JPH044725B2 - - Google Patents

Info

Publication number
JPH044725B2
JPH044725B2 JP2008373A JP837390A JPH044725B2 JP H044725 B2 JPH044725 B2 JP H044725B2 JP 2008373 A JP2008373 A JP 2008373A JP 837390 A JP837390 A JP 837390A JP H044725 B2 JPH044725 B2 JP H044725B2
Authority
JP
Japan
Prior art keywords
less
permanent magnet
rare earth
magnets
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008373A
Other languages
Japanese (ja)
Other versions
JPH031502A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2008373A priority Critical patent/JPH031502A/en
Publication of JPH031502A publication Critical patent/JPH031502A/en
Publication of JPH044725B2 publication Critical patent/JPH044725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般家庭の各種電気製品から、大型
コンピユータの周並端末機まで、幅広い分野で使
われるきわめて重要な電気・電子材料の一つであ
る永久磁石の改良に係り、特に新規なFe−B−
R永久磁石に関する。 近年の電気、電子機器の小型化、高効率化の要
求にともない、永久磁石はますます高性能化が求
められるようになつた。 現在の代表的な永久磁石はアルニコ、ハードフ
エライト及び希土類コバルト磁石である。最近の
コバルトの原料事情の不安定化にともない、コバ
ルトを20〜30重量%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフエ
ライトが磁石材料の主流を占めるようになつた。
一方、希土類コバルト磁石はコバルトを50〜65重
量%も含むうえ、希土類鉱石中にあまり含まれて
いないSmを使用するため大変高価であるが、他
の磁石に比べて、磁気特性が格段に高いため、主
として小型で、付加価値の高い磁気回路に多く使
われるようになつた。 希土類コバルト磁石はRCo5,R2Co17(Rは
Sm,Ceを中心とする希土類元素)にて示される
2元系化合物をベースとする永久磁石であり、
Coの一部を少量のCu,Feの他Zr,Ti,V,Hf
等の遷移金属元素にて置換することによつて磁気
特性の向上が図られてきたものである。 他方近時、コバルトを含まない磁性材料として
FeとR(以下本発明においてRは希土類元素を示
す記号として用いる)を主成分とするスパツタ薄
膜又は超急冷リボンの磁性材料が提案されてい
る。例えば、クラークによるスパツタした薄膜ア
モルフアスTbFe2,DyFe2,SmFe2合金の磁気特
性が報告されている(A.E.Clark:Appl.Phys.
Lett.vol.23No.11、1 December 1973、642〜
644頁)。また超急冷リボンの磁性材料としてクロ
ートによるPrFe系合金(J.J.Croat:Appl.Phys.
Lett.37(12)、15 December 1980、1096〜1098
頁)があり、さらにクーン等による(Fe0.82
B0.180.9Tb0.05La0.05合金(N.C.Koon他:Appl.
Phys.Lett.39(10)、15 November 1981、840〜
842頁)、カバコフ等による(Fe0.8B0.21-X PrX
(x=0〜0.3原子比)合金(L.Kabakoff他:J.
Appl.Phys.53(3)、March 1982、2255〜2257頁)
等が報告されている。さらに前記クロートは軽希
土類鉄合金は低コスト永久磁石の魅力的な候補と
して長い間考えられてきたが、これら合金を粉末
冶金法によつて磁気的に硬化する試みは成功しな
かつたこととを報告するとともに、Pr−Fe及び
Nd−Fe合金が溶融紡糸(超急冷)によつて磁気
的に硬化され得ることを見い出したと報告してい
る(J.J.Croat:J.Appl.Phys.53(4)、April 1982、
3161頁)。 希土類を用いた磁石がもつと広い分野で安価
に、かつ多量に使われるようになるためには、高
価なコバルトを含まず、かつ希土類金属として、
鉱石中に多量に含まれている軽希土類を主成分と
することが必要とされよう。 一方既述のようにR−FeないしR−Fe−B合
金を磁性材料として有用化するためには、スパツ
タ薄膜化又は超急冷ないしアモルフアス化が不可
欠であるとされている。 しかし、これらのスパツタ薄膜又は超急冷リボ
ンからは任意の形状・寸法を有するバルク状の実
用永久磁石を得ることができなかつた。これまで
に報告されたFe−B−R系リボンの磁化曲線は
角形性が悪く、従来慣用の磁石に対抗できる実用
永久磁石とはみなされえない。また、上記スパツ
タ薄膜及び超急冷リボンは、いずれも本質上等方
性であり、これらから磁気異方性の実用永久磁石
を得ることは、事実上不可能であつた。 本発明は、このような要請に応えるべき新規な
実用永久磁石を提供することを基本目的とし、特
に、Rとして希少なSm等を必ずしも必要とせず、
Coを必須とせず、従来のフエライト磁石と同等
以上の磁気特性を有する永久磁石を提供すること
を目的とする。 このような永久磁石として、本発明者は、先
に、Nd,Prを中心とする特定の希土類元素とFe
とBとを特定比をもつて必須とし、かつ磁気異方
性焼結体である。全く新しい種類の実用高性能永
久磁石を開発し、本願と同一出願人により出願し
た(特願昭57−145072)。このFe−B−R三元系
永久磁石は、従来知られているRCo5やR2Co17
合物とは異なる新しい化合物を基礎とし、粉末冶
金法にて適当なミクロ組織を形成することによつ
て得られる焼結永久磁石であり、特にボロン(B)
は、従来の、例えば非晶質合金作成時の非晶質促
進元素又は粉末冶金法における焼結促進元素とし
て添加されるものではなく、このFe−B−R系
永久磁石の実質的内容を構成する室温以下で磁気
的に安定で高い磁気異方性定数を有するR−Fe
−B化合物の必須構成元素である。この化合物は
実用上十分高いキユリー点(約300℃以上)を有
する。 このFe−B−R三元系永久磁石はFeを主成分
として30MGOe以上にも亘る極めて高いエネル
ギー積を示し、従来のアルニコ磁石や希土類コバ
ルト磁石に比して、より低いコストで高い特性を
有する。即ち、より高いコストフオーマンスを与
え、その任意成形性、資源的に豊富な材料を用い
ることができることと相俟つて工業上大きな有用
性を有する。保磁力iHcは1kOeから最高約13kOe
にも達し、現在最も特性が高い磁石として知られ
ている希土類コバルト磁石のiHcにも匹敵するほ
ど大きい。 本発明は、かかるFe−B−R三元系永久磁石
において、他の少量元素X(Cu,P.C,Sの1種
以上)を含有してもその含有量を所定値以下に限
定することにより、先願(特願昭57−145072)に
係るFe−B−R三元系永久磁石と同様に、前述
した目的を達成するものである。 即ち、本発明の永久磁石は次の通りである。 本願の第1発明: 原子百分比で、希土類元素(R)としてNd,
Pr,Dy,Ho,Tbのうち少なくとも一種8〜30
%、B2〜28%、下記所定%以下(0%を除く)
の元素Xの一種又は二種以上(但し元素Xが二種
以上のときは、X合量は4.0%以下)、及び残部実
質的にFeから成る磁気異方性焼結体であること
を特徴とする永久磁石: Cu 3.5%、 S 2.5%、 C 4.0%、及びP 3.5%。 本願の第2発明: 原子百分比で、希土類元素(R)としてNd,
Pr,Dy,Ho,Tbのうち少なくとも一種とLa,
Ce,Pm,Sm,Eu,Gd,Er,Tm,Yb,Lu,
Yのうち少なくとも一種の合計8〜30%(但し前
記希土類元素(R)の50%以上はNdとPrの一種
又は二種)、B2〜28%、下記所定%以下(0%を
除く)の元素Xの一種又は二種以上(但し元素X
が二種以上のときは、X合量は4.0%以下)、及び
残部実質的にFeから成る磁気異方性焼結体であ
ることを特徴とする永久磁石。(元素Xの所定%
は第1発明におけるものと同じ) 少量元素XのCu,S,C,P等は、工業的に
Fe−B−R系磁石を製造する場合原料、製造工
程等に起因して含有されることが多々ある。例え
ばFeBを原料に用いた場合S,Pが含有されるこ
とが多く、Cは粉末冶金プロセスにおける有機バ
インダ(成形助剤)の残滓として含有されること
が多い。これらの少量元素Xの影響は、本発明に
より、第1図に示す通りその含有量の増大に伴な
つて残留磁束密度Brが低下する傾向を示すこと
が認められた。その結果、原子百分比(以下他に
明記ない場合同じ)にてS2.5%以下、C4.0%以
下、P3.5%以下且つS,P,C合計で4%以下に
おいてハードフエライト(Brの約4kG)と同等
以上の特性が得られる。 また、Xとして、Cuは純度の低い安価な原料
鉄中に多量に含まれておりCuは3.5%以下含むこ
とができ、かつX(S,C,P,Cu)の合計は4
%以下とすることにより、ハードフエライトと同
等以上のBrが得られる。 かくて本発明はFe−B−R三元系永久磁石に
おいて更に特定の少量元素Xを含有することによ
り、Fe−B−R化合物をベースとした新規なFe
−B−R−X系永久磁石の提供するものである。 本発明によれば、従来ハードフエライト磁石と
同等以上の磁気特性を有し、Sm−Co磁石に代替
可能な高性能磁石を包含する工業上極めて有用な
新規な実用永久磁石を提供可能とする。 本発明の永久磁石はFe−B−R−X系であり、
