher steam temperature characteristics than the superheater system A.

【0032】そして、低負荷時には、流量調整弁32を
開いて、前段の再熱器26を流れてきた蒸気15の一部
がバイパス流路31をバイパスされるようにする。
When the load is low, the flow rate adjusting valve 32 is opened so that a part of the steam 15 flowing through the reheater 26 at the preceding stage is bypassed through the bypass passage 31.

【0033】すると、最終の再熱器27へ流入する蒸気
15の量が減少するので、その分、再熱器27における
収熱が低下し、再熱器系Bの蒸気温度が低下すると共
に、再熱器27出側(即ち、最終の過熱器25入側)の
排ガス21の温度が上昇して、最終の過熱器25におけ
る収熱が向上するので、過熱器系Aの方が再熱器系Bよ
りも高い蒸気温度特性が得られる。
Then, since the amount of the steam 15 flowing into the final reheater 27 decreases, the heat collection in the reheater 27 decreases correspondingly, and the steam temperature of the reheater system B decreases, and at the same time, Since the temperature of the exhaust gas 21 on the outlet side of the reheater 27 (that is, the inlet side of the final superheater 25) rises and the heat collection in the final superheater 25 is improved, the superheater system A is more reheater. A vapor temperature characteristic higher than that of the system B is obtained.

【0034】このように、流量調整弁32によって最終
の再熱器27と過熱器25の収熱を変化することによ
り、両者の蒸気温度特性が改善されるので、低負荷時で
も、過熱器系A及び再熱器系Bにおける蒸気温度を調節
可能となり、さらにきめ細かくスプレーなどでボイラ発
電設備の要求する蒸気温度に調節することが可能とな
る。
As described above, by changing the heat absorption of the final reheater 27 and the superheater 25 by the flow rate adjusting valve 32, the steam temperature characteristics of both are improved, so that the superheater system can be operated even under a low load. It becomes possible to adjust the steam temperature in A and the reheater system B, and further finely adjust to the steam temperature required by the boiler power generation facility by spraying or the like.

【0035】又、流量調整弁32によって、過熱器系A
及び再熱器系Bにおける蒸気温度特性を変更することに
より、過熱器系A及び再熱器系Bで得られる蒸気温度が
変化するので、流量調整弁32を用いて、負荷変化中の
蒸気温度を制御させることも可能である。
The superheater system A is controlled by the flow rate adjusting valve 32.
By changing the steam temperature characteristic in the reheater system B and the steam temperature obtained in the superheater system A and the reheater system B, the flow rate adjusting valve 32 is used to change the steam temperature during the load change. Can also be controlled.

【0036】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、流量調整弁32による蒸気温度制御
によりスプレーを不要化し得ること、過熱器系と再熱器
系から成る伝熱系統以外にもガスクーラ系などを含む伝
熱系統にも適用し得ること、その他、本発明の要旨を逸
脱しない範囲内において種々変更を加え得ることは勿論
である。
The present invention is not limited to the above-mentioned embodiments, but the spray temperature can be controlled by the flow rate adjusting valve 32 to eliminate the need for spraying, and the heat transfer system comprising a superheater system and a reheater system. It is needless to say that the present invention can be applied to a heat transfer system including a gas cooler system in addition to the system, and that various changes can be made without departing from the scope of the present invention.

【0037】[0037]

【発明の効果】以上説明したように、本発明の排熱回収
熱交換器によれば、複数系統設けられた各伝熱系の温度
特性を変更させることができるという優れた効果を奏し
得る。
As explained above, according to the exhaust heat recovery heat exchanger of the present invention, it is possible to obtain the excellent effect that the temperature characteristics of each heat transfer system provided in a plurality of systems can be changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略系統図である。FIG. 1 is a schematic system diagram of an embodiment of the present invention.

【図2】現在検討中の複合発電設備の全体概略系統図で
ある。
FIG. 2 is an overall schematic system diagram of an integrated power generation facility currently under consideration.

