JPH06208984A - Dipping type substrate treating apparatus - Google Patents

Dipping type substrate treating apparatus

Info

Publication number
JPH06208984A
JPH06208984A JP24748893A JP24748893A JPH06208984A JP H06208984 A JPH06208984 A JP H06208984A JP 24748893 A JP24748893 A JP 24748893A JP 24748893 A JP24748893 A JP 24748893A JP H06208984 A JPH06208984 A JP H06208984A
Authority
JP
Japan
Prior art keywords
pipe
processing liquid
processing
liquid supply
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24748893A
Other languages
Japanese (ja)
Other versions
JP2690851B2 (en
Inventor
Kozo Terajima
幸三 寺嶋
Takamasa Sakai
高正 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP24748893A priority Critical patent/JP2690851B2/en
Publication of JPH06208984A publication Critical patent/JPH06208984A/en
Application granted granted Critical
Publication of JP2690851B2 publication Critical patent/JP2690851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an up-flow type dipping substrate treating apparatus in which treating fluid is uniformly supplied to a surface of a substrate and which accurately surface-treats it. CONSTITUTION:Treating fluid supply pipes 12 of a double tube structure having an outer tube 13 and an inner tube 14 are arranged at both corners of a bottom 11b of a treating tank 11, opening direction of sub injection holes 16 provided in a row state in the tube 13 is set to a direction different from an opening direction of slitlike main injection holes 15 provided in a row state in the tube 14 so that both the openings are not superposed, and treating fluid 2 is supplied to the tube 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板や液晶用又
はフォトマスク用ガラス基板等の薄板状基板(以下、単
に「基板」という。)の表面を処理するための浸漬型基
板処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immersion type substrate processing apparatus for treating the surface of a thin substrate (hereinafter, simply referred to as "substrate") such as a semiconductor substrate or a glass substrate for liquid crystal or photomask. .

【0002】[0002]

【従来技術】図19は、従来の浸漬型基板処理装置にお
ける主要部の構成を示す縦断面図である。
2. Description of the Related Art FIG. 19 is a longitudinal sectional view showing the structure of the main part of a conventional immersion type substrate processing apparatus.

【0003】処理槽1には、洗浄液や薬液などの基板処
理液(以下単に「処理液」という。)2が充満されてお
り、基板3は、その下部外周縁を3本の基板保持棒7の
上面に形成されたガイド溝7a内に挿入されて垂直に保
持されたまま、処理液2内に浸漬され所定の表面処理が
なされる。
The processing tank 1 is filled with a substrate processing liquid (hereinafter simply referred to as a “processing liquid”) 2 such as a cleaning liquid or a chemical liquid, and the substrate 3 has three substrate holding rods 7 at the lower outer peripheral edge thereof. While being inserted into the guide groove 7a formed on the upper surface of the substrate and held vertically, it is dipped in the treatment liquid 2 and subjected to a predetermined surface treatment.

【0004】処理槽1内の基板3の下方には処理液供給
パイプ4が紙面に垂直な方向に処理槽1の側面を貫通し
て横設され、当該貫通孔においてシールされて密閉固定
されている。
Below the substrate 3 in the processing tank 1, a processing liquid supply pipe 4 is provided horizontally through the side surface of the processing tank 1 in a direction perpendicular to the plane of the drawing, and is sealed and hermetically fixed in the through hole. There is.

【0005】処理液供給パイプ4は単管であって、その
側面には基板3のほぼ中心方向に向かって処理液噴出孔
5が紙面に垂直な方向に所定間隔で列状に穿設されてお
り、外部に設けられた処理液供給装置30(図6参照)
から所定の処理液2を当該処理液供給パイプ4に流入さ
せ、処理液噴出孔5から基板3方向に噴出させる。
The treatment liquid supply pipe 4 is a single pipe, and the treatment liquid jet holes 5 are formed on the side surface of the treatment liquid supply pipe 4 at predetermined intervals in a direction perpendicular to the plane of the drawing toward the center of the substrate 3. And a processing liquid supply device 30 provided outside (see FIG. 6)
A predetermined processing liquid 2 is caused to flow into the processing liquid supply pipe 4 and is ejected from the processing liquid ejection hole 5 toward the substrate 3.

【0006】噴出された処理液2は基板3の表面を流れ
て処理槽1の上縁部1aから溢れ出し、処理槽1の周囲
に沿って設けられた外槽6に受けられて廃液パイプ6a
を介して廃液処分される。
The jetted processing liquid 2 flows on the surface of the substrate 3 and overflows from the upper edge portion 1a of the processing tank 1, and is received by an outer tank 6 provided along the periphery of the processing tank 1 to receive a waste liquid pipe 6a.
Waste liquid is disposed of through.

【0007】このようにして、処理槽1の下方から処理
液2を供給しながら溢れ出させて基板3の表面処理を行
う方法(オーバーフロー方式)によれば、常に新しい処
理液2が基板3の表面に供給されるので処理時間を短縮
できるという利点がある。
In this way, according to the method of performing the surface treatment of the substrate 3 by supplying the treatment liquid 2 from the lower side of the treatment tank 1 while overflowing it (overflow method), a new treatment liquid 2 is constantly added to the substrate 3. Since it is supplied to the surface, there is an advantage that the processing time can be shortened.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ような浸漬型基板処理装置の処理液の供給方法において
は、処理液供給パイプ4から供給される処理液2の量が
各噴出孔で異なっており基板3の表面処理にムラが生じ
るという問題があった。
However, in the method of supplying the processing liquid of the immersion type substrate processing apparatus as described above, the amount of the processing liquid 2 supplied from the processing liquid supply pipe 4 is different in each ejection hole. There is a problem that unevenness occurs in the surface treatment of the cage substrate 3.

【0009】図20は、処理液供給パイプ4の流入端4
aから処理液2を供給したときの各処理液噴出孔51、
52、53………から噴出される処理液2の流出速度の
大きさv1 ,v2 ,v3 ………の変化を模式的に示した
図である。
FIG. 20 shows the inflow end 4 of the processing liquid supply pipe 4.
Each treatment liquid ejection hole 51 when the treatment liquid 2 is supplied from a,
It is the figure which showed typically the change of outflow velocity magnitude v1, v2, v3 ... of the processing liquid 2 ejected from 52, 53.

【0010】同図に示すように、処理液供給パイプ4の
終端部(岐点)4bに近い処理液噴出孔51が最大の流
出速度v1を有し、噴出孔52、53、54……と流入
端4aに近付く程、ほぼ比例して流出速度が減少してい
く。
As shown in the figure, the treatment liquid jetting hole 51 near the end portion (divergence point) 4b of the treatment liquid supply pipe 4 has the maximum outflow velocity v1, and the jetting holes 52, 53, 54 ,. As it approaches the inflow end 4a, the outflow speed decreases almost in proportion.

【0011】処理液供給パイプ4に流入された流体の全
圧Ptはベルヌーイの法則から次式で示される。
The total pressure Pt of the fluid flowing into the processing liquid supply pipe 4 is expressed by the following equation from Bernoulli's law.

【0012】[0012]

【数1】 Pt=Pd+Ps+ΔP=(ρv2 /2)+Ps+ΔP ……(1)[Number 1] Pt = Pd + Ps + ΔP = (ρv 2/2) + Ps + ΔP ...... (1)

【0013】ただし、Psは静圧、ΔPは圧力損失、ま
た、Pdは動圧(=ρv2 /2)であって、vは処理液
2のパイプ4内の流速、ρはその密度を示す。
[0013] However, Ps represents the static pressure, [Delta] P is the pressure loss, also, Pd is a dynamic pressure (= ρv 2/2), v is the flow velocity in the pipe 4 of the treatment liquid 2, [rho is the density .