必ずしもCoを含む必要がなく、またRとしては
好適な実施態様として資源的に豊富なNd,Prを
主体とする軽希土類を用いることができ、必ずし
もSmを必要とせず或いはSmを主体とする必要も
ないので原料が安価でありきわめて有用である。 本発明のFe−B−R−X系永久磁石において
R,Bの組成は基本的にFe−B−R三元系永久
磁石の組成と同じ範囲(8〜30%R、2〜28%
B)を有する。即ち、Bは2%未満では保磁力
iHcは1kOe以上が得られず、又Bは28%をこえ
るとハードフエライトの残留磁束密度Br約4kG
以上にすることはできない。R8%未満では保磁
力を1kOe以上とすることができず、またRは30
%をこえると燃えやすく工業的取扱い製造上困難
となり、且つ製品コストの上昇を招来するので好
ましくない。このB,R範囲において最大エネル
ギー積(BH)maxはハードフエライト(〜
4MGOe程度)と同等以上になる。 又本発明のFe−B−R−X永久磁石の温度特
性を改善するためFeの一部をCo50%以下に置き
換えてもよい。Coの含有は、Fe−B−R−X系
合金のキユリー点を上昇させる効果がある。 さらに、本発明の好ましい態様として、残留磁
束密度Br7kG以上の範囲が、S1.5%以下、C3.0%
以下、P2.0%以下、Cu2.3%以下、かつS,C,
P,Cu合計3.0%以下の場合(XをS,C,P,
Cuの2種以上とした場合)に夫々得られる。 本発明のFe−B−R−X系永久磁石は、Fe−
B−R永久磁石と同様に磁気異方性焼結体として
得られる。例えば、合金を溶成、冷却、例えば鋳
造し、生成合金を粉末化した後、磁界中にて成形
し焼結することにより永久磁石を得ることができ
る。 本発明の永久磁石に用いる希土類元素RはYを
包含し、軽希土類及び重希土類を包含する希土類
元素であり、そのうち所定の一種以上を用いる。
即ちこのRとしては、Nd,Pr,La,Ce,Tb,
Dy,Ho,Er,Eu,Sm,Gd,Pm,Tm,Yb,
Lu及びYが包含される。Rとしては、Nd,Prを
主体とする軽希土類が好ましい。また通例Rのう
ち一種をもつて足りる(Nd,Pr,Dy,Ho,
Tb)が、La,Ce,Pm,Sm,Eu,Gd,Er,
Tm,Yb,Lu,Yは他のR、特にNd,Pr,Dy,
Ho,Tb(一種以上)との混合物として用いるこ
とができる。実用上は二種以上の混合物(ミツシ
ユメタル、ジジム等)を入手上の便宜等の理由に
より用いることができる。Sm,La,Er,Tm,
Ce,Gd,Yは単独ではiHcが低いため好ましく
なく、Eu,Pm,Yb,Luは微量にしか存在せず
高価である。従つてこれらの希土類元素は、前述
の通り、Nd,Pr等の他のRとの混合物として用
いることができる。なお、このRは純希土類元素
でなくともよく、工業上入手可能な範囲で製造上
不可避な不純物(他の希土類元素Ca,Mg,Fe,
Ti,C,O等)を含有するもので差支えない。
このようにRとしては工業上入手し易いものを主
体として用いることができる点で本発明は極めて
有利である。 B(ホウ素)としては、純ボロン又はフエロボ
ロンを用いることができ、不純物としてAl,Si,
C等を含むものも用いることができる。 本発明の永久磁石体は、既述の8〜30%R、2
〜28%B、所定%以下X、残部Fe(原子百分率)
において、保磁力Hc≧1kOe、残留磁束密度Br≧
4kGの磁気特性を示し、最大エネルギー積
(BH)maxはハードフエライト(〜4MGOe程
度)と同等以上となる。 軽希土類をRの主成分(即ち全R中軽希土類特
にNd,Pr50原子%以上)とし、11〜24%R、3
〜27%B、X2.5%以下、(Cu2.0以下、S1.5%以
下、C2.5%以下、P2.0%以下)、残部Feの組成
は、最大エネルギー積(BH)max≧7MGOeを
示し、好ましい範囲である。 最も好ましくは、軽希土類特にNd,PrをRの
主成分とし、12〜20%R、4〜24%B、X2.0%
以下(S1.0%以下、C2.0%以下、P1.5%以下、
Cu1.0%以下)、残部Feの組成であり、最大エネ
ルギー積(BH)max≧10MGOeを示し、(BH)
maxは最高25MGOe以上に達する。 本発明の永久磁石は、良好な角形性を示し(第
2図参照)、既述の通り好ましい範囲内において
は、希土類コバルト磁石に匹敵する高い磁気特性
を示すものである。 本発明の上記少量元素Xのうち、P,Sについ
ては、焼結時の焼結温度を下げる効果があつて焼
結が容易となり、本発明の範囲内での含有によ
り、ハードフエライト以上の磁気特性が確保され
有利である。Cの含有は焼結温度をやや上昇気味
であるが、既述の通り、粉末冶金法で一般的に用
いられる有機バインダーからのカーボンが完全に
焼失しなくてもよいので製造工程上有利である。 さらに、本発明のFe−B−R−X系永久磁石
においてはTi4.5%以下、Ni4.5%以下、Bi5%以
下、V9.5%以下、Nb12.5%以下、Ta10.5%以下、
Cr8.5%以下、Mo9.5%以下、W9.5%以下、
Mn3.5%以下、Al9.5%以下、Sb2.5%以下、Ge7
%以下、Sn3.5%以下、Zr5.5%以下及びHf5.5%
以下の少くとも1種以上を含有してもよい。より
高いiHcを有する永久磁石を提供でき、苛酷な環
境下で使用される永久磁石として特に好適であ
る。 このように、上記少量元素Xの所定の含有は、
純度の低い原料の使用を可能とし、かつ安価に製
造可能とするので工業上極めて有利であり、少量
元素Xの制御によつて、Fe−B−R−X系の高
残留磁化、高保磁力、高エネルギー積を有する磁
気異方性焼結体永久磁石が安定した品質をもつて
提供される。なお、本発明永久磁石は前記Fe,
B,R,Xのほか、更に、Ca,Mg,O,Si等工
業的に製造上不可避な不純物の存在を許容でき
る。これらの不純物は、原料或いは製造工程から
混入することが多く、合計5%以下とすることが
好ましい。 以下本発明の態様及び効果について、実施例に
従つて説明する。但し実施例及び記載の態様は、
本発明をこれらに限定するものではない。 実施例 原料として、下記のものを用い、永久磁石の原
子組成が第1、2表になるように原料を秤量した
後、高周波誘導炉により溶成し、水冷銅鋳型で鋳
造して種々のFe−B−R−X系合金を1Kgイン
ゴツトとして得た。このインゴツトをスタンプミ
ルにより35メツシユスルーまで粗粉砕し、さらに
ボールミルにより3時間磁界中配向可能な結晶粒
子に1〜30μmに粉砕した。 Fe:純度99.9重量%以上の電解鉄 B: フエロボロン合金(B19.4重量%含有)
及び純度99.9重量%の純ボロン R: 純度99.7重量%以上 S: 純度99重量%以上 P: フエロP(P26.7重量%含有) C: 純度99重量%以上 Cu:純度99.9重量%以上の電解Cu この粉末を約10kOeの磁界中で配向し1.5Ton/
cm2圧力で成形したのち、1000℃〜1200℃の不活性
ガス雰囲気中または真空中で1〜2時間焼結し、
放冷を行つた後得られた磁石の特性を第1〜2表
に示す。第1、2表において試料No.1〜36は本発
明例であり、試料No.C37〜C40は比較例である。
なお、こうした永久磁石試料の作成工程において
微粉枠後の合金(粉末状態)での特性を調べとこ
ろ、iHc1kOe以上の高い値を示していた。 さらに原子百分率でNd15原子%、B8原子%残
部Feから成る磁石合金組成において少量元素X
(P,C,S,Cu)の量を変化させて、磁石合金
中のP,C,S,Cu量と異方性焼結体永久磁石
の残留磁束密度との関係を第1図に示す(なお、
Xとして二種以上含む場合には、夫々の元素の特
性曲線を合成したものとほぼ同様なBr曲線を示
す)。 第1、2表、第1図よりBrはXの増大に伴な
つて低下するが、C4%、P3.5%、S2.5%、Cu3.5
%以下であればBrが4kG(ハードフエライトのBr
に相当)より大きな特性を維持できることが分か
る。さらに好ましい範囲は、Brを7kGの段階を
もつて区画することにより第1、2表及び第1図
から明らかに読取ることができる。 又、本発明の永久磁石はそのベースとなるFe
−B−R三元系において既述の8〜30R、2〜28
%B、残部Fe(原子百分率)において所定%以下
の元素Xの存在が許容されることが認められる。 なお第1、2表には軽希土類であるNd,Prに
ついて多数掲げてあるが希土類としては2種以上
含有しても有用であるということはいうまでもな
い。 次に、第2図に代表例として、少量元素Xとし
てのP,C,S,Cuが夫々0.5原子%入つた
Nd15Fe76.5B8H0.5(試料No.1)、Nd15Fe76.5B8S0.5
(試料No.17)、Nd15Fe76.5B8C0.5(試料No.9)及び
Nd15Fe76.5B8Cu0.5(試料No.25)の各合金から成る
焼結永久磁石の初磁化・減磁曲線を示す。いずれ
も高い角形性を示している。
The present invention relates to the improvement of permanent magnets, which are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to terminals for large computers. B-
Regarding R permanent magnets. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnets are required to have even higher performance. Current typical permanent magnets are alnico, hard ferrite, and rare earth cobalt magnets. With the recent instability in the raw material situation for cobalt, the demand for alnico magnets containing 20 to 30% cobalt by weight has decreased, and cheap hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer.