【図3】ボイラ発電設備における負荷と蒸気温度との関
係を示すグラフである。
FIG. 3 is a graph showing a relationship between load and steam temperature in a boiler power generation facility.

【符号の説明】[Explanation of symbols]

1 ボイラ発電設備 2 ガスタービン発電設備 5 ボイラ水 15 蒸気(伝熱媒体) 21 排ガス 24,25 過熱器(伝熱装置) 26,27 再熱器(伝熱装置) 30 熱交換器本体 31 バイパス流路 32 流量調整弁 A 過熱器系(伝熱系) B 再熱器系(伝熱系) 1 Boiler power generation equipment 2 Gas turbine power generation equipment 5 Boiler water 15 Steam (heat transfer medium) 21 Exhaust gas 24, 25 Superheater (heat transfer device) 26, 27 Reheater (heat transfer device) 30 Heat exchanger body 31 Bypass flow Line 32 Flow rate control valve A Superheater system (heat transfer system) B Reheater system (heat transfer system)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器本体に、ガスタービン発電設備
からの排ガスと、ボイラ発電設備からのボイラ水或いは
蒸気とを熱交換させるための伝熱系を複数系統設けると
共に、複数の伝熱系を構成する伝熱装置のうち、排ガス
の流れ方向最上流に位置する伝熱装置の入出側間にバイ
パス流路を接続し、バイパス流路に流量調整弁を設けた
ことを特徴とする排熱回収熱交換器。
1. The heat exchanger body is provided with a plurality of heat transfer systems for exchanging heat between exhaust gas from a gas turbine power generation facility and boiler water or steam from the boiler power generation facility, and a plurality of heat transfer systems. Among the heat transfer devices constituting the above, the exhaust heat is characterized in that a bypass flow passage is connected between the inlet and outlet sides of the heat transfer device located at the uppermost stream in the exhaust gas flow direction, and a flow rate adjustment valve is provided in the bypass flow passage. Recovery heat exchanger.
JP2620893A 1993-01-21 1993-01-21 Waste heat recovery heat exchanger Pending JPH06221503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2620893A JPH06221503A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2620893A JPH06221503A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPH06221503A true JPH06221503A (en) 1994-08-09

Family

ID=12187038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2620893A Pending JPH06221503A (en) 1993-01-21 1993-01-21 Waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPH06221503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163126A (en) * 2005-12-12 2007-06-28 General Electric Co <Ge> Composite cycle power generation system improved in efficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163126A (en) * 2005-12-12 2007-06-28 General Electric Co <Ge> Composite cycle power generation system improved in efficiency

Similar Documents

Publication Publication Date Title
EP0290220B1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
JP3681464B2 (en) Combined cycle system
EP0609037B1 (en) Combined combustion and steam turbine power plant
US5293842A (en) Method for operating a system for steam generation, and steam generator system
JP3032005B2 (en) Gas / steam turbine combined facility
US5285627A (en) Method for operating a gas and steam turbine plant and a plant for performing the method
JPH07502322A (en) Steam system in a multi-boiler plant
US5992138A (en) Method for operating a gas and steam-turbine plant and plant working according to the method
US5605118A (en) Method and system for reheat temperature control
JP4842007B2 (en) Waste heat recovery boiler
JPH1061413A (en) Exhaust reburning type compound power plant
JPH06221503A (en) Waste heat recovery heat exchanger
JP2587419B2 (en) Supercritical once-through boiler
JPS628606B2 (en)
JPH11200889A (en) Gas turbine combined power generation system
JPH06221504A (en) Waste heat recovery heat exchanger
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3133183B2 (en) Combined cycle power plant
JPH074605A (en) Composite power-generating plant
JPH06241005A (en) Compound generating equipment
CN216240841U (en) Steam regulating system
JP2002371807A (en) Turbine equipment and steam converting device
JP3122234B2 (en) Steam power plant repowering system
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP3880746B2 (en) Waste heat recovery device and operation method thereof