【0014】圧力損失ΔPは微小なので無視することが
でき(ΔP=0)、また、処理液供給パイプ4の終端部
4bにおいてはv=0となるので、(1)式により終端
部4bにおける静圧Ps=Ptとなり、当該終端部4b
における静圧Psが最大値Ptをとり、流入端4aに近
付くほど処理液2のパイプ4内の流速vは大きくなっ
て、その結果管内の静圧分布は流入端4aに近付くほど
低下し、この静圧分布に応じて流出速度が図20に示す
ように変化することになる。
Since the pressure loss ΔP is so small that it can be ignored (ΔP = 0), and since v = 0 at the terminal end 4b of the processing liquid supply pipe 4, the static pressure at the terminal end 4b can be calculated by the equation (1). Pressure Ps = Pt, and the end portion 4b
At the maximum static pressure Ps at Pt, the flow velocity v of the treatment liquid 2 in the pipe 4 increases as it approaches the inflow end 4a, and as a result, the static pressure distribution in the pipe decreases as it approaches the inflow end 4a. The outflow rate changes as shown in FIG. 20 according to the static pressure distribution.

【0015】このように処理液供給パイプ4の各処理液
噴出孔5から噴出される処理液2の流出速度が異なるた
め、各基板3表面に供給される量が均一ではなく、その
量は流入端4aに近付くほど少なくなるので、従来は、
図19の2本の処理液供給パイプ4に対し、互いに反対
方向から処理液2を流入させるようにしていた。
Since the outflow speeds of the processing liquids 2 ejected from the respective processing liquid ejection holes 5 of the processing liquid supply pipe 4 are different as described above, the amounts supplied to the surfaces of the respective substrates 3 are not uniform, and the amounts inflow. Since it decreases as it gets closer to the end 4a, conventionally,
The processing liquid 2 was made to flow into the two processing liquid supply pipes 4 of FIG. 19 from opposite directions.

【0016】このようにすると、各基板3の主面に平行
な同一平面内に供給される処理液2の流量の総和はほぼ
一定にすることができるが、左右の処理液供給パイプ4
から噴出される処理液2の供給量がアンバランスであ
り、基板3表面に接触する処理液2の量に左右でムラが
生じることは避けられず、均一な基板処理をすることが
困難となっていた。
By doing so, the total sum of the flow rates of the processing liquids 2 supplied in the same plane parallel to the main surface of each substrate 3 can be made substantially constant, but the processing liquid supply pipes 4 on the left and right sides are provided.
Since the supply amount of the processing liquid 2 ejected from the substrate is unbalanced, it is inevitable that the amount of the processing liquid 2 contacting the surface of the substrate 3 is uneven on the left and right, and it is difficult to perform uniform substrate processing. Was there.

【0017】特に処理液2の供給量が少ない部分の供給
量を増やそうとして、処理液供給パイプ4に供給する処
理液2の量を増加させると、終端部4bに比較的近い処
理液噴出孔5における流出速度が必要以上に大きくな
り、処理液2と基板3表面との摩擦により基板3が帯電
してしまう結果となる。一旦基板3が帯電するとパーテ
ィクルが付着しやすくなる。電気的に付着したパーティ
クルは洗浄液によっては容易に除去できないため、ブラ
ッシングなど機械的な方法により除去するしかないの
で、当該ブラッシング機構が余分に必要になるととも
に、処理工程もブラッシングの時間だけ長引くことにな
り生産効率が悪くなる。また、ブラッシングにより、か
えって基板3の表面に傷を付けるおそれもある。
Particularly, when the amount of the processing liquid 2 supplied to the processing liquid supply pipe 4 is increased in order to increase the amount of the processing liquid 2 supplied to the portion where the supply amount of the processing liquid 2 is small, the processing liquid ejection holes relatively close to the end portion 4b. As a result, the outflow rate at 5 becomes unnecessarily high, and the substrate 3 is charged due to the friction between the processing liquid 2 and the surface of the substrate 3. Once the substrate 3 is charged, particles are easily attached. Since particles that are electrically attached cannot be easily removed by a cleaning liquid, they must be removed by a mechanical method such as brushing, which requires an extra brushing mechanism and prolongs the treatment process by the brushing time. Production efficiency deteriorates. In addition, the surface of the substrate 3 may be scratched by the brushing.

【0018】そこで終端部4b側の当該流出速度を低下
させるために噴出孔の開口面積を大きくすることが考え
られるが、この場合には最大流出速度を低減できても、
ますます終端部4b側と流入端4a側の静圧差が大きく
なって流出速度の相対差が増大し、均一な処理液2の供
給が一層困難になるという問題があった。
Therefore, it is conceivable to increase the opening area of the ejection holes in order to reduce the outflow rate on the side of the terminal end 4b, but in this case, even if the maximum outflow rate can be reduced,
There has been a problem that the static pressure difference between the terminal end 4b side and the inflow end 4a side becomes larger and the relative difference in outflow speed increases, and it becomes more difficult to uniformly supply the processing liquid 2.

【0019】本発明は、上述のような問題に鑑みてなさ
れたものであって、処理槽内に均一に処理液を供給でき
るとともに、その供給量を多くしても基板に帯電が生じ
ない処理液供給パイプを備えた浸漬型基板処理装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and the treatment liquid can be uniformly supplied into the treatment tank, and the treatment does not charge the substrate even if the supply amount is increased. An object is to provide an immersion type substrate processing apparatus provided with a liquid supply pipe.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる浸漬型基板処理装置は、処理液を貯
溜する処理槽内に基板を浸漬させることにより前記基板
の表面処理を行なう浸漬型基板処理装置において、前記
処理槽の底部に横設され、処理液を噴出するためその長
手方向側面に形成された単一あるいは複数の主噴出孔を
有する処理液供給パイプと、前記処理槽外部に設けら
れ、前記処理液供給パイプに処理液を供給する処理液供
給手段とを備え、前記処理液供給パイプは、外管とこの
外管に内挿された少なくとも1本の内管からなる多重管
構造を有し、前記主噴出孔は前記外管に形成されるとと
もに、前記各内管はそれぞれその長手方向側面に形成さ
れた副噴出孔を備え、少なくとも一つの内管の前記副噴
出孔の開口位相は、前記外管の主噴出孔の開口位相と異
なった位相に設定されて双方の噴出孔の開口部が重なら
ないように形成され、前記処理液供給手段を前記処理液
供給パイプの最内層のパイプに接続することにより前記
処理槽内に所定の処理液を供給することを特徴としてい
る。
In order to achieve the above object, an immersion type substrate processing apparatus according to the present invention performs a surface treatment of the substrate by immersing the substrate in a processing tank for storing a processing liquid. In a die substrate processing apparatus, a processing liquid supply pipe having a single or a plurality of main ejection holes formed laterally on the bottom of the processing tank and formed on the side surface in the longitudinal direction for ejecting the processing liquid; And a processing liquid supply means for supplying a processing liquid to the processing liquid supply pipe, wherein the processing liquid supply pipe is a multiplex tube including an outer pipe and at least one inner pipe inserted in the outer pipe. The main jet hole is formed in the outer pipe, and each inner pipe is provided with a sub jet hole formed in a longitudinal side surface thereof, and the sub jet hole of at least one inner pipe has a tubular structure. The aperture phase of is A phase different from the opening phase of the main ejection hole of the outer pipe is formed so that the openings of both ejection holes do not overlap, and the processing liquid supply means is connected to the innermost pipe of the processing liquid supply pipe. By doing so, a predetermined processing liquid is supplied into the processing tank.

【0021】[0021]

【作用】本発明によれば、処理槽底部に横設された処理
液供給パイプは、外管とこの外管に内挿された少なくと
も1本の内管からなる多重管構造を有しており、上記内
管のうち少なくとも一つの内管の前記副噴出孔の開口位
相と前記外管の主噴出孔の開口位相とは異なって双方の
噴出孔の開口部が重ならないようになっているので、最
内層のパイプに処理液が供給されることにより、副噴出
孔から噴出された処理液は少なくとも外管の内壁に一度
衝突してから内管の外壁と外管の内壁とで形成される流
路を通過して外管の主噴出孔から処理槽内に供給され
る。
According to the present invention, the treatment liquid supply pipe laterally provided at the bottom of the treatment tank has a multi-pipe structure including an outer pipe and at least one inner pipe inserted in the outer pipe. Since the opening phase of the sub-ejection hole of at least one of the inner tubes and the opening phase of the main ejection hole of the outer tube are different from each other, the openings of both ejection holes do not overlap. By supplying the treatment liquid to the innermost layer pipe, the treatment liquid ejected from the sub-injection holes at least once collides with the inner wall of the outer pipe and then is formed by the outer wall of the inner pipe and the inner wall of the outer pipe. After passing through the flow path, it is supplied into the processing tank from the main ejection hole of the outer tube.