On the other hand, rare earth cobalt magnets contain 50 to 65% cobalt by weight and are very expensive because they use Sm, which is not often found in rare earth ores, but they have much higher magnetic properties than other magnets. Therefore, it has come to be used mainly in small, high value-added magnetic circuits. Rare earth cobalt magnets are RCo 5 , R 2 Co 17 (R is
It is a permanent magnet based on a binary compound represented by rare earth elements (mainly Sm and Ce).
A part of Co is replaced with a small amount of Cu, Fe, Zr, Ti, V, Hf
It has been attempted to improve the magnetic properties by substituting transition metal elements such as. On the other hand, recently, as a magnetic material that does not contain cobalt,
A magnetic material for a sputtered thin film or an ultra-quenched ribbon has been proposed which contains Fe and R (hereinafter in the present invention, R is used as a symbol indicating a rare earth element) as main components. For example, the magnetic properties of sputtered thin film amorphous TbFe 2 , DyFe 2 , and SmFe 2 alloys have been reported by Clark (AEClark: Appl. Phys.
Lett.vol.23No.11, 1 December 1973, 642~
644 pages). In addition, as a magnetic material for ultra-quenched ribbons, PrFe-based alloys (JJCroat: Appl.Phys.
Lett.37(12), 15 December 1980, 1096-1098
(Fe 0.82
B 0.18 ) 0.9 Tb 0.05 La 0.05 Alloy (NCKoon et al.: Appl.
Phys.Lett.39(10), 15 November 1981, 840~
(Page 842), by Kabakov et al. (Fe 0.8 B 0.2 ) 1-X Pr
(x=0-0.3 atomic ratio) alloy (L.Kabakoff et al.: J.
Appl.Phys.53(3), March 1982, pp. 2255-2257)
etc. have been reported. Furthermore, Kloth notes that although light rare earth iron alloys have long been considered attractive candidates for low-cost permanent magnets, attempts to magnetically harden these alloys by powder metallurgy have been unsuccessful. In addition to reporting, Pr−Fe and
reported that they found that Nd-Fe alloys could be magnetically hardened by melt spinning (ultra-quenching) (JJCroat: J.Appl.Phys.53(4), April 1982,
3161 pages). In order for magnets using rare earth metals to be used inexpensively and in large quantities in a wide range of fields, it is necessary to use magnets that do not contain expensive cobalt and are rare earth metals.
It would be necessary to have light rare earth elements, which are contained in large amounts in ores, as the main component. On the other hand, as mentioned above, in order to make R-Fe or R-Fe-B alloy useful as a magnetic material, it is said that sputter thinning, ultra-quenching, or amorphous formation is essential. However, it has not been possible to obtain bulk practical permanent magnets having arbitrary shapes and dimensions from these sputtered thin films or ultra-quenched ribbons. The magnetization curves of Fe-B-R ribbons reported so far have poor squareness, and cannot be considered as practical permanent magnets that can compete with conventional magnets. Further, both the sputtered thin film and the ultra-quenched ribbon are essentially isotropic, and it has been virtually impossible to obtain a practical permanent magnet with magnetic anisotropy from them. The basic purpose of the present invention is to provide a new practical permanent magnet that should meet such demands, and in particular does not necessarily require rare Sm etc. as R.
The purpose of the present invention is to provide a permanent magnet that does not require Co and has magnetic properties equivalent to or better than conventional ferrite magnets. In order to create such a permanent magnet, the present inventor first developed a method using specific rare earth elements, mainly Nd and Pr, and Fe.
and B in a specific ratio, and is a magnetically anisotropic sintered body. A completely new type of practical high-performance permanent magnet was developed and filed by the same applicant as the present application (Japanese Patent Application No. 145072/1982). This Fe-B-R ternary permanent magnet is based on a new compound different from the conventionally known RCo 5 and R 2 Co 17 compounds, and is made by forming an appropriate microstructure using powder metallurgy. It is a sintered permanent magnet obtained by
is not added as a conventional amorphous promoting element when creating an amorphous alloy or a sintering promoting element in powder metallurgy, but constitutes the substantial content of this Fe-BR permanent magnet. R-Fe, which is magnetically stable and has a high magnetic anisotropy constant below room temperature
