JPH06212202A - Production of high-density sintered body of high melting metal - Google Patents

Production of high-density sintered body of high melting metal

Info

Publication number
JPH06212202A
JPH06212202A JP5026175A JP2617593A JPH06212202A JP H06212202 A JPH06212202 A JP H06212202A JP 5026175 A JP5026175 A JP 5026175A JP 2617593 A JP2617593 A JP 2617593A JP H06212202 A JPH06212202 A JP H06212202A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
powder
density
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026175A
Other languages
Japanese (ja)
Inventor
Toshiaki Morichika
俊明 森近
Tsutomu Shimizu
勉 清水
Takahiro Kitagawa
貴宏 北川
Takashi Nishi
隆 西
Hiroyuki Ran
裕幸 蘭
Yasushi Yamamoto
裕史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5026175A priority Critical patent/JPH06212202A/en
Publication of JPH06212202A publication Critical patent/JPH06212202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the need for high-temp. sintering for which the load of sintering equipment is large in molding and sintering of high melting metal powders of Cr, Cr-Fe alloy, etc., and to produce the high-density sintered body by a sintering treatment in a temp. region suitable for industrial execution. CONSTITUTION:A small amt. of an element (for example, Ni) which lowers the sintering temp. of a base alloy and accelerates the sintering is added to the powder of the high melting metal (base alloy). Powder molded articles are formed by cold hydrostatic press forming (CIP forming) and the sintered body obtd. by low-temp. sintering (for example, 1200 to 1400 deg.C) has about >=90% relative density and is finished to a sintered product having nearly the true density by a hot hydrostatic pressurization sintering treatment without using a capsule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高融点金属からなる高
緻密質の焼結製品を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly dense sintered product made of a refractory metal.

【0002】[0002]

【従来の技術】粉末冶金法により製造される焼結金属製
品を、強度、靱性等にすぐれたものとするには、その焼
結処理において焼結体の高密度化を十分に達成すること
が必要である。焼結体の高密度化には高温焼結処理を必
要とするが、高加圧力を作用させて焼結を行う場合は、
高圧力エネルギー付加の効果として焼結温度をそれ程高
めずに焼結体を高密度化することができ、従来よりその
焼結法として熱間静水圧加圧焼結法(HIP焼結法)が
行われてきた。HIP焼結法によれば、不活性ガス(A
rガス)を圧力媒体とする高加圧力の均一な作用下に焼
結反応を生じ、真密度に近い高緻密性を有する、均質か
つ寸法精度の良好な焼結製品を得ることができる。HI
P焼結法には、原料粉末をカプセルで真空密封してHI
P処理する方法と、予め他の成形焼結法により所定形状
を有する焼結体を製造し、これをカプセルに封入するこ
となくHIP処理する方法(カプセルフリーHIP法)
とがあり、複雑形状を有する焼結製品を製造する場合に
は、焼結処理後のストリツピング(機械加工によるカプ
セルの除去処理工程)を必要としないカプセルフリーH
IP法が適用される。カプセルフリーHIP法では、被
処理物の表面に直接圧力媒体(Arガス)が接触するの
で、ポロシテイの大きい被処理物では、圧力媒体ガスが
被処理物の空孔に侵入し、有効圧力伝達を確保し得ず、
HIP処理効果としての高密度化を十分に達成すること
ができない。このため、焼結体を被処理物としてカプセ
ルフリーHIP処理による十分な高密度化を達成するに
は、その焼結体は相対密度約90%以上の緻密性を有す
るものであることが必要とされている。
2. Description of the Related Art In order to make a sintered metal product manufactured by powder metallurgy excellent in strength, toughness, etc., it is necessary to sufficiently attain a high density of a sintered body in the sintering process. is necessary. High-temperature sintering treatment is required to increase the density of the sintered body, but when applying high pressure to perform sintering,
As a result of the addition of high pressure energy, the sintered body can be densified without increasing the sintering temperature so far, and the hot isostatic pressing method (HIP sintering method) has been conventionally used as the sintering method. Has been done. According to the HIP sintering method, the inert gas (A
(r gas) is used as a pressure medium to cause a sintering reaction under the uniform action of a high pressurizing force, and it is possible to obtain a homogeneous and good dimensional precision sintered product having high density close to true density. HI
In the P sintering method, the raw material powder is vacuum-sealed with a capsule and HI
P treatment method and a method of producing a sintered body having a predetermined shape in advance by another forming and sintering method and performing HIP treatment without encapsulating the sintered body (capsule-free HIP method)
Capsule-free H that does not require stripping (capsule removal processing step by machining) after sintering when manufacturing a sintered product having a complicated shape.
The IP method is applied. In the capsule-free HIP method, the pressure medium (Ar gas) comes into direct contact with the surface of the object to be treated, so in the object having a large porosity, the pressure medium gas penetrates into the pores of the object to transmit effective pressure. Cannot be secured,
It is not possible to sufficiently achieve high density as the HIP processing effect. Therefore, in order to achieve sufficient densification by the capsule-free HIP process using the sintered body as the object to be processed, it is necessary that the sintered body has a relative density of about 90% or more. Has been done.