【0022】なお、本明細書において、噴出孔の「開口
角」とは、当該噴出孔開口部の、処理液供給パイプの中
心に対する中心角をいい、「開口位相」とは、当該開口
角が前記処理液供給パイプの中心の回りに占める相対位
置をいうものとする。
In the present specification, the "opening angle" of the ejection hole means the central angle of the opening of the ejection hole with respect to the center of the processing liquid supply pipe, and the "opening phase" means the opening angle. The relative position occupied around the center of the processing liquid supply pipe is referred to.

【0023】[0023]

【実施例】以下、図面を参照して本発明にかかる浸漬型
基板処理装置の実施例を詳細に説明するが、本発明の技
術的範囲がこれによって制限されるものではないことは
もちろんである。
Embodiments of the immersion type substrate processing apparatus according to the present invention will now be described in detail with reference to the drawings, but it goes without saying that the technical scope of the present invention is not limited thereto. .

【0024】図1は、本発明の一実施例に係る浸漬型基
板処理装置10の主要部の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a main part of an immersion type substrate processing apparatus 10 according to an embodiment of the present invention.

【0025】処理槽11は、石英で形成されて、基板3
の直径よりやや広い幅を有しており、その上方は外方に
広がったテーパ形状をしている。
The processing bath 11 is made of quartz and has a substrate 3
It has a width slightly wider than the diameter of, and the upper part has a taper shape that spreads outward.

【0026】処理槽11の外周に沿って同じく石英で形
成された外槽22が設けられ、処理槽11の上縁部11
aから溢れ出た処理液2をこの外槽22で受けて、廃液
パイプ22aを介して廃液タンク38(図6参照)に回
収する。
An outer bath 22 also made of quartz is provided along the outer periphery of the treatment bath 11, and an upper edge portion 11 of the treatment bath 11 is provided.
The treatment liquid 2 overflowing from a is received by the outer tank 22 and collected in the waste liquid tank 38 (see FIG. 6) via the waste liquid pipe 22a.

【0027】外槽22は、深さの大きい槽22bを備え
ているので、何らかの理由により一時的に処理槽11か
ら溢れる処理液2の量が、廃液パイプ22aを通過して
廃液される量より多くなっても、外槽22から溢水する
おそれはない。
Since the outer tank 22 is provided with a tank 22b having a large depth, the amount of the processing liquid 2 that temporarily overflows from the processing tank 11 for some reason is larger than the amount of waste liquid that passes through the waste liquid pipe 22a. Even if the number increases, there is no danger of overflowing from the outer tank 22.

【0028】処理槽11の底面11bの両隅には、石英
製の処理液供給パイプ12が紙面に垂直な方向に溶着さ
れ液漏れのない状態で固着されている。
At both corners of the bottom surface 11b of the processing tank 11, processing liquid supply pipes 12 made of quartz are welded in a direction perpendicular to the paper surface and fixed without liquid leakage.

【0029】処理液供給パイプ12は、図2の拡大断面
図に示すように、外管13とこの外管13内に内管14
を同心状に内挿してなる二重管であって、外管13の垂
直線から処理槽1内側へ10°傾いた位置に開口角70
°のスリット状の主噴出孔15が、外管13の長手方向
に直交して複数平行に設けられており、一方、内管14
には副噴出孔16が、当該内管14の長手方向に所定間
隔で列状に形成されている。
As shown in the enlarged sectional view of FIG. 2, the processing liquid supply pipe 12 has an outer pipe 13 and an inner pipe 14 inside the outer pipe 13.
Is a concentric double tube and has an opening angle of 70 at a position inclined by 10 ° from the vertical line of the outer tube 13 toward the inside of the processing tank 1.
A plurality of main ejection holes 15 in the form of slits are provided in parallel to each other in the longitudinal direction of the outer pipe 13, while the inner pipe 14
The secondary ejection holes 16 are formed in a row in the longitudinal direction of the inner tube 14 at predetermined intervals.

【0030】副噴出孔16は、その開口中心が、主噴出
孔15の開口中心から丁度180°反転させた位置に形
成される。
The sub-ejection hole 16 is formed such that its opening center is exactly 180 ° inverted from the opening center of the main ejection hole 15.

【0031】なお、この実施例では、副噴出孔16を複
数個内管14の長手方向に列状に形成しているが、内管
14の側面に長手方向に伸びる単一のスリット孔を設
け、このスリット孔を副噴出孔16として機能させても
よい。
In this embodiment, the plurality of sub-spout holes 16 are formed in a row in the longitudinal direction of the inner pipe 14, but a single slit hole extending in the longitudinal direction is provided on the side surface of the inner pipe 14. The slit holes may function as the sub jet holes 16.

【0032】処理槽11の底面11bは、処理液供給パ
イプ12から噴出された処理液2の一番下方の流れに沿
って凸状に形成されており、これにより処理槽11の底
面部において処理液2の滞留域が生じ、パーティクルや
重金属などの異物がこの部分に滞留して基板3の表面に
再付着するようなことがないようにしている。
The bottom surface 11b of the processing bath 11 is formed in a convex shape along the lowest flow of the processing liquid 2 ejected from the processing liquid supply pipe 12, whereby the bottom surface of the processing bath 11 is processed. An area where the liquid 2 stays is generated so that foreign matters such as particles and heavy metals do not stay in this portion and reattach to the surface of the substrate 3.

【0033】17は、複数の基板3を一定間隔で垂直に
保持するための基板保持ホルダであって、吊設部材18
とその下部に設けられた基枠19からなり、基枠19に
は、紙面に垂直に延びる3本の保持棒20が吊設され
る。保持棒20の上面には等ピッチpでガイド溝20a
が形成され、基板3は、その下部外周縁を当該ガイド溝
20aに挿入することにより、処理槽11内で整立保持
される。
Reference numeral 17 denotes a substrate holding holder for vertically holding a plurality of substrates 3 at regular intervals, and a hanging member 18
And a base frame 19 provided in the lower part thereof, and three holding rods 20 extending vertically to the paper surface are suspended from the base frame 19. Guide grooves 20a are formed on the upper surface of the holding bar 20 at an equal pitch p.
The substrate 3 is formed and held in the processing bath 11 by inserting the lower peripheral edge of the substrate 3 into the guide groove 20a.

【0034】図3は、基板保持ホルダ17を側面から見
た図である。同図に示すように保持棒20は一対の基枠
19の間に水平に吊設されており、一方吊設部材18の
上部には水平方向外側に突出した係合部材21が付設さ
れ、この係合部材21を図示しない基板搬送装置で保持
し、基板3を当該基板保持ホルダ17ごと処理槽11か
ら引上げ、他の場所に搬送できるようになっている。こ
のような搬送方法によると、処理槽11内にチャックを
挿入して基板3を把持し搬送する方法に比べ、チャック
の挿入が不要な分だけ処理槽11の幅を小さくすること
ができ、その分処理液2の量を節約できるという利点が
ある。
FIG. 3 is a side view of the substrate holding holder 17. As shown in the figure, the holding bar 20 is horizontally hung between a pair of base frames 19, and on the other hand, an upper part of the hanging member 18 is provided with an engaging member 21 protruding outward in the horizontal direction. The engaging member 21 is held by a substrate transfer device (not shown), and the substrate 3 together with the substrate holding holder 17 can be pulled up from the processing tank 11 and transferred to another place. According to such a transfer method, the width of the processing tank 11 can be reduced by an amount that does not require the insertion of the chuck, as compared with the method of inserting the chuck into the processing tank 11 to grip and transfer the substrate 3. There is an advantage that the amount of the treatment liquid 2 can be saved.