-B is an essential constituent element of the compound. This compound has a sufficiently high Curie point (approximately 300°C or higher) for practical use. This Fe-B-R ternary permanent magnet has Fe as its main component and exhibits an extremely high energy product of more than 30 MGOe, and has higher characteristics at a lower cost than conventional alnico magnets and rare earth cobalt magnets. . That is, it provides higher cost performance, has arbitrary moldability, and can use resource-rich materials, and has great industrial utility. Coercive force iHc ranges from 1kOe to a maximum of approximately 13kOe
It is so large that it rivals the iHc of rare earth cobalt magnets, which are currently known as the magnets with the highest characteristics. The present invention provides such a Fe-B-R ternary permanent magnet by limiting the content to a predetermined value or less even if other small amounts of elements X (one or more of Cu, PC, and S) are contained. , as well as the Fe-B-R ternary permanent magnet according to the previous application (Japanese Patent Application No. 57-145072), achieves the above-mentioned object. That is, the permanent magnet of the present invention is as follows. First invention of the present application: Nd as a rare earth element (R) in atomic percentage,
At least one of Pr, Dy, Ho, Tb 8-30
%, B2~28%, below specified % (excluding 0%)
It is characterized by being a magnetically anisotropic sintered body consisting of one or more types of element X (however, when there are two or more types of element X, the total amount of Permanent magnet: Cu 3.5%, S 2.5%, C 4.0%, and P 3.5%. Second invention of the present application: Nd as a rare earth element (R) in atomic percentage,
At least one of Pr, Dy, Ho, Tb and La,
Ce, Pm, Sm, Eu, Gd, Er, Tm, Yb, Lu,
A total of 8 to 30% of at least one kind of Y (however, 50% or more of the rare earth elements (R) is one or two of Nd and Pr), B2 to 28%, and the following specified percentage or less (excluding 0%) One or more types of element X (however, element
2 or more types, the total amount of X is 4.0% or less), and the remainder is substantially Fe. (Predetermined % of element
are the same as those in the first invention) Minor elements X such as Cu, S, C, and P are industrially
When manufacturing Fe-BR magnets, it is often contained due to raw materials, manufacturing processes, etc. For example, when FeB is used as a raw material, S and P are often contained, and C is often contained as a residue of an organic binder (molding aid) in a powder metallurgy process. As for the influence of these small amounts of element X, according to the present invention, it has been recognized that the residual magnetic flux density Br tends to decrease as its content increases, as shown in FIG. As a result, hard ferrite (Br (approximately 4kG). In addition, as X, Cu is contained in a large amount in low-purity and inexpensive raw material iron, and Cu can be contained at 3.5% or less, and the total of X (S, C, P, Cu) is 4
% or less, it is possible to obtain Br equivalent to or higher than that of hard ferrite. Thus, the present invention provides a new Fe-B-R compound based Fe-B-R compound by further containing a specific small amount of element X in the Fe-B-R ternary permanent magnet
-B-R-X permanent magnets. According to the present invention, it is possible to provide a new practical permanent magnet that is extremely useful industrially and includes a high-performance magnet that has magnetic properties equivalent to or better than conventional hard ferrite magnets and can be substituted for Sm-Co magnets. The permanent magnet of the present invention is Fe-B-R-X system,
It does not necessarily need to contain Co, and as a preferred embodiment, light rare earths mainly composed of Nd and Pr, which are abundant in resources, can be used as R, and Sm is not necessarily required or it is not necessary to mainly contain Sm. Since there is no carbon dioxide, the raw materials are cheap and extremely useful. In the Fe-B-R-X permanent magnet of the present invention, the composition of R and B is basically in the same range as the composition of the Fe-B-R ternary permanent magnet (8 to 30% R, 2 to 28%
B). That is, when B is less than 2%, the coercive force