【0003】[0003]

【発明が解決しようとする課題】上記カプセルフリーH
IP処理に供する焼結体は、代表的には、高圧力成形法
である冷間静水圧プレス成形法(CIP成形法、成形圧
力:例えば1000〜1500kgf/cm2 )で成形
した粉末成形体に焼結処理(焼結温度:約1000〜1
350℃)を施して得られる相対密度90%以上の焼結
体が使用されている。しかるに、焼結原料粉末が、例え
ばCr(融点:約1860℃)やCr基合金(例えば9
0%Cr−10%Fe合金の融点:約1800℃)など
のような高融点金属の粉末である場合においては、上記
成形焼結により得られる焼結体の相対密度は、後記のよ
うに70%を若干上廻る程度にすぎず、カプセルフリー
HIP処理に必要な相対密度(約90%以上)の焼結体
を得ることができない。その粉末成形体の焼結処理を、
例えば1600℃を越えるような高温度で行えば、カプ
セルフリーHIP処理に供し得る焼結体に焼き上げるこ
とも不可能ではないが、設備上の制約や、メンテナン
ス、コスト等の点から、そのような高温焼結を工業的に
実施することは極めて困難である。本発明は、CrやC
r基合金等の高融点金属粉末を原料として、比較的低温
での焼結処理により、高密度を有する焼結体を得ること
ができ、また更に高密度化することを望む場合は、これ
をカプセルフリーHIP処理に付して真密度に近い焼結
製品に仕上げることができるようにしたものである。
DISCLOSURE OF THE INVENTION Capsule-free H
The sintered body to be subjected to the IP treatment is typically a powder compact molded by a cold isostatic press molding method (CIP molding method, molding pressure: for example, 1000 to 1500 kgf / cm 2 ) which is a high pressure molding method. Sintering treatment (sintering temperature: about 1000 to 1
A sintered body having a relative density of 90% or more obtained by applying (350 ° C.) is used. However, the sintering raw material powder is, for example, Cr (melting point: about 1860 ° C.) or Cr-based alloy (for example, 9
In the case of a powder of a high melting point metal such as a 0% Cr-10% Fe alloy melting point: about 1800 ° C.), the relative density of the sintered body obtained by the above compaction sintering is 70% as described later. %, Which is slightly higher than%, and a sintered body having a relative density (about 90% or more) necessary for the capsule-free HIP treatment cannot be obtained. Sintering the powder compact,
For example, if it is carried out at a high temperature exceeding 1600 ° C., it is not impossible to bake into a sintered body that can be used for capsule-free HIP processing, but in terms of equipment restrictions, maintenance, cost, etc. It is extremely difficult to carry out high temperature sintering industrially. The present invention uses Cr and C
When a high melting point metal powder such as an r-based alloy is used as a raw material, a sintered body having a high density can be obtained by a sintering process at a relatively low temperature. Capsule-free HIP processing is performed so that a sintered product close to the true density can be finished.