【0035】図4は、処理液供給パイプ12の外観を示
す図である。
FIG. 4 is a view showing the outer appearance of the processing liquid supply pipe 12.

【0036】各主噴出孔15は、基板保持ホルダ17の
ガイド溝20aのピッチと同じピッチpで形成されてお
り、基板と基板の間に各主噴出孔15が位置するように
処理液供給パイプ12を設置しておけば、当該複数の基
板3の各隙間に処理液2が噴出され、効率的に表面処理
が行なえる。
The respective main ejection holes 15 are formed at the same pitch p as the pitch of the guide grooves 20a of the substrate holding holder 17, and the processing liquid supply pipe is arranged so that the respective main ejection holes 15 are located between the substrates. If 12 is installed, the treatment liquid 2 is jetted into each gap between the plurality of substrates 3 and the surface treatment can be efficiently performed.

【0037】また、内管14は、供給チューブ37に接
続され、処理液供給装置30(図6)から処理液2の供
給を受ける。
The inner tube 14 is connected to the supply tube 37 and receives the supply of the processing liquid 2 from the processing liquid supply device 30 (FIG. 6).

【0038】図6は、処理液供給装置30の構成を示す
図である。
FIG. 6 is a view showing the arrangement of the processing liquid supply apparatus 30.

【0039】電動ポンプ31は、電磁切換弁32の切り
換えにより薬液タンク33もしくは純水タンク34から
それぞれ薬液35、純水36を選択的に汲み上げ、供給
チューブ37を介して処理液供給パイプ12の内管14
に供給する。
The electric pump 31 selectively pumps the chemical solution 35 and pure water 36 from the chemical solution tank 33 or the pure water tank 34 by switching the electromagnetic switching valve 32, and the inside of the processing solution supply pipe 12 via the supply tube 37. Tube 14
Supply to.

【0040】処理槽11から溢れた薬液35または純水
36は、外槽22で受けられ、廃液パイプ22aを介し
て廃液タンク38に回収される。
The chemical solution 35 or pure water 36 overflowing from the processing tank 11 is received by the outer tank 22 and is collected in the waste liquid tank 38 through the waste liquid pipe 22a.

【0041】電動ポンプ31および供給する処理液2を
選択する電磁切換弁32の各動作は制御部39によって
制御されるようになっている。
Each operation of the electric pump 31 and the electromagnetic switching valve 32 for selecting the processing liquid 2 to be supplied is controlled by the control unit 39.

【0042】なお、供給チューブ37の流路途中に流量
センサを設け、制御部39にフィードバックして電動ポ
ンプの動作を制御し、処理液2の供給量をより正確に制
御するようにしてもよい。また、2本の処理液供給パイ
プ12は、同じものを使用するので噴出される処理液2
の流量は全く同じになる筈であるが、製造段階でバラツ
キが生じる場合もあるので流路37a、37bの双方ま
たはどちらか一方に流量制御弁を設けて微調整するよう
にしてもよい。
A flow rate sensor may be provided in the flow path of the supply tube 37 and fed back to the control unit 39 to control the operation of the electric pump to more accurately control the supply amount of the processing liquid 2. . Further, since the two processing liquid supply pipes 12 are the same, the processing liquid 2 jetted out
The flow rates should be exactly the same, but variations may occur in the manufacturing stage, so a flow rate control valve may be provided in either or both of the flow paths 37a and 37b for fine adjustment.

【0043】また、廃液タンク38に回収された処理液
2をフィルターなどで浄化して再度使用するようにすれ
ばランニングコストを低減させることができる。
If the treatment liquid 2 collected in the waste liquid tank 38 is purified by a filter or the like and reused, the running cost can be reduced.

【0044】図7は処理液供給パイプ12の各主噴出孔
15から噴出される処理液2の流出速度の実験結果を示
す図である。同図に示すように各主噴出孔15における
流出速度はほぼ等しくなって均一化されており、これに
より各基板3に供給される処理液2の量が等しくなって
均一化処理が可能になる。
FIG. 7 is a diagram showing an experimental result of the outflow rate of the treatment liquid 2 ejected from each main ejection hole 15 of the treatment liquid supply pipe 12. As shown in the figure, the outflow velocities in the respective main ejection holes 15 are substantially equalized and made uniform, so that the amounts of the treatment liquid 2 supplied to the respective substrates 3 are made equal and the homogenization treatment becomes possible. .

【0045】このように流出速度が均一化される理由
は、内管14の副噴出孔16から噴出された処理液2が
外管13の内壁に一旦衝突し、その衝突点T(図9
(a)参照)で流速が0となって、外管13の各主噴出
孔15に対して新たな岐点となり、処理液2がそれぞれ
の岐点から流路R1,R2を経て当該主噴出孔15から
噴出されるためであると考えられる。
The reason why the outflow velocity is made uniform in this way is that the treatment liquid 2 ejected from the sub-ejection hole 16 of the inner pipe 14 once collides with the inner wall of the outer pipe 13, and the collision point T (FIG. 9).
(See (a)), the flow velocity becomes 0, and a new branch point is formed for each main jet hole 15 of the outer pipe 13, and the treatment liquid 2 is discharged from each branch point through the flow paths R1 and R2. It is considered that this is because it is ejected from the holes 15.

【0046】このように二重管構造にすることにより各
主噴出孔15から噴出される処理液2の流出速度が均一
化されるため、各主噴出孔15の開口面積をそれぞれ大
きくしてもその均衡はくずれない。これにより2図のよ
う主噴出孔15をスリット形状に形成することが可能に
なる。
By adopting the double pipe structure in this way, the outflow speed of the treatment liquid 2 ejected from each main ejection hole 15 is made uniform, so that even if the opening area of each main ejection hole 15 is made large. The balance is not broken. As a result, the main ejection hole 15 can be formed in a slit shape as shown in FIG.

【0047】開口面積が大きくなれば、処理液2の流入
量を多くしても流出速度が従来のように大きくならない
ので、基板3が帯電しないという利点があり、またスリ
ット形状であるので基板3の主面にそって噴出される処
理液2の流出幅を広く形成でき、それだけ基板3表面に
均一に処理液2が供給されることになる。
When the opening area is large, the outflow rate does not become large as in the conventional case even if the inflow amount of the processing liquid 2 is large, so that there is an advantage that the substrate 3 is not charged, and since the substrate 3 has a slit shape, it has an advantage. The outflow width of the processing liquid 2 ejected along the main surface of the substrate can be widened, and the processing liquid 2 can be uniformly supplied to the surface of the substrate 3 by that amount.

【0048】図8は、本実施例における処理槽11に処
理液供給パイプ12から実際に処理液2を供給したとき
の流動状態を模式的に示したものである。
FIG. 8 schematically shows the flow state when the processing liquid 2 is actually supplied from the processing liquid supply pipe 12 to the processing tank 11 in this embodiment.

【0049】同図に示されるように処理液供給パイプ1
2の主噴出孔15から噴出された処理液2は、左右対象
に、かつ基板3の表面全体にまんべんなく供給された
後、上縁部11aから溢れ出て外部に排出される。
As shown in the figure, the processing liquid supply pipe 1
The treatment liquid 2 ejected from the second main ejection holes 15 is evenly supplied to the left and right and to the entire surface of the substrate 3, and then overflows from the upper edge 11a and is discharged to the outside.