If iHc cannot be obtained more than 1kOe, and B exceeds 28%, the residual magnetic flux density Br of hard ferrite is about 4kG.
It cannot be more than that. If R is less than 8%, the coercive force cannot be greater than 1 kOe, and R is 30
%, it is undesirable because it is easily flammable, making it difficult to handle and manufacture industrially, and leading to an increase in product cost. In this B, R range, the maximum energy product (BH) max is hard ferrite (~
4MGOe). Further, in order to improve the temperature characteristics of the Fe-B-R-X permanent magnet of the present invention, a portion of Fe may be replaced with 50% or less of Co. Inclusion of Co has the effect of raising the Curie point of the Fe-B-R-X alloy. Furthermore, as a preferred embodiment of the present invention, the range of residual magnetic flux density Br7kG or more is S1.5% or less, C3.0%
Below, P2.0% or less, Cu2.3% or less, and S, C,
When the total of P and Cu is 3.0% or less (X is replaced by S, C, P,
When two or more types of Cu are used), each of them can be obtained. The Fe-BR-X permanent magnet of the present invention is Fe-
Like the BR permanent magnet, it is obtained as a magnetically anisotropic sintered body. For example, a permanent magnet can be obtained by melting an alloy, cooling it, for example casting it, pulverizing the resulting alloy, and then shaping and sintering it in a magnetic field. The rare earth element R used in the permanent magnet of the present invention includes Y, and is a rare earth element including light rare earths and heavy rare earths, among which one or more predetermined types are used.
That is, this R includes Nd, Pr, La, Ce, Tb,
Dy, Ho, Er, Eu, Sm, Gd, Pm, Tm, Yb,
Lu and Y are included. As R, light rare earths mainly composed of Nd and Pr are preferable. Also, it is usually sufficient to have one of R (Nd, Pr, Dy, Ho,
Tb) is La, Ce, Pm, Sm, Eu, Gd, Er,
Tm, Yb, Lu, Y are other R, especially Nd, Pr, Dy,
It can be used as a mixture with Ho and Tb (one or more types). In practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of availability. Sm、La、Er、Tm、
Ce, Gd, and Y alone are undesirable because of their low iHc, and Eu, Pm, Yb, and Lu exist only in trace amounts and are expensive. Therefore, as described above, these rare earth elements can be used as a mixture with other R such as Nd and Pr. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing (other rare earth elements Ca, Mg, Fe,
A material containing Ti, C, O, etc.) may be used.
As described above, the present invention is extremely advantageous in that R that is industrially easily available can be mainly used. As B (boron), pure boron or ferroboron can be used, and as impurities Al, Si,
Those containing C or the like can also be used. The permanent magnet of the present invention has an R of 8 to 30% as described above, 2
~28%B, less than the specified %X, balance Fe (atomic percentage)
, coercive force Hc≧1kOe, residual magnetic flux density Br≧
It exhibits magnetic properties of 4kG, and the maximum energy product (BH) max is equal to or higher than that of hard ferrite (~4MGOe). Light rare earth is the main component of R (i.e., total R medium light rare earth, especially Nd, Pr 50 atomic% or more), 11 to 24% R, 3
~27%B, X2.5% or less, (Cu2.0 or less, S1.5% or less, C2.5% or less, P2.0% or less), the balance Fe composition is maximum energy product (BH) max 7MGOe, which is a preferred range. Most preferably, light rare earths, especially Nd and Pr, are the main components of R, with 12 to 20% R, 4 to 24% B, and 2.0%
Below (S1.0% or less, C2.0% or less, P1.5% or less,
Cu1.0% or less), balance Fe, maximum energy product (BH) max ≥ 10MGOe, (BH)
The max reaches a maximum of 25MGOe or more. The permanent magnet of the present invention exhibits good squareness (see FIG. 2), and as described above, within the preferred range, exhibits high magnetic properties comparable to rare earth cobalt magnets. Of the above-mentioned minor elements It is advantageous because the characteristics are secured. Although the inclusion of C slightly increases the sintering temperature, as mentioned above, it is advantageous in the manufacturing process because the carbon from the organic binder commonly used in powder metallurgy does not have to be completely burned out. . Furthermore, in the Fe-BR-X permanent magnet of the present invention, Ti4.5% or less, Ni4.5% or less, Bi5% or less, V9.5% or less, Nb12.5% or less, Ta10.5% or less ,