【0004】[0004]

【課題を解決するための手段および作用】本発明は、高
融点金属粉末を原料とする高緻密質焼結体の製造方法に
おいて、高融点金属に固溶して焼結温度を下げ焼結を促
進する元素を、高融点金属粉末に配合して粉末成形体を
成形し、焼結処理することを特徴としている。本発明方
法によれば、上記焼結体は、所望によりこれを更に高緻
密度化するためのカプセルフリーHIP処理が施され
る。
The present invention provides a method for producing a highly dense sintered body using a refractory metal powder as a raw material. It is characterized in that the accelerating element is blended with the refractory metal powder to form a powder compact and the sintering treatment is performed. According to the method of the present invention, the above-mentioned sintered body is optionally subjected to a capsule-free HIP treatment for further increasing the density.

【0005】以下、本発明について詳しく説明する。本
発明において母合金粉末に配合される第三元素は、母合
金に固溶、拡散して合金を形成し、母合金の融点を下
げ、焼結反応温度の降下、易焼結性をもたらす元素であ
る。母合金粉末に配合される上記第三元素は母合金の材
種に応じて選択される。母合金がCrまたはCr基合金
(例えば、Cr−Fe合金)である場合のこれに配合さ
れる元素の好適な例としてNiが挙げられる。その配合
量は、数%以下(例えば、1〜5重量%)の少量で十分
であり、従つて母合金の材料特性に実質的な影響を与え
ずに、その配合効果として、粉末成形体を低温焼結によ
り、相対密度90%以上の焼結体とすることができる。
The present invention will be described in detail below. The third element to be mixed with the mother alloy powder in the present invention is an element that forms a solid solution with the mother alloy and diffuses to form an alloy, lowers the melting point of the mother alloy, lowers the sintering reaction temperature, and facilitates sinterability. Is. The above-mentioned third element to be mixed with the mother alloy powder is selected according to the material type of the mother alloy. When the mother alloy is Cr or a Cr-based alloy (for example, a Cr-Fe alloy), Ni is mentioned as a suitable example of the element to be mixed therein. A small amount of a few% or less (for example, 1 to 5% by weight) is sufficient for the compounding amount, and therefore, as a compounding effect of the powder compact, it does not substantially affect the material properties of the master alloy. By low temperature sintering, a sintered body having a relative density of 90% or more can be obtained.

【0006】母合金粉末に対する第三元素の配合は、例
えば母合金粉末に第三元素の粉末を加えボールミルで混
練する方法、またはアトライタ、振動ミル等により母合
金と第三元素との機械的合金化を生じさせる高エネルギ
ーボールミル混練、あるいは無電解めつき法により母合
金粉末の粒子表面を第三元素のめつき膜で被覆する方法
等を適用することができる。
The mixing of the third element with the mother alloy powder is carried out, for example, by adding the powder of the third element to the mother alloy powder and kneading with a ball mill, or a mechanical alloy of the mother alloy and the third element by an attritor or a vibration mill. A high-energy ball mill kneading that causes oxidization or a method of coating the particle surface of the mother alloy powder with a plating film of the third element by an electroless plating method or the like can be applied.

【0007】第三元素が配合された母合金粉末の成形焼
結は、常法に従つて行えばよく、CIP成形法により、
約1000kgf/cm2 以上の成形圧で粉末成形体
(好ましくは、相対密度 60%以上)を成形し、つい
でこれを焼結する。焼結処理は、例えば1200〜14
00℃の低温度域で行うことができ、その低温焼結処理
により、90%以上の相対密度を有する焼結体を得るこ
とができる。
The molding and sintering of the mother alloy powder containing the third element may be carried out according to a conventional method, for example, by the CIP molding method.
A powder compact (preferably a relative density of 60% or more) is compacted at a compacting pressure of about 1000 kgf / cm 2 or more, and then sintered. The sintering process is, for example, 1200 to 14
It can be carried out in a low temperature range of 00 ° C., and the low temperature sintering treatment makes it possible to obtain a sintered body having a relative density of 90% or more.

【0008】上記焼結体は、これをカプセルフリーHI
P処理に付して更に高密度化することができる。そのH
IP処理は常法に従つて行われ、例えば加圧力:約10
00kgf/cm2 以上、温度:約1200〜1400
℃の加熱加圧下に適当時間(例えば、2〜4Hr)保持
することにより、ほぼ真密度に等しい高緻密質の焼結品
に仕上げることができる。
The above sintered body is a capsule-free HI.
Further densification can be achieved by applying P treatment. That H
IP treatment is carried out according to a conventional method, for example, a pressing force: about 10
00 kgf / cm 2 or more, temperature: about 1200 to 1400
By holding the material under heating and pressurizing at a temperature of [deg.] C. for an appropriate time (for example, 2 to 4 hours), it is possible to finish a highly dense sintered product having substantially the same true density.