【0050】次に、外管13および内管14の大きさお
よび位置関係、または主噴出孔15の形状によって、当
該主噴出孔15から流出される処理液2の流出状態がど
のような影響を受けるかを考察する。 A.外管と内管の大きさおよび位置関係について (1) 同心二重管の場合 図9は、実際に2種類の同心二重管構造の処理液供給パ
イプ12に処理液2を同じ流入速度で供給したときの流
出状態を示す模式図である。 図9(a)の条件 外管13の内径:40mm、内管14の外径:30m
m、スリット開口角:90°、流路幅d:5mm 図9(b)の条件 外管13の内径:40mm、内管14の外径:20m
m、スリット開口角:90°、流路幅d:10mm 両図を比較しても分かるように、流路幅d(すなわち外
管13の内径と内管14の外径の差を2で割ったもの)
の大きな図9(b)の方が、処理液2の流出幅Dが大き
くなっていることが分かる。
Next, depending on the size and positional relationship of the outer tube 13 and the inner tube 14 or the shape of the main ejection hole 15, the influence of the outflow state of the processing liquid 2 flowing out from the main ejection hole 15 is affected. Consider whether to receive. A. Regarding the size and positional relationship between the outer pipe and the inner pipe (1) In the case of a concentric double pipe In FIG. 9, the treatment liquid 2 is actually fed into the treatment liquid supply pipes 12 having two types of concentric double pipe structures at the same inflow speed. It is a schematic diagram which shows the outflow state when supplied. Conditions of FIG. 9 (a) Inner diameter of outer tube 13: 40 mm, outer diameter of inner tube 14: 30 m
m, slit opening angle: 90 °, channel width d: 5 mm Conditions of FIG. 9 (b) Inner diameter of outer tube 13: 40 mm, outer diameter of inner tube 14: 20 m
m, slit opening angle: 90 °, channel width d: 10 mm As can be seen by comparing both figures, the channel width d (that is, the difference between the inner diameter of the outer tube 13 and the outer diameter of the inner tube 14 is divided by 2). Stuff)
It can be seen that the outflow width D of the processing liquid 2 is larger in FIG.

【0051】この流路幅dを横軸、流出幅Dを縦軸にと
って実験結果をプロットすると図10のようなグラフを
得ることができる。
A graph as shown in FIG. 10 can be obtained by plotting the experimental results with the flow path width d as the horizontal axis and the outflow width D as the vertical axis.

【0052】このグラフにより、できるだけ小さな外径
の内管を使用して流路幅dを大きくした方が処理液2の
流出幅Dが大きくなることが分かる。
From this graph, it is understood that the outflow width D of the processing liquid 2 becomes larger when the flow passage width d is increased by using the inner pipe having the smallest outer diameter.

【0053】処理槽11内の処理液2の流動を均一化し
滞留域を少なくするためには、できるだけ流出幅Dが大
きい方がよいと考えられるので、この実験結果の意義は
大きい。
Since it is considered that the outflow width D should be as large as possible in order to make the flow of the processing liquid 2 in the processing tank 11 uniform and reduce the retention area, the result of this experiment is significant.

【0054】このような結果になる理由は、流路幅dが
大きければ、両側流路R1,R2を流れる処理液2の流
速が小さくなり、スリット開口部で衝突する力が弱くな
って拡散しやすくなるからであると考えられる。
The reason why such a result is obtained is that if the flow passage width d is large, the flow velocity of the processing liquid 2 flowing through the both-side flow passages R1 and R2 becomes small, and the colliding force at the slit opening portion becomes weak and diffuses. It is thought to be because it becomes easier.

【0055】なお、主噴出孔15の開口角は、本実験例
では90°に設定されているが、上述のように流路幅d
により処理液2の流出幅Dも大幅に変化するので、それ
らの諸条件に応じて合理的に決定されるものである。
The opening angle of the main ejection hole 15 is set to 90 ° in this experimental example, but as described above, the flow passage width d is set.
As a result, the outflow width D of the treatment liquid 2 also changes significantly, so it can be reasonably determined in accordance with these various conditions.

【0056】(2) 偏心二重管の場合 以上の実験例では処理液供給パイプ12が同心の二重管
の場合において考察したが、本願発明者は、さらに内管
14を外管13の主噴出孔15より遠ざける方向(図2
の矢印L方向)に偏心させた場合の流出幅Dとの関係に
ついて実験を試みたところ、図11のような結果を得た
(外管13の内径は40mmに固定)。
(2) Case of Eccentric Double Tube In the above experimental example, the case where the treatment liquid supply pipe 12 is a concentric double tube was considered, but the inventor of the present application further sets the inner tube 14 as the main tube of the outer tube 13. Direction away from the ejection hole 15 (Fig. 2
When an experiment was attempted on the relationship with the outflow width D in the case of eccentricity in the direction of arrow L), the result as shown in FIG.

【0057】同図の横軸には同心状態からL方向への偏
心量(mm)をとり、縦軸には、偏心量0の場合の流出
幅Dを1とした場合の変化率がとられており、2点鎖線
41、1点鎖線42、点線43、実線44は、それぞれ
流路幅dが5mm、7.5mm、10mm、および1
2.5mmの場合の変化をそれぞれ示している。
The horizontal axis of the figure shows the amount of eccentricity (mm) in the L direction from the concentric state, and the vertical axis shows the rate of change when the outflow width D is 1 when the amount of eccentricity is 0. The two-dot chain line 41, the one-dot chain line 42, the dotted line 43, and the solid line 44 have a channel width d of 5 mm, 7.5 mm, 10 mm, and 1 respectively.
Changes in the case of 2.5 mm are shown.

【0058】この実験結果から、流路幅10mm、1
2.5mmの場合には、偏心量が大きくなるほど流出幅
Dは小さくなっているが、流路幅dが7.5mmでは、
内管14を偏心させても流出幅Dはほとんど変化せず、
流路幅dが次第に小さくなって5mmになると、内管1
4を偏心させるにつれて同心のときよりも流出幅Dが大
きくなっている。
From the results of this experiment, the flow channel width was 10 mm, 1
In the case of 2.5 mm, the outflow width D becomes smaller as the amount of eccentricity increases, but when the flow path width d is 7.5 mm,
Even if the inner pipe 14 is eccentric, the outflow width D hardly changes,
When the flow passage width d gradually becomes 5 mm, the inner pipe 1
As the eccentricity of 4 is increased, the outflow width D becomes larger than that of the concentric case.

【0059】この実験結果から少なくとも流路幅dが5
mm以下である場合には、内管14を偏心させて流出幅
Dを大きくできるということが分かる。
From this experimental result, at least the flow passage width d is 5
It can be seen that the outflow width D can be increased by making the inner tube 14 eccentric when it is less than or equal to mm.

【0060】したがって、構造上、二重管の流路幅dが
大きくとれないような場合でも、内管14をL方向に若
干偏心させて、流出幅Dを大きくすることが可能とな
る。
Therefore, even if the flow passage width d of the double pipe cannot be set large due to the structure, the inner pipe 14 can be slightly decentered in the L direction to increase the outflow width D.

【0061】なお、内管14を上記L方向とは直角な方
向に偏心させることも可能である。この場合において
は、内管14の偏心により、内管14の外壁と外管13
の内壁とで形成される流路幅が内管14の偏心側で小さ
く、またその反対側で大きくなる。このため、上記流路
を流れる処理液2の流量差により、処理液2の主噴出孔
15からの流出方向を上記内管14の偏心方向に偏向す
ることができる。 B.スリット形状について (1)以上の実施例においては各主噴出孔15は、開口
角90°の一つのスリット孔で形成しているが、この主
噴出孔15を、例えば図5に示すように複数の小さなス
リット孔が同じ開口角内に並ぶように構成してもよい。
It is also possible to decenter the inner tube 14 in a direction perpendicular to the L direction. In this case, due to the eccentricity of the inner pipe 14, the outer wall of the inner pipe 14 and the outer pipe 13
The width of the flow passage formed by the inner wall of the inner pipe 14 is small on the eccentric side of the inner pipe 14 and is large on the opposite side. Therefore, the outflow direction of the processing liquid 2 from the main ejection hole 15 can be deflected to the eccentric direction of the inner pipe 14 due to the difference in the flow rate of the processing liquid 2 flowing through the flow path. B. Regarding Slit Shape (1) In the above embodiments, each main ejection hole 15 is formed by one slit hole having an opening angle of 90 °. However, as shown in FIG. The small slit holes may be arranged in the same opening angle.