Cr8.5% or less, Mo9.5% or less, W9.5% or less,
Mn3.5% or less, Al9.5% or less, Sb2.5% or less, Ge7
% or less, Sn3.5% or less, Zr5.5% or less and Hf5.5%
It may contain at least one or more of the following. It is possible to provide a permanent magnet with a higher iHc and is particularly suitable as a permanent magnet used in harsh environments. In this way, the predetermined content of the minor element X is
It is extremely advantageous industrially because it allows the use of low-purity raw materials and can be manufactured at low cost.By controlling the small amount of element A magnetically anisotropic sintered permanent magnet having a high energy product is provided with stable quality. In addition, the permanent magnet of the present invention has the above-mentioned Fe,
In addition to B, R, and X, the presence of industrially unavoidable impurities such as Ca, Mg, O, and Si can be tolerated. These impurities are often mixed in from raw materials or manufacturing processes, and the total amount is preferably 5% or less. Hereinafter, aspects and effects of the present invention will be explained according to Examples. However, the embodiments and descriptions are as follows:
The present invention is not limited to these. Example The following materials were used as raw materials. After weighing the raw materials so that the atomic composition of the permanent magnet was as shown in Tables 1 and 2, they were melted in a high-frequency induction furnace and cast in a water-cooled copper mold to form various Fe. -B-R-X alloy was obtained as a 1 kg ingot. This ingot was coarsely ground using a stamp mill to a mesh throughput of 35, and further ground using a ball mill to obtain crystal grains of 1 to 30 μm that could be oriented in a magnetic field for 3 hours. Fe: Electrolytic iron with a purity of 99.9% by weight or more B: Feroboron alloy (contains 19.4% by weight of B)
and pure boron with a purity of 99.9% by weight R: purity of 99.7% by weight or more S: purity of 99% by weight or more P: Ferro P (contains 26.7% by weight of P) C: purity of 99% by weight or more Cu: electrolysis with a purity of 99.9% by weight or more Cu This powder is oriented in a magnetic field of about 10kOe and 1.5Ton/
After molding at cm2 pressure, sintering for 1 to 2 hours in an inert gas atmosphere at 1000℃ to 1200℃ or in vacuum,
Tables 1 and 2 show the properties of the magnets obtained after cooling. In Tables 1 and 2, samples Nos. 1 to 36 are examples of the present invention, and samples Nos. C37 to C40 are comparative examples.
In addition, when we investigated the properties of the alloy (powder state) after forming a fine powder frame in the process of creating such a permanent magnet sample, we found that it had a high value of iHc1kOe or more. Furthermore, in a magnet alloy composition consisting of 15 atomic percent Nd, 8 atomic percent B, and the balance Fe, a small amount of element X
Figure 1 shows the relationship between the amount of P, C, S, Cu in the magnet alloy and the residual magnetic flux density of the anisotropic sintered permanent magnet by changing the amount of (P, C, S, Cu). (In addition,
When two or more types of X are included, a Br curve similar to that obtained by synthesizing the characteristic curves of each element is shown). From Tables 1 and 2 and Figure 1, Br decreases as X increases, but C4%, P3.5%, S2.5%, Cu3.5
% or less, Br is 4kG (hard ferrite Br
It can be seen that greater characteristics can be maintained (equivalent to ). Further preferred ranges can be clearly read from Tables 1 and 2 and FIG. 1 by partitioning Br in steps of 7 kG. Furthermore, the permanent magnet of the present invention is based on Fe.
-8 to 30R, 2 to 28 already mentioned in the B-R ternary system
%B and the remainder Fe (atomic percentage), it is recognized that the presence of element X in a predetermined % or less is allowed. Note that Tables 1 and 2 list many light rare earths such as Nd and Pr, but it goes without saying that it is useful to contain two or more types of rare earths. Next, as a representative example in Figure 2, P, C, S, and Cu as minor elements X each contain 0.5 at%.
Nd 15 Fe 76.5 B 8 H 0.5 (Sample No. 1), Nd 15 Fe 76.5 B 8 S 0.5
(Sample No. 17), Nd 15 Fe 76.5 B 8 C 0.5 (Sample No. 9) and
The initial magnetization and demagnetization curves of sintered permanent magnets made of each alloy of Nd 15 Fe 76.5 B 8 Cu 0.5 (Sample No. 25) are shown. All exhibit high squareness.