【0009】こうして得られる高緻密質の高融点金属焼
結品は、高度の材料特性を具備し、特に高強度・高靱性
等が要求される部材として有用であり、例えばCrまた
はCr−Fe合金を母合金とする焼結品は、鋼材熱処理
炉の炉床部材(スキツドボタン、スキツドレール等)に
適用して卓抜した耐久性を示し、炉床メンテナンスの軽
減・操炉効率の向上に絶大な効果が得られる。
The high-density, high-melting-point metal sintered product thus obtained has high material properties and is particularly useful as a member that requires high strength and high toughness. For example, a Cr or Cr--Fe alloy is used. Sintered products with a mother alloy as a master alloy have outstanding durability when applied to the hearth members of steel heat treatment furnaces (skid buttons, skid rails, etc.), and have a great effect on reducing hearth maintenance and improving furnace operation efficiency. can get.

【0010】[0010]

【実施例】【Example】

〔I〕焼結原料粉末の調製 90%Cr−10%Fe合金(融点:約1800℃)の
粉砕粉末(平均粒径:10μm以下)とNiを使用して
下記の粉末を調製。実施例1 Cr−Fe合金粉末にNi粉末を添加し、ボールミルで
24時間混練した粉末(Ni量:3%)。実施例2 無電解めつきによりCr−Fe合金粉末の粒子表面をN
iめつき膜で被覆した粉末(Ni量:3%)。実施例3 Cr−Fe合金粉末にNi粉末を添加し、アトライター
で5時間混練して機械的合金化した粉末(Ni量:3
%)。比較例 Niの配合を省略したCr−Fe合金粉末単味の粉末
(組成、粒度等は上記と同一)。 〔II〕粉末成形体の成形 CIP成形法により円柱形状の粉末成形体を成形。成形
圧力・時間:1500kgf/cm2 ・1min。成形
体サイズ:φ30×30 l(mm)。 〔III〕焼結処理 焼結温度:1350℃,処理時間:4Hr、焼結雰囲
気:Ar+N2 ガス(大気圧) 〔IV〕カプセルフリーHIP処理 加圧力:1200kgf/cm2 ,焼結温度:1350
℃,処理時間:2Hr,圧力媒体:Arガス。
[I] Preparation of Sintering Raw Material Powder A pulverized powder (average particle diameter: 10 μm or less) of 90% Cr-10% Fe alloy (melting point: about 1800 ° C.) and Ni were used to prepare the following powder. Example 1 Ni powder was added to Cr—Fe alloy powder, and the powder was kneaded in a ball mill for 24 hours (Ni content: 3%). Example 2 The surface of particles of a Cr—Fe alloy powder was N-coated by electroless plating.
i Powder coated with a plating film (Ni content: 3%). Example 3 Ni powder was added to Cr—Fe alloy powder and mechanically alloyed by kneading for 5 hours with an attritor (Ni content: 3
%). Comparative Example A powder of Cr—Fe alloy powder alone without the addition of Ni (composition, particle size and the like are the same as above). [II] Molding of powder compact A cylindrical powder compact was molded by the CIP molding method. Molding pressure / time: 1500 kgf / cm 2 · 1 min. Molded body size: φ30 × 30 l (mm). [III] Sintering treatment Sintering temperature: 1350 ° C., treatment time: 4 Hr, sintering atmosphere: Ar + N 2 gas (atmospheric pressure) [IV] Capsule-free HIP treatment Pressure: 1200 kgf / cm 2 , sintering temperature: 1350
° C, processing time: 2 Hr, pressure medium: Ar gas.

【0011】〔V〕結果 各実施例の粉末成形体、焼結体およびHIP処理後の焼
結体の密度(g/cm3 )を測定し、表1に示す結果を
得た。表中、カツコ内の数値は真密度比(%)を示して
いる。
[V] Results The densities (g / cm 3 ) of the powder compacts, sintered compacts and sintered compacts after HIP treatment of the respective examples were measured, and the results shown in Table 1 were obtained. In the table, the value in Katsuko indicates the true density ratio (%).

【0012】[0012]

【表1】 密 度 (g/cm3 ) CIP密度 SINTER密度 HIP密度 実施例1 4.7(65%) 6.8(94%) 7.2(100%) 実施例2 4.6(64%) 6.8(94%) 7.2(100%) 実施例3 4.6(64%) 6.8(94%) 7.2(100%) 比較例 4.4(61%) 5.3(74%) 5.4(75%)Table 1 Density (g / cm 3 ) CIP density SINER density HIP density Example 1 4.7 (65%) 6.8 (94%) 7.2 (100%) Example 2 4.6 (64) %) 6.8 (94%) 7.2 (100%) Example 3 4.6 (64%) 6.8 (94%) 7.2 (100%) Comparative Example 4.4 (61%) 5 .3 (74%) 5.4 (75%)

【0013】表1に示したように、CIP成形による粉
末成形体の密度は、各実施例および比較例の間に実質的
な差はないが、その焼結体の密度は、比較例(Ni配合
なし)では真密度の約74%にすぎないのに対し、Ni
を少量配合した実施例1〜3のそれは約94%と著しく
高い密度を有している。また、比較例の焼結体の密度
は、HIP処理を行つても、処理前のそれと変わらず、
HIP処理効果としての高密度化は全く見られないのに
対し、実施例1〜3の各焼結体は、HIP処理により更
に高密度化し、真密度とほぼ同等の密度に達している。
As shown in Table 1, the densities of the powder compacts obtained by CIP molding are not substantially different between the examples and the comparative examples, but the densities of the sintered compacts are the same as those of the comparative examples (Ni (Without compounding) is only about 74% of true density, whereas Ni
It has a remarkably high density of about 94% in Examples 1 to 3 in which a small amount of is added. Further, the density of the sintered body of the comparative example is the same as that before the treatment even after the HIP treatment,
Although the densification as the HIP treatment effect is not observed at all, each of the sintered bodies of Examples 1 to 3 is further densified by the HIP treatment and reaches a density almost equal to the true density.

【0014】[0014]

【発明の効果】本発明によれば、高融点金属粉末を原料
とする焼結品の製造において、焼結処理設備の負荷が大
きい高温焼結を必要とせず、工業的な実施に困難のない
比較的低温度域での焼結処理により、高緻密質の焼結品
を得ることができ、その焼結品はカプセルに封入するこ
となくHIP処理に付して更に高密度化し、真密度と同
等の密度を有する焼結品に仕上げることができる。本発
明は、高融点金属からなる高密度の焼結品をコスト的に
有利に製造することができ、またカプセルフリーHIP
処理により更に密度を高めることができるので、複雑形
状を有する高融点金属焼結品の製造法として特に有用で
ある。
EFFECTS OF THE INVENTION According to the present invention, in the production of a sintered product using a refractory metal powder as a raw material, there is no need for high-temperature sintering that places a heavy load on the sintering treatment equipment, and there is no difficulty in industrial implementation. By performing the sintering process in a relatively low temperature range, a highly dense sintered product can be obtained, and the sintered product is subjected to HIP treatment without encapsulation to further increase the density, thereby obtaining a true density. It is possible to finish a sintered product having an equivalent density. INDUSTRIAL APPLICABILITY According to the present invention, a high-density sintered product made of a refractory metal can be manufactured at an advantageous cost, and a capsule-free HIP
Since the density can be further increased by the treatment, it is particularly useful as a method for producing a high melting point metal sintered product having a complicated shape.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 27/06 (72)発明者 西 隆 兵庫県尼崎市西向島町64番地 株式会社ク ボタ尼崎工場内 (72)発明者 蘭 裕幸 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 山本 裕史 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C22C 27/06 (72) Inventor Takashi Nishi Nishi 64, Nishimukaijima-cho, Amagasaki-shi, Hyogo KUBOTA Amagasaki factory (72) ) Inventor Hiroyuki Ran 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka, Ltd. Kubota Hirakata Manufacturing Company (72) Inventor Hiroshi Yamamoto 1-1-1 Hama, Amagasaki-shi, Hyogo Kubota Technology Development Laboratory Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属粉末を原料とする高緻密質焼
結体の製造方法において、高融点金属に固溶して焼結温
度を下げ焼結を促進する元素を、高融点金属粉末に配合
して粉末成形体を成形し、焼結処理することを特徴とす
る高緻密質の高融点金属焼結体の製造方法。
1. A method for producing a highly dense sintered body using a refractory metal powder as a raw material, wherein an element which forms a solid solution with the refractory metal to lower the sintering temperature and promote sintering is added to the refractory metal powder. A method for producing a highly dense high-melting-point metal sintered body, which comprises blending to form a powder compact and sintering the mixture.
【請求項2】 請求項1に記載の製造方法により製造さ
れた焼結体を、カプセルに封入することなく熱間静水圧
加圧焼結処理することを特徴とする高緻密質の高融点金
属焼結体の製造方法。
2. A highly dense refractory metal, characterized in that the sintered body produced by the production method according to claim 1 is subjected to hot isostatic pressing sintering without being encapsulated. Manufacturing method of sintered body.
【請求項3】 高融点金属粉末がCrまたはCr−Fe
合金粉末であり、これに1〜5重量%のNiを配合する
ことを特徴とする請求項1または請求項2に記載の高緻
密質の高融点金属焼結体の製造方法。
3. The refractory metal powder is Cr or Cr-Fe.
It is alloy powder, and 1 to 5 weight% of Ni is mix | blended with this, The manufacturing method of the highly dense refractory metal sintered compact of Claim 1 or Claim 2 characterized by the above-mentioned.
JP5026175A 1993-01-20 1993-01-20 Production of high-density sintered body of high melting metal Pending JPH06212202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026175A JPH06212202A (en) 1993-01-20 1993-01-20 Production of high-density sintered body of high melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026175A JPH06212202A (en) 1993-01-20 1993-01-20 Production of high-density sintered body of high melting metal

Publications (1)

Publication Number Publication Date
JPH06212202A true JPH06212202A (en) 1994-08-02

Family

ID=12186204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026175A Pending JPH06212202A (en) 1993-01-20 1993-01-20 Production of high-density sintered body of high melting metal

Country Status (1)

Country Link
JP (1) JPH06212202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634797B2 (en) 2013-03-14 2023-04-25 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634797B2 (en) 2013-03-14 2023-04-25 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
US11674205B2 (en) * 2013-03-14 2023-06-13 Massachusetts Institute Of Technology Alloys comprising chromium and second metal material
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators

Similar Documents

Publication Publication Date Title
JP4119750B2 (en) Powder metallurgy for producing high density molded parts
CN113234950A (en) Preparation method of Ti (C, N) -based metal ceramic
CN109576546A (en) A kind of preparation method of the high-strength tenacity without magnetic Ti (C, N) based ceramic metal
JPH03173706A (en) Manufacture of the compact body consisting of a plurality of intermetallic compounds by sintering
JPH06212202A (en) Production of high-density sintered body of high melting metal
JPH0254733A (en) Manufacture of ti sintered material
EP0593591B1 (en) Boron carbide-copper cermets and method for making same
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JP3032818B2 (en) Titanium boride dispersed hard material
JPH02259029A (en) Manufacture of aluminide
JPS613865A (en) Titanium nitride dispersed enhancement body
JP3859224B2 (en) Titanium diboride ceramic sintered body and manufacturing method
JPH042743A (en) Special ceramics dispersion strengthened alloy as well as its manufacture and its working method
JPH0421730A (en) Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
JPS61201662A (en) Manufacture of composite ceramics
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH093586A (en) Titanium diboride-base ceramic sintered compact and its production
CN117004861A (en) Lightweight high-strength TiB with double-core-ring structure 2 TiC-based cermet and preparation method thereof
JPS63201067A (en) Manufacture of metal diboride base ceramics
US20030211002A1 (en) Ferrous articles sintered using a fluidized bed
JP2000290744A (en) Sintered compact of titanium diboride ceramics, and its manufacture
JPH07278693A (en) Production of tungsten-based sintered heavy alloy
JPH02239155A (en) Production of silicon nitride sintered body