【0062】図5は、各主噴出孔15を3つの小スリッ
ト15aで形成したときの様子を示すものであり、同図
(a)はその外観、同図(b)はその断面形状を示して
いる。このように1つのスリットを同じ開口角内で複数
の小スリットに分割すると開口面積が減少し、流出状態
が悪くなるように思えるが、実際は流出幅Dが広くなる
傾向にある。
FIG. 5 shows a state in which each main ejection hole 15 is formed by three small slits 15a. FIG. 5 (a) shows its appearance, and FIG. 5 (b) shows its sectional shape. ing. In this way, if one slit is divided into a plurality of small slits within the same opening angle, the opening area decreases and the outflow state seems to deteriorate, but in reality, the outflow width D tends to increase.

【0063】図12(a),(b),(c)に示された
処理液供給パイプ12は、それぞれ外管13の主噴出孔
15を、同一の開口各90°内に、大きなスリット1
個、等間隔で配列された3つの小スリット孔15b、等
間隔で配列された5つの小スリット孔15cで形成した
例を示しており(内管14は図示を省略されている)、
各処理液供給パイプ12により流出実験を行なって、当
該スリット数を横軸、流出幅Dを縦軸にとってプロット
したところ、図13のグラフのような結果を得た。
In the processing liquid supply pipe 12 shown in FIGS. 12 (a), 12 (b) and 12 (c), the main ejection hole 15 of the outer tube 13 is formed in each of the same openings at 90 ° and the large slit 1 is formed.
An example is shown in which three small slit holes 15b arranged at equal intervals and five small slit holes 15c arranged at equal intervals are formed (the inner tube 14 is not shown).
An outflow experiment was conducted using each processing liquid supply pipe 12, and when the number of slits was plotted on the horizontal axis and the outflow width D was plotted on the vertical axis, the results shown in the graph of FIG. 13 were obtained.

【0064】ただし、外管内径は40mm、内管外径は
30mmの条件で測定した。1点鎖線51は内管14の
偏心量4mm、点線52は内管14の偏心量2mm,実
線53は同心二重管(内管14の偏心量0)の場合の変
化の様子をそれぞれ示している。
However, the inner diameter of the outer tube was 40 mm and the outer diameter of the inner tube was 30 mm. An alternate long and short dash line 51 indicates the eccentricity of the inner pipe 14 mm, a dotted line 52 indicates the eccentricity of the inner pipe 2 mm, and a solid line 53 indicates the change in the case of a concentric double pipe (the eccentricity of the inner pipe 14 is 0). There is.

【0065】同グラフから容易に分かるように同心の場
合でも、偏心させた場合でも、スリットの個数が多くな
るほど流出幅Dが大きくなっている。
As can be easily seen from the graph, the outflow width D becomes larger as the number of slits increases, whether it is concentric or eccentric.

【0066】図14に主噴出孔15が小スリット5つで
形成された同心二重管(図12(c)に相当)におい
て、主噴出孔15から流出する処理液2の様子を概略的
に示す(ただし外径内径40mm,内管外径20mm、
開口角90°)。
FIG. 14 schematically shows a state of the processing liquid 2 flowing out from the main ejection hole 15 in a concentric double pipe (corresponding to FIG. 12C) in which the main ejection hole 15 is formed by five small slits. Show (however, outer diameter inner diameter 40mm, inner tube outer diameter 20mm,
Opening angle 90 °).

【0067】内外径および開口角が同じ条件である図9
(b)の場合に比べ、小スリットに分割した図14の方
が明らかに流出幅Dが大きくなっている。
FIG. 9 where the inner and outer diameters and the opening angle are the same.
Compared with the case of (b), the outflow width D is obviously larger in FIG. 14 divided into small slits.

【0068】この理由は、主噴出孔15が複数の小スリ
ットに分割されているため、処理液供給パイプ2が直ぐ
に外部に噴出されず、流路R1、R2を通過してきた処
理液2同士の衝突が緩和された状態で、広い開口角に分
散された小スリットからそれぞれ拡散されて噴出される
ためであると考えられる。
The reason for this is that since the main ejection hole 15 is divided into a plurality of small slits, the treatment liquid supply pipe 2 is not immediately ejected to the outside, and the treatment liquids 2 having passed through the flow paths R1 and R2 are separated from each other. It is considered that this is because, in a state where the collision is alleviated, the small slits dispersed over a wide opening angle are diffused and ejected.

【0069】(2)なお、上記においては、各主噴出孔
15を、処理液供給パイプ12の長手方向と直交する方
向に伸びるスリット孔で構成している(図4参照)が、
図15に示すような処理液供給パイプ12の長手方向X
に伸びるスリット孔15dや、図16に示すような円形
孔15eで構成してもよい。
(2) In the above, each main ejection hole 15 is formed of a slit hole extending in a direction orthogonal to the longitudinal direction of the processing liquid supply pipe 12 (see FIG. 4).
A longitudinal direction X of the processing liquid supply pipe 12 as shown in FIG.
It may be configured by a slit hole 15d extending in a vertical direction or a circular hole 15e as shown in FIG.

【0070】(3)また、上記実施例では、複数の主噴
出孔15を処理液供給パイプ15の長手方向Xの側面に
設けているが、図17に示すように長手方向Xに伸びる
単一のスリット孔15fを主噴出孔として形成し、この
主噴出孔15を介して処理液を処理槽11内の基板3に
向けて噴出するようにしてもよい。
(3) In the above embodiment, the plurality of main ejection holes 15 are provided on the side surface of the processing liquid supply pipe 15 in the longitudinal direction X, but as shown in FIG. The slit hole 15f may be formed as a main ejection hole, and the treatment liquid may be ejected toward the substrate 3 in the treatment tank 11 through the main ejection hole 15.

【0071】以上のようにして、処理液供給パイプ12
の構造を、必要に応じて変化させることにより、より理
想的な処理液2の供給を可能にすることができる。
As described above, the processing liquid supply pipe 12
By changing the structure of (1) as needed, it is possible to more ideally supply the processing liquid 2.

【0072】なお、上記実施例では、主噴出孔15から
の処理液2が上方の所定角度に向けて噴出するように、
処理槽11の底面部に処理液供給パイプ12を設けると
ともに、処理槽11の底面11bを処理液供給パイプ1
2から噴出された処理液2の一番下方の流れに沿って山
型形状(凸状)に形成することにより、処理槽11の底
面部において処理液2の滞留域が生じ、パーティクルや
重金属などの異物がこの部分に滞留して基板3の表面に
再付着するのを防止しているが、処理槽11の底面11
bの形状などはこれに限定されるものではなく、任意で
あり、例えば、以下のように構成することにより、同様
の効果が得られる。すなわち、処理槽11の底面11b
を、処理液供給パイプ12と直交する平面における断面
で左右対称の谷型形状(凹状)に仕上げるとともに、主
噴出孔15からの処理液が処理槽11の最下端部(谷底
部)に向かって噴出されるように処理液供給パイプ12
を設けてもよい。この場合、図18に示すように、処理
液供給パイプ12の主噴出孔15から噴出された処理液
2は、まず処理槽11の最下端部(谷底部)に向かって
流れ、さらに基板3の表面全体にまんべんなく供給され
た後、上縁部11aから溢れ出て外部に排出される。
In the above embodiment, the treatment liquid 2 is ejected from the main ejection hole 15 toward the upper predetermined angle.
The processing liquid supply pipe 12 is provided on the bottom surface of the processing tank 11, and the bottom surface 11b of the processing tank 11 is connected to the processing liquid supply pipe 1.
By forming a mountain shape (convex shape) along the lowermost flow of the processing liquid 2 ejected from the processing liquid 2, a retention area of the processing liquid 2 is generated in the bottom surface of the processing tank 11, and particles, heavy metals, etc. The foreign substances are prevented from accumulating in this portion and reattaching to the surface of the substrate 3.
The shape and the like of b are not limited to this, and are arbitrary. For example, by configuring as follows, the same effect can be obtained. That is, the bottom surface 11b of the processing tank 11
Is finished in a valley-shaped shape (concave shape) which is symmetrical in a cross section in a plane orthogonal to the treatment liquid supply pipe 12, and the treatment liquid from the main ejection holes 15 is directed toward the lowermost end portion (trough bottom portion) of the treatment tank 11. Processing liquid supply pipe 12 so as to be ejected
May be provided. In this case, as shown in FIG. 18, the treatment liquid 2 ejected from the main ejection holes 15 of the treatment liquid supply pipe 12 first flows toward the lowermost end portion (trough bottom portion) of the treatment tank 11 and further the substrate 3. After being uniformly supplied to the entire surface, it overflows from the upper edge 11a and is discharged to the outside.