【表】【table】

【表】【table】

【表】 以上詳述の通り、本発明は、実用的な原料をも
つて特定の組成範囲に制御することにより新規な
Fe−B−R−X系磁気異方性焼結体から成る実
用永久磁石を提供し、従来レベル以上の磁気特性
をRとして必ずしもSmを用いることなくまた主
体とせず、しかもCoを必須とせずに実現したも
のである。本発明は、その実施の態様においてさ
らに従来のハードフエライト磁石よりも優れた高
保磁力、高エネルギー積を備える実用高性能永久
磁石を提供し、好適な態様としてSm−Co磁石を
もしのぐ高いエネルギー積をも実現したものであ
る。加えて、RとしてNd,Pr等の軽希土類を希
土類の中心として用いることができることによ
り、資源、価格、磁気特性いずれの点においても
優れた永久磁石であり、工業利用性の極めて高い
ものである。特に永久磁石としての利点は、従来
のSm−Co系と対比するとその主成分元素の点で
極めて顕著になる。加えて、純度の低い原料の使
用を可能とし、かつ安価に製造可能であるため工
業上極めて有利であり実用的価値を高めることに
大きく寄与できる。
[Table] As detailed above, the present invention achieves novel properties by using practical raw materials and controlling them within a specific composition range.
We provide a practical permanent magnet made of an Fe-B-R-X magnetically anisotropic sintered body, and have magnetic properties higher than conventional levels as R without necessarily using Sm or mainly, and without requiring Co. This was realized in In its embodiment, the present invention further provides a practical high-performance permanent magnet having a high coercive force and a high energy product superior to conventional hard ferrite magnets, and as a preferred embodiment, a high energy product superior to an Sm-Co magnet. This has also been realized. In addition, since light rare earths such as Nd and Pr can be used as the core of R, it is a permanent magnet that is excellent in terms of resources, price, and magnetic properties, and has extremely high industrial applicability. . In particular, its advantages as a permanent magnet are extremely significant when compared with conventional Sm--Co based elements in terms of its main constituent elements. In addition, it allows the use of raw materials with low purity and can be produced at low cost, which is extremely advantageous industrially and can greatly contribute to increasing practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例Nd15Fe77-aB8Xa
の合金から成る異方性焼結永久磁石についてXの
原子百分率a(横軸)に対する残留磁化Br(縦軸
kG)の変化を示すグラフ、第2図は本発明の代
表的な実施例の試料No.1、9、17及び25について
の初磁化・減磁曲線を示すグラフ(横軸磁界
kOe、縦軸磁化kG)、を夫々示す。
FIG . 1 shows the residual magnetization Br ( vertical axis) with respect to the atomic percentage a of
Fig. 2 is a graph showing initial magnetization/demagnetization curves for samples Nos. 1, 9, 17, and 25 of representative examples of the present invention (horizontal axis is magnetic field
kOe, vertical axis magnetization kG), respectively.

Claims (1)

【特許請求の範囲】 1 原子百分比で、希土類元素(R)としてNd,
Pr,Dy,Ho,Tbのうち少なくとも一種8〜30
%、B2〜28%、下記所定%以下(0%を除く)
の元素Xの一種又は二種以上(但し元素Xが二種
以上のときは、X合量は4.0%以下)、及び残部実
質的にFeから成る磁気異方性焼結体であること
を特徴とする永久磁石; Cu 3.5%、 S 2.5%、 C 4.0%、及びP 3.5%。 2 原子百分比で、前記希土類元素(R)12〜20
%(但し前記希土類元素(R)の50%以上はNd
とPrの一種又は二種)、B4〜24%、前記所定%以
下の元素X、及び残部実質的にFeから成ること
を特徴とする特許請求の範囲第1項記載の永久磁
石。 3 原子百分比で、希土類元素(R)としてNd,
Pr,Dy,Ho,Tbのうち少なくとも一種とLa,
Ce,Pm,Sm,Eu,Gd,Er,Tm,Yb,Lu,
Yのうち少なくとも一種の合計8〜30%(但し前
記希土類元素(R)の50%以上はNdとPrの一種
又は二種)、B2〜28%、下記所定%以下(0%を
除く)の元素Xの一種又は二種以上(但し元素X
が二種以上のときは、X合量は4.0%以下)、及び
残部実質的にFeから成る磁気異方性焼結体であ
ることを特徴とする永久磁石: Cu 3.5%、 S 2.5%、 C 4.0%、及びP 3.5%。 4 原子百分比で、前記希土類元素(R)12〜20
%、B4〜24%、前記所定%以下の元素X、及び
残部実質的にFeから成ることを特徴とする特許
請求の範囲第3項記載の永久磁石。
[Claims] 1 Nd as a rare earth element (R) in atomic percentage;
At least one of Pr, Dy, Ho, Tb 8-30
%, B2~28%, below specified % (excluding 0%)
It is characterized by being a magnetically anisotropic sintered body consisting of one or more types of element X (however, when there are two or more types of element X, the total amount of Permanent magnet: Cu 3.5%, S 2.5%, C 4.0%, and P 3.5%. 2 The rare earth element (R) 12 to 20 in atomic percentage
% (However, more than 50% of the rare earth elements (R) are Nd
and Pr), 4 to 24% of B, the predetermined percentage or less of element X, and the remainder substantially of Fe. 3 Nd as a rare earth element (R) in atomic percentage,
At least one of Pr, Dy, Ho, Tb and La,
Ce, Pm, Sm, Eu, Gd, Er, Tm, Yb, Lu,
A total of 8 to 30% of at least one kind of Y (however, 50% or more of the rare earth elements (R) is one or two of Nd and Pr), B2 to 28%, and the following specified percentage or less (excluding 0%) One or more types of element X (however, element
(when two or more types of C 4.0%, and P 3.5%. 4 The rare earth element (R) 12 to 20 in atomic percentage
%, B4 to 24%, the predetermined % or less of element X, and the remainder substantially Fe.
JP2008373A 1990-01-19 1990-01-19 Permanent magnet Granted JPH031502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008373A JPH031502A (en) 1990-01-19 1990-01-19 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008373A JPH031502A (en) 1990-01-19 1990-01-19 Permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58005814A Division JPS59132105A (en) 1982-08-21 1983-01-19 Permanent magnet

Publications (2)

Publication Number Publication Date
JPH031502A JPH031502A (en) 1991-01-08
JPH044725B2 true JPH044725B2 (en) 1992-01-29

Family

ID=11691431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008373A Granted JPH031502A (en) 1990-01-19 1990-01-19 Permanent magnet

Country Status (1)

Country Link
JP (1) JPH031502A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292805A (en) * 1992-05-29 1994-03-08 Amoco Corporation Filled polyphthalamide blends having improved processability and composite and filled articles therefrom
US5283284A (en) * 1992-05-29 1994-02-01 Amoco Corporation Polypropylene-polyphthalamide blends

Also Published As

Publication number Publication date
JPH031502A (en) 1991-01-08

Similar Documents

Publication Publication Date Title
US4975130A (en) Permanent magnet materials
US4684406A (en) Permanent magnet materials
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPS6134242B2 (en)
JPH0510807B2 (en)
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH0316762B2 (en)
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
US5230749A (en) Permanent magnets
JPH0535210B2 (en)
JPH0536495B2 (en)
JPH0316763B2 (en)
JPS6365742B2 (en)
JPH0535211B2 (en)
JPS6077959A (en) Permanent magnet material and its manufacture
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH044725B2 (en)
JPH044384B2 (en)
JPH0536494B2 (en)
JPH0316764B2 (en)
JPH0633444B2 (en) Permanent magnet alloy
JPH0316765B2 (en)