【0073】また、上記では、処理液供給パイプ12の
本数は、左右対象に2本設けただけであるが、流出幅D
が大きくなった関係上、中央に一本だけ設けるようにす
ることも可能であろう。もちろん、処理液供給パイプ1
2を3本以上設けてもよいが、処理液2が滞留する領域
ができるだけ少なく、かつ左右の処理液2の供給量がバ
ランスのとれるように十分注意して配設する必要があ
る。
Further, in the above, the number of the processing liquid supply pipes 12 is only two for the left and right, but the outflow width D
Due to the larger size, it may be possible to install only one in the center. Of course, processing liquid supply pipe 1
Although two or more two treatment liquids 2 may be provided, it is necessary to arrange them with sufficient care so that the region where the treatment liquid 2 stays is as small as possible and the supply amounts of the left and right treatment liquids 2 are balanced.

【0074】また、上述のように内管14の副噴出孔1
6から噴出される処理液2は、一端外管13の内壁に衝
突することにより失速し、これにより主噴出孔15から
の流出速度が均一化すると考えられるから、副噴出孔1
6の位置は必ずしも、主噴出孔15の開口中心位置から
180°反転させる必要はなく、両者の開口部が重なら
ないようにすればよい。但しこの場合、流路R1とR2
が等しくなくなるので、処理液の流出方向や流出幅に変
化が生じることが十分予想される。
Further, as described above, the sub-spout hole 1 of the inner pipe 14
It is considered that the treatment liquid 2 ejected from the nozzle 6 is stalled by colliding with the inner wall of the outer tube 13 at one end, and thereby the outflow velocity from the main nozzle 15 is made uniform.
It is not always necessary to reverse the position of 6 from the center position of the opening of the main ejection hole 15 by 180 °, and it suffices that both openings do not overlap. However, in this case, the flow paths R1 and R2
Since the values are not equal, it is sufficiently expected that the outflow direction and the outflow width of the processing liquid will change.

【0075】また、上記の流出速度の均一化の理由によ
り、処理液供給パイプ12を二重管よりも多層の多重管
構造にし、各管の噴出孔の位置を互いに違えるようにす
ることにより、より一層均一化の効果を得られることは
明白である。
For the reason that the outflow velocity is uniform, the treatment liquid supply pipe 12 has a multi-layered multi-layer structure rather than a double pipe, and the positions of the ejection holes of the respective pipes are different from each other. It is obvious that a more uniform effect can be obtained.

【0076】[0076]

【発明の効果】本発明にかかる浸漬型基板処理装置は、
上述のように、処理槽底部に横設された処理液供給パイ
プを、多重管構造にし、少なくとも一つの内管の前記副
噴出孔の開口位相と、前記外管の主噴出孔の開口位相と
は異なり双方の噴出孔の開口部が重ならないようになっ
ており、最内層のパイプに処理液が供給されることによ
り副噴出孔から噴出された処理液が少なくとも外管の内
壁に一度衝突して失速してから内管の外壁と外管の内壁
とで形成される流路を通過して処理槽内に供給されるの
で、主噴出孔から処理槽への流出される処理液の流出速
度を均一化でき、各基板への処理液供給量のムラがなく
なり、精度の高い基板処理が可能になる。
The immersion type substrate processing apparatus according to the present invention,
As described above, the treatment liquid supply pipe laterally provided at the bottom of the treatment tank has a multi-pipe structure, and the opening phase of the sub ejection hole of at least one inner pipe and the opening phase of the main ejection hole of the outer pipe are In contrast, the openings of both ejection holes do not overlap, and when the processing liquid is supplied to the pipe in the innermost layer, the processing liquid ejected from the secondary ejection holes collides at least once with the inner wall of the outer pipe. The flow rate of the processing liquid flowing out from the main ejection hole to the processing tank is exceeded because it is supplied to the inside of the processing tank after passing through the flow path formed by the outer wall of the inner tube and the inner wall of the outer tube. Can be made uniform, the amount of processing liquid supplied to each substrate can be made uniform, and highly accurate substrate processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる浸漬型基板処理装置
の主要部分の縦断面図である。
FIG. 1 is a vertical sectional view of a main part of an immersion type substrate processing apparatus according to an embodiment of the present invention.

【図2】図1の実施例における処理液供給パイプの横断
面図である。
2 is a cross-sectional view of a processing liquid supply pipe in the embodiment of FIG.

【図3】図1の実施例における基板保持ホルダの側面図
である。
FIG. 3 is a side view of a substrate holding holder in the embodiment of FIG.

【図4】図1の実施例における処理液供給パイプの外観
を示す図である。
FIG. 4 is a diagram showing an appearance of a processing liquid supply pipe in the embodiment of FIG.

【図5】処理液供給パイプの別の実施例を側面および横
断面により示す図である。
FIG. 5 is a view showing another embodiment of the processing liquid supply pipe in a side view and a cross section.

【図6】本発明の浸漬型基板処理装置の処理液供給装置
の構成を示す図である。
FIG. 6 is a diagram showing a configuration of a processing liquid supply apparatus of the immersion type substrate processing apparatus of the present invention.

【図7】図2の処理液供給パイプを使用した場合の処理
液の流出速度均一化の様子を示す図である。
FIG. 7 is a diagram showing a manner of uniformizing the outflow rate of the processing liquid when the processing liquid supply pipe of FIG. 2 is used.

【図8】図1の実施例において、処理液供給パイプから
噴出された処理液が処理槽内を流動する様子を示す図で
ある。
FIG. 8 is a diagram showing how the processing liquid ejected from the processing liquid supply pipe flows in the processing tank in the embodiment of FIG.

【図9】流路幅の異なる処理液供給パイプにおける処理
液の流出幅の変化を示す図である。
FIG. 9 is a diagram showing changes in the outflow width of the processing liquid in the processing liquid supply pipes having different channel widths.

【図10】流路幅と流出幅の関係を示すグラフである。FIG. 10 is a graph showing a relationship between a channel width and an outflow width.

【図11】内管の偏心量と流出幅の関係を示すグラフで
ある。
FIG. 11 is a graph showing the relationship between the amount of eccentricity of the inner pipe and the outflow width.

【図12】主噴出孔の変形実施例を示す図である。FIG. 12 is a view showing a modified embodiment of the main ejection hole.

【図13】スリットの個数と流出幅、および内管の偏心
量との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the number of slits, the outflow width, and the amount of eccentricity of the inner pipe.

【図14】一つの主噴出孔が5つの小スリットで形成さ
れた場合の処理液の流出の様子を示す図である。
FIG. 14 is a diagram showing how the processing liquid flows out when one main ejection hole is formed by five small slits.

【図15】処理液供給パイプの主噴出孔の別の形状を示
す図である。
FIG. 15 is a view showing another shape of the main ejection holes of the processing liquid supply pipe.

【図16】処理液供給パイプの主噴出孔のさらに別の形
状を示す図である。
FIG. 16 is a view showing still another shape of the main ejection hole of the processing liquid supply pipe.

【図17】処理液供給パイプのさらに別の実施例を正面
により示す図である。
FIG. 17 is a front view showing still another embodiment of the processing liquid supply pipe.

【図18】本発明の他の実施例にかかる浸漬型基板処理
装置において、処理液供給パイプから噴出された処理液
が処理槽内を流動する様子を示す図である。
FIG. 18 is a diagram showing a state in which the processing liquid ejected from the processing liquid supply pipe flows in the processing tank in the immersion type substrate processing apparatus according to another embodiment of the present invention.

【図19】従来の浸漬型基板処理装置の主要部の縦断面
図である。
FIG. 19 is a vertical sectional view of a main part of a conventional immersion type substrate processing apparatus.

【図20】従来の処理液供給パイプによる処理液の流出
速度の位置による変化の様子を示す図である。
FIG. 20 is a diagram showing how the outflow speed of the processing liquid by the conventional processing liquid supply pipe changes depending on the position.

【符号の説明】[Explanation of symbols]

2 処理液 10 浸漬型基板処理装置 11 処理槽 12 処理液供給パイプ 13 外管 14 内管 15 主噴出孔 15a,15b,15c,15d,15e 小スリット 15f スリット孔 16 副噴出孔 17 基板保持ホルダ 20 保持棒 22 外槽 30 処理液供給装置 31 電動ポンプ 32 電磁切換弁 33 薬液タンク 34 純水タンク 38 廃液タンク 39 制御部 2 Processing Liquid 10 Immersion Type Substrate Processing Device 11 Processing Tank 12 Processing Liquid Supply Pipe 13 Outer Tube 14 Inner Tube 15 Main Jet Hole 15a, 15b, 15c, 15d, 15e Small Slit 15f Slit Hole 16 Sub Jet Hole 17 Substrate Holding Holder 20 Holding rod 22 Outer tank 30 Treatment liquid supply device 31 Electric pump 32 Electromagnetic switching valve 33 Chemical liquid tank 34 Pure water tank 38 Waste liquid tank 39 Control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理液を貯溜する処理槽内に基板を浸漬
させることにより前記基板の表面処理を行なう浸漬型基
板処理装置において、 前記処理槽の底部に横設され、処理液を噴出するためそ
の長手方向側面に形成された単一あるいは複数の主噴出
孔を有する処理液供給パイプと、 前記処理槽外部に設けられ、前記処理液供給パイプに処
理液を供給する処理液供給手段とを備え、 前記処理液供給パイプは、外管と、この外管に内挿され
た少なくとも1本の内管からなる多重管構造を有し、前
記主噴出孔は前記外管に形成されるとともに、前記各内
管はそれぞれその長手方向側面に形成された副噴出孔を
備え、 少なくとも一つの内管の前記副噴出孔の開口位相は、前
記外管の主噴出孔の開口位相と異なった位相に設定され
て双方の噴出孔の開口部が重ならないように形成され、 前記処理液供給手段を前記処理液供給パイプの最内層の
パイプに接続することにより前記処理槽内に所定の処理
液を供給するようにしたことを特徴とする浸漬型基板処
理装置。
1. An immersion-type substrate processing apparatus for surface-treating a substrate by immersing the substrate in a processing tank for storing the processing liquid, which is installed horizontally at the bottom of the processing tank to eject the processing liquid. A treatment liquid supply pipe having a single or a plurality of main ejection holes formed on the side surface in the longitudinal direction, and a treatment liquid supply means provided outside the treatment tank for supplying the treatment liquid to the treatment liquid supply pipe. The treatment liquid supply pipe has a multi-tube structure composed of an outer pipe and at least one inner pipe inserted in the outer pipe, and the main ejection hole is formed in the outer pipe. Each inner pipe is provided with a sub-ejection hole formed on its longitudinal side surface, and the opening phase of the sub-ejection hole of at least one inner pipe is set to a phase different from the opening phase of the main ejection hole of the outer pipe. Opening of both ejection holes Are formed so that they do not overlap, and the predetermined treatment liquid is supplied into the treatment tank by connecting the treatment liquid supply means to the pipe of the innermost layer of the treatment liquid supply pipe. Type substrate processing equipment.
JP24748893A 1992-09-18 1993-09-07 Immersion type substrate processing equipment Expired - Fee Related JP2690851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24748893A JP2690851B2 (en) 1992-09-18 1993-09-07 Immersion type substrate processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27533192 1992-09-18
JP4-275331 1992-09-18
JP24748893A JP2690851B2 (en) 1992-09-18 1993-09-07 Immersion type substrate processing equipment

Publications (2)

Publication Number Publication Date
JPH06208984A true JPH06208984A (en) 1994-07-26
JP2690851B2 JP2690851B2 (en) 1997-12-17

Family

ID=26538291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24748893A Expired - Fee Related JP2690851B2 (en) 1992-09-18 1993-09-07 Immersion type substrate processing equipment

Country Status (1)

Country Link
JP (1) JP2690851B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654903A1 (en) * 1996-04-24 1997-11-13 Steag Micro Tech Gmbh Substrate wafer wet treatment device
JP2007217276A (en) * 2006-02-17 2007-08-30 Jiwontech Co Ltd Thinning device of glass substrate
JP2017069529A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
CN109237987A (en) * 2018-10-10 2019-01-18 珠海格力电器股份有限公司 A kind of division box and air-conditioning
WO2019233526A1 (en) * 2018-06-04 2019-12-12 RENA Technologies GmbH Method for treating objects and apparatus for carrying out the method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654903A1 (en) * 1996-04-24 1997-11-13 Steag Micro Tech Gmbh Substrate wafer wet treatment device
DE19654903C2 (en) * 1996-04-24 1998-09-24 Steag Micro Tech Gmbh Device for treating substrates in a fluid container
US5921257A (en) * 1996-04-24 1999-07-13 Steag Microtech Gmbh Device for treating substrates in a fluid container
DE19655219C2 (en) * 1996-04-24 2003-11-06 Steag Micro Tech Gmbh Device for treating substrates in a fluid container
JP2007217276A (en) * 2006-02-17 2007-08-30 Jiwontech Co Ltd Thinning device of glass substrate
JP2017069529A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
CN107017160A (en) * 2015-09-30 2017-08-04 东京毅力科创株式会社 Substrate liquid processing device and substrate liquid processing method
CN107017160B (en) * 2015-09-30 2021-10-01 东京毅力科创株式会社 Substrate liquid processing apparatus and substrate liquid processing method
WO2019233526A1 (en) * 2018-06-04 2019-12-12 RENA Technologies GmbH Method for treating objects and apparatus for carrying out the method
CN112534556A (en) * 2018-06-04 2021-03-19 雷纳技术有限责任公司 Method for treating objects and device for carrying out said method
JP2021526733A (en) * 2018-06-04 2021-10-07 レナ テクノロジー ゲーエムベーハーRENA Technologies GmbH A method of processing an object and a device for carrying out the method
CN109237987A (en) * 2018-10-10 2019-01-18 珠海格力电器股份有限公司 A kind of division box and air-conditioning

Also Published As

Publication number Publication date
JP2690851B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP2912538B2 (en) Immersion type substrate processing equipment
US8397751B1 (en) Vortex reducer
US5474616A (en) Method for rinsing plate-shaped articles
CN102422350A (en) Flow-through washing method and flow-through washing apparatus
JP2690851B2 (en) Immersion type substrate processing equipment
CN111359971B (en) Cleaning device
US7524396B2 (en) Object processing apparatus and processing method
JPH05152273A (en) Sheet cleaning overflow bath
JP3327981B2 (en) Cleaning liquid tank and cleaning device
JP3960457B2 (en) Substrate processing equipment
JPH0722371A (en) Wet cleaning device
JPH0350792A (en) Very small hole treatment for printed board and device therefor
JPH05166793A (en) Dipping type substrate treatment apparatus
JPH06112185A (en) Immersion type substrate processor
JP3400278B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
WO2022024420A1 (en) Workpiece cleaning process method and workpiece cleaning process system
JP3959879B2 (en) Electrodeposition coating equipment
JP2001054766A (en) Multistage cleaning tub
JPH07324277A (en) Steeping roller type warp sizing machine
JPH071795Y2 (en) Immersion type substrate cleaning equipment
JPS60113433A (en) Washing equipment of thin plate
KR20090072360A (en) Nozzle structure of slit coater
JP2535497B2 (en) Electrolytic plating method and electrolytic plating apparatus
JPH07238397A (en) Dip plating device for sheet-like object
WO2019181067A1 (en) Substrate processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090829

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees