JPH06206216A - Production of thermoplastic resin composition - Google Patents

Production of thermoplastic resin composition

Info

Publication number
JPH06206216A
JPH06206216A JP5002775A JP277593A JPH06206216A JP H06206216 A JPH06206216 A JP H06206216A JP 5002775 A JP5002775 A JP 5002775A JP 277593 A JP277593 A JP 277593A JP H06206216 A JPH06206216 A JP H06206216A
Authority
JP
Japan
Prior art keywords
extruder
thermoplastic resin
nitrogen gas
supplied
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5002775A
Other languages
Japanese (ja)
Inventor
Michiyuki Nakase
道行 中瀬
Akihiko Ishimura
昭彦 石村
Noritsugu Ito
典次 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5002775A priority Critical patent/JPH06206216A/en
Publication of JPH06206216A publication Critical patent/JPH06206216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oxidative deterioration by supplying nitrogen gas from the front part of a position where a thermoplastic resin is melted when a thermoplastic resin and additives are kneaded in an extruder to produce a molding material to perform kneading in a nitrogen gas atmosphere. CONSTITUTION:A thermoplastic resin or a thermoplastic resin compsn. is supplied into the cylinder 1 of an extruder in a solid state from a hopper 3 through a quantitative supply device 4 and fed to a zone 6 in a solid state by the rotation of a screw 2 and further fed to a zone 7 in such a transition state that the solid state is transferred to a molten state to be fed to a zone 8 in a molten state. As a result, the object to be supplied is kneaded to produce a molding material. In this case, nitrogen gas is supplied to the zone 6 from the supply port 5 arranged to the zone 6. The object to be supplied is melted and kneaded while the extruder is filled with the nitrogen gas. By this constitution, oxidative deterioration before and after melt kneading is prevented and the molding material of high quality is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂組成物の
製造方法に関する。更に詳しくは、押出機中で溶融混練
して熱可塑性樹脂組成物を製造する際、溶融混練前後で
酸化劣化が少ないため色調変化が少なくて黄色度が小さ
く、製品としての熱可塑性樹脂組成物中に炭化物・ゲル
化物などの異物が少ない品質の優れた熱可塑性樹脂組成
物を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic resin composition. More specifically, when producing a thermoplastic resin composition by melt-kneading in an extruder, there is little oxidative deterioration before and after melt-kneading, so that there is little change in color tone and yellowness is small, and in a thermoplastic resin composition as a product In particular, the present invention relates to a method for producing a high-quality thermoplastic resin composition containing few foreign substances such as carbides and gels.

【0002】[0002]

【従来の技術】熱可塑性樹脂に他の熱可塑性樹脂および
/または添加剤を加え、押出機内中で混練して、多くの
優れた特性を有した熱可塑性樹脂組成物に改質し、射出
・押出成形用材料などに供することは、広く実施されて
いる。一般的には、単軸押出機や2軸押出機などの多軸
押出機を用いて熱可塑性樹脂と他の熱可塑性樹脂および
/または添加剤をあらかじめ一括ブレンドして押出機駆
動側の第1供給口から供給し溶融・混練するか、又は、
他の熱可塑性樹脂と添加剤を該第1供給口から供給し、
溶融・混練後第2番目以後の供給口から順次、無機フィ
ラやガラス繊維などの補強材を供給し、溶融・混練する
いわゆるダウン・ストリーム法などが用いられている。
2. Description of the Related Art A thermoplastic resin is mixed with another thermoplastic resin and / or an additive, and the mixture is kneaded in an extruder to be modified into a thermoplastic resin composition having many excellent properties, and then injected and injected. The use as a material for extrusion molding is widely practiced. Generally, a thermoplastic resin and other thermoplastic resins and / or additives are preliminarily batch-blended in advance using a multi-screw extruder such as a single-screw extruder or a twin-screw extruder, and the first resin on the extruder drive side is first blended. It is supplied from the supply port and melted / kneaded, or
Other thermoplastic resin and additives are supplied from the first supply port,
A so-called down stream method in which a reinforcing material such as an inorganic filler or glass fiber is sequentially supplied from the second and subsequent supply ports after melting and kneading and then melting and kneading is used.

【0003】これらの製造方法においては、熱可塑性樹
脂や添加剤が、各供給口から押出機中へ供給される時に
空気も随伴して押出機中に入り込む。これらの空気は、
原材料が供給された押出機の開口部から押出機外へ逃げ
て行くか、押出機に設置されたベント孔から除去される
か、溶融ポリマ中に練り込まれて押出ノズルから押し出
されるかのどれかである。熱可塑性樹脂組成物の製造に
おいて、水やモノマ、オリゴマなどの揮発分を除去する
必要がある場合には熱可塑性樹脂溶融後に押出ノズルま
での間でベント孔を設け、例えば、100トール以下な
どの減圧下で除去することもあり、空気も同時に除去さ
れる。
In these manufacturing methods, when the thermoplastic resin and the additives are supplied into the extruder through the respective supply ports, air is also entrained into the extruder. These air is
Either the raw material escapes through the opening of the extruder to which it is fed, is removed from the vent hole installed in the extruder, or is kneaded into the molten polymer and extruded from the extrusion nozzle. It is. In the production of a thermoplastic resin composition, when it is necessary to remove volatile components such as water, monomers, and oligomers, a vent hole is provided between the extrusion resin and the extrusion nozzle after melting the thermoplastic resin. It may be removed under reduced pressure and air is also removed at the same time.

【0004】しかし、ベント孔から除去される空気は、
各供給口から持ち込まれた空気の一部であり、ほとんど
の空気は固体で供給されたポリマが溶融するゾーンであ
る押出機内の充満率が100%に近くなっている部分か
ら、押出機の駆動側 (ポリマの搬送方向と逆向き) へ流
れて押出機外へ出てゆくか、溶融ポリマ中に練り込まれ
てベントからも除去されずにポリマと共に押出ノズルか
ら押出される。従って、押出機内は常時空気が存在して
おり、ポリマやその他の材料は、酸素存在下にさらされ
ていることになる。
However, the air removed from the vent holes is
It is a part of the air brought in from each supply port, and most of the air is a zone where the polymer supplied as a solid melts from the part where the filling rate in the extruder is close to 100% It flows to the side (opposite to the conveying direction of the polymer) and goes out of the extruder, or it is kneaded into the molten polymer and extruded from the extrusion nozzle together with the polymer without being removed from the vent. Therefore, air is always present in the extruder, and the polymer and other materials are exposed to the presence of oxygen.

【0005】押出機内を酸素存在下にさらさないように
する方法としては、原材料中の酸素濃度をあらかじめ下
げるために、原材料の貯槽や供給装置を窒素置換するな
どの方法が考えられる。しかし次のような理由で効率的
にも経済的にも満足なものではない。すなわち、同じ押
出機・同じ生産系列で品種切り替えを行って多品種の熱
可塑性樹脂組成物の製造を行うことは広く工業的に行わ
れており、単一品種のみ製造することよりもむしろ一般
的である。その場合、原材料の切り替えに伴う装置の清
掃・交換をできるだけ短時間で行うために、接続部分は
脱着が容易な構造になっていたり、原材料の種類毎に供
給装置を持つといった工夫がなされており、接続部分に
おける空気の出入りをなくすことは非常に難しい。更に
押出機に対しては原材料の供給と製品の排出が連続的で
あるため、このような連続装置の酸素濃度を効率的に下
げることも非常に難しい。以上のように、これまで押出
機内の酸素濃度を下げる有効な方法はなかった。
As a method of preventing the inside of the extruder from being exposed to the presence of oxygen, a method such as substituting the raw material storage tank and the supply device with nitrogen in order to reduce the oxygen concentration in the raw material in advance can be considered. However, it is not satisfactory both efficiently and economically for the following reasons. That is, it is widely industrially performed to manufacture multiple types of thermoplastic resin compositions by switching the types with the same extruder and the same production line, and it is common to produce only a single type. Is. In that case, in order to clean and replace the equipment accompanying the switching of raw materials in the shortest possible time, the connection part has a structure that can be easily attached and detached, and there is a device that has a supply device for each type of raw material. , It is very difficult to eliminate air in and out of the connection part. Further, since the raw material is continuously supplied to the extruder and the product is continuously discharged, it is also very difficult to effectively reduce the oxygen concentration in such a continuous apparatus. As described above, there has been no effective method for reducing the oxygen concentration in the extruder so far.

【0006】[0006]

【発明が解決しようとする課題】このようにして、原材
料と共に持ち込まれた空気中に含まれる酸素と、押出機
内で融点以上に加熱されて溶融状態にある熱可塑性樹脂
が、高温下で接触すると熱可塑性樹脂組成物が空気酸化
変質されて、黄色度が大きくなり白色度が小さくなるな
ど溶融混練前後の色調変化が著しく大きい。
Thus, when oxygen contained in the air brought together with the raw materials and the thermoplastic resin which is in a molten state by being heated above the melting point in the extruder are brought into contact with each other at a high temperature. The thermoplastic resin composition is air-oxidized and deteriorated to have a large yellowness and a small whiteness.

【0007】一方、押出機のシリンダ内壁やスクリュウ
表面そしてシリンダに設けた各供給口やベント孔の周囲
に樹脂や各種添加剤、補強材或いは樹脂組成物が付着し
た場合、原材料と共に持ち込まれた空気中に含まれる酸
素によって、高温下で酸化劣化し、いわゆる炭化物やヤ
ケなどと呼ばれるような黒茶色異物 (以下、炭化物と略
す) となって製品中に混入するという問題をひきおこ
す。
On the other hand, when a resin, various additives, a reinforcing material or a resin composition adheres to the inner wall of the cylinder of an extruder or the surface of a screw and the periphery of each supply port or vent hole provided in the cylinder, the air brought in together with the raw materials This causes the problem that oxygen contained in the product causes oxidative deterioration at high temperatures to form black-brown foreign substances (hereinafter, abbreviated as carbides), which are so-called carbides and burns, and are mixed in the product.

【0008】このような色調変化が大きかったり、炭化
物が混入している熱可塑性樹脂組成物がそのままペレタ
イズされ、製品化されると、それを射出成形などの方法
により成形品にした場合、成形品の色調変動や、炭化物
による外観不良などの重大欠陥の他、最悪の場合には成
形品の機械的強度低下、電気特性低下など製品品質を損
なう結果となり、著しく商品価値を下げてしまう。
When a thermoplastic resin composition having such a large change in color tone or mixed with a carbide is pelletized as it is and put into a product, it is formed into a molded product by a method such as injection molding. In addition to serious defects such as color tone fluctuations in appearance and poor appearance due to carbides, in the worst case, the product quality may be impaired, such as a decrease in mechanical strength and a decrease in electrical characteristics of the molded product, resulting in a marked decrease in commercial value.

【0009】従来、空気酸化により着色したペレットや
炭化物を含むペレットの製品への混入防止は各供給口や
ベント孔、押出機内のスクリュウやバレルを清掃するし
か方法がなかった。そして万一、混入が認められた時は
製品中から選別除去するしか方法がなかった。これらの
方法では除去率が低かったり、選別に膨大な時間を要す
るなどの理由で充分とは言えず熱可塑性樹脂組成物製造
者にとっては、解決が切望される重要課題であった。
Conventionally, the only method for preventing the mixing of pellets colored by air oxidation or pellets containing carbide into the product is to clean the supply ports, vent holes, screws and barrels in the extruder. In the unlikely event that contamination is found, the only option is to remove it from the product. These methods cannot be said to be sufficient because the removal rate is low and a huge amount of time is required for selection, and it has been an important issue that a thermoplastic resin composition manufacturer needs to solve.

【0010】熱可塑性樹脂組成物として例えばポリアミ
ド樹脂組成物を例にとると、その劣化機構は酸素存在下
における熱酸化分解反応や架橋反応であり、酸素濃度を
下げることが劣化による炭化物の発生・色調変化防止に
有効である。本発明は、これらの問題点をひきおこす押
出機内の酸素に注目し、その濃度を下げるために有効な
方法を提供することを目的とする。即ち、押出機内を含
めた熱可塑性樹脂組成物の製造工程が品種切り替えを容
易にするために、例えば押出機と供給装置の接続部分が
脱着容易な構造になっており、窒素ガスで完全に密封す
ることが非常に困難であったり、連続運転装置であるた
め押出機中の酸素濃度を下げることが非常に困難であっ
たが、本発明では、非常に簡単な装置で品種切り替え時
間も増加させずに、押出機内を窒素ガスで充満させるこ
とにより有効に酸素濃度を低下させ、空気酸化による着
色や炭化物を発生させず、製品品質の優れた熱可塑性樹
脂組成物の製造方法を提供するものである。
Taking a polyamide resin composition as an example of the thermoplastic resin composition, the deterioration mechanism is a thermal oxidative decomposition reaction or a cross-linking reaction in the presence of oxygen, and lowering the oxygen concentration causes generation of carbides due to deterioration. It is effective in preventing color tone changes. It is an object of the present invention to provide attention to oxygen in an extruder that causes these problems, and to provide an effective method for reducing the concentration of oxygen. That is, in order to facilitate the product type switching in the manufacturing process of the thermoplastic resin composition including the inside of the extruder, for example, the connecting portion between the extruder and the feeding device has a structure that is easily detachable and completely sealed with nitrogen gas. It was very difficult to do so, or it was very difficult to reduce the oxygen concentration in the extruder because it was a continuous operation device, but in the present invention, it is possible to increase the product type switching time with a very simple device. Without, it effectively reduces the oxygen concentration by filling the extruder with nitrogen gas, does not generate coloring or carbide due to air oxidation, to provide a method for producing a thermoplastic resin composition having excellent product quality. is there.

【0011】[0011]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明は熱可塑性樹脂と他の熱可塑性樹脂および
/または添加剤を押出機内で混練して成形用材料を製造
するにあたり、押出機駆動側の第1供給口から熱可塑性
樹脂を供給し、該第1供給口より押出方向側で該樹脂が
実質的に溶融する位置より駆動側のシリンダに設けたガ
ス供給口から、窒素ガスを供給し、押出機内を窒素ガス
で充満させながら溶融混練することを特徴とする熱可塑
性樹脂の製造方法である。
In order to solve the above problems, the present invention relates to the production of a molding material by kneading a thermoplastic resin with other thermoplastic resins and / or additives in an extruder. A thermoplastic resin is supplied from a first supply port on the driving side of the extruder, and nitrogen is supplied from a gas supply port provided on a cylinder on the driving side from a position where the resin is substantially melted on the extrusion direction side of the first supply port. A method for producing a thermoplastic resin is characterized in that a gas is supplied and the extruder is melt-kneaded while being filled with nitrogen gas.

【0012】本発明における「熱可塑性樹脂」とは、溶
融押出機によって成形することのできる樹脂、例えばポ
リアミド、ポリエステル、ポリフェニレンオキサイド、
ポリアセタール、ポリカーボネート、ポリプロピレン、
ポリエチレン、ポリスチレン、アクリロニトリル/スチ
レン共重合体、アクリロニトリル/スチレン/ブタジエ
ン共重合体などである。これらの樹脂は、射出成形や押
出成形などの成形用材料として、使用されるものであ
る。
The "thermoplastic resin" in the present invention means a resin that can be molded by a melt extruder, such as polyamide, polyester, polyphenylene oxide,
Polyacetal, polycarbonate, polypropylene,
Examples thereof include polyethylene, polystyrene, acrylonitrile / styrene copolymer, acrylonitrile / styrene / butadiene copolymer and the like. These resins are used as molding materials for injection molding, extrusion molding and the like.

【0013】本発明における「添加剤」とは、補強材と
して繊維状充填剤、例えばガラス繊維、チタン酸カリウ
ム繊維、炭素繊維、金属炭化物繊維、ワラステナイトな
どや、ガラスビーズ、ガラスフレーク、マイカなどの無
機充填剤のほか、滑剤、核剤、可塑剤、難燃剤、加工安
定剤、酸化防止剤、紫外線吸収剤、離型剤、着色剤、帯
電防止剤、表面処理剤、架橋剤、カップリング剤、さら
には衝撃性アップのためのゴムなど、熱可塑性樹脂と混
練されるものすべてのことを言う。また、無機系でも有
機系でもよく、固体でも液体でもよい。
The "additive" in the present invention means a fibrous filler as a reinforcing material such as glass fiber, potassium titanate fiber, carbon fiber, metal carbide fiber, wollastonite, glass beads, glass flake, mica and the like. In addition to inorganic fillers, lubricants, nucleating agents, plasticizers, flame retardants, processing stabilizers, antioxidants, UV absorbers, release agents, colorants, antistatic agents, surface treatment agents, cross-linking agents, couplings It refers to all agents that are kneaded with thermoplastics, such as agents, and rubber for improving impact resistance. Further, it may be inorganic or organic, and may be solid or liquid.

【0014】本発明における「熱可塑性樹脂組成物」と
は、前述した熱可塑性樹脂 (単独樹脂) 、熱可塑性樹脂
と他の樹脂の組成物 (樹脂アロイ) 、これらの単独樹脂
または樹脂アロイに前述した添加剤などを添加した組成
物等を含む総称である。また「押出機」とは単軸押出
機、2軸押出機などの多軸押出機やニーダー、バンバリ
タイプの連続式混練機などのことである。本発明の効果
は特に押出機のタイプには限定されないが、いわゆる飢
餓供給状態で、即ち押出機の搬送能力未満で重量式や容
量式の定量フィーダーにより、ペレットや粉状の熱可塑
性樹脂や熱可塑性樹脂組成物が押出機に供給されている
ような状態下において、実質的にそれらが溶融を開始す
るまでに窒素ガスを供給するときに特に著しい。
The "thermoplastic resin composition" in the present invention means the above-mentioned thermoplastic resin (single resin), a composition of a thermoplastic resin and another resin (resin alloy), and the above-mentioned single resin or resin alloy. It is a general term including compositions and the like to which the above-mentioned additives and the like are added. The "extruder" is a single-screw extruder, a multi-screw extruder such as a twin-screw extruder, a kneader, or a Banbury type continuous kneader. The effect of the present invention is not particularly limited to the type of extruder, but in a so-called starvation supply state, that is, with a quantitative feeder of a weight type or a volume type with less than the conveying capacity of the extruder, pellets or powdery thermoplastic resin or heat Under the conditions where the plastic resin compositions are being fed to the extruder, it is particularly remarkable when nitrogen gas is fed substantially by the time they start to melt.

【0015】「押出機駆動側の第1供給口」とは、押出
機に各種原材料を供給する場合1ヶ所以上の供給口が存
在する時の、最も駆動モータに近い供給口のことで、例
えば、モジュールタイプで組立式のブロックシリンダか
らなる押出機では、いわゆる第1バレルのことである。
一般に第1供給口からは主要成分である熱可塑性樹脂ペ
レットか熱可塑性樹脂粉末が供給されることが多く、ま
た成分的には最も多量の原料が供給されるため、それに
付随して持ち込まれる酸素も多い。この第1供給口から
供給された熱可塑性樹脂を、シリンダに取り付けられた
ヒータからの伝熱や、スクリュウから与えられる剪断応
力により、溶融させる。
The term "first feed port on the driving side of the extruder" refers to the feed port closest to the driving motor when there are one or more feed ports when feeding various raw materials to the extruder. In the case of an extruder composed of a module type and assembly type block cylinder, this is the so-called first barrel.
Generally, the thermoplastic resin pellet or the thermoplastic resin powder, which is the main component, is often supplied from the first supply port, and the largest amount of raw material is supplied in terms of the component. There are also many. The thermoplastic resin supplied from the first supply port is melted by the heat transfer from the heater attached to the cylinder and the shear stress given by the screw.

【0016】本発明では、この熱可塑性樹脂の溶融前
に、即ち該樹脂が実質的に溶融する位置より駆動側のシ
リンダに設けたガス小供給口から窒素ガスを供給する。
「該樹脂が実質的に溶融する位置より駆動側のシリンダ
に設けたガス供給口」の位置はこの範囲であれば特に限
定はしないが、例えば押出機中へ供給された熱可塑性樹
脂または熱可塑性樹脂組成物がシリンダからの伝熱やス
クリュウとシリンダ間で発生する剪断応力により溶融を
開始する前の、押出機のスクリュウによって定常的に固
体のまま輸送されている部分で、第1供給口の駆動側端
から見て、押出機のスクリュウ軸方向の長さと直径の比
が5から20までの位置などである。この位置について
は、スクリュウの配列や熱可塑性樹脂の種類、形状など
に依存して変化するため適宜、最適な位置を決めてやる
必要がある。
In the present invention, nitrogen gas is supplied before melting of the thermoplastic resin, that is, from a small gas supply port provided in the cylinder on the drive side of the position where the resin is substantially melted.
The position of the "gas supply port provided in the cylinder on the drive side of the position where the resin is substantially melted" is not particularly limited as long as it is within this range, but for example, the thermoplastic resin or the thermoplastic resin supplied into the extruder is used. Before the resin composition starts to melt due to heat transfer from the cylinder or shear stress generated between the screw and the cylinder, the screw is constantly transported as a solid by the screw of the extruder. The position where the ratio of the length in the axial direction of the screw to the diameter of the extruder is 5 to 20 as viewed from the driving side end. This position changes depending on the screw arrangement, the type and shape of the thermoplastic resin, etc., so it is necessary to appropriately determine the optimum position.

【0017】また、本発明の窒素ガス供給口より押し出
し方向側で押出機のシリンダに設けた供給口から、熱可
塑性樹脂や添加剤、熱可塑性樹脂組成物を押出機内に供
給する場合にも、本発明は有効である。この場合、窒素
ガス供給口より押し出し方向側で押出機のシリンダに設
けた供給口の数は1か所でも複数か所でも良い。本発明
で使用する「窒素ガス」とは、本発明の効果を発揮させ
る上でも、製品へ直接接触するという理由からも、好ま
しくは99.98%以上、より好ましくは99.999
%以上の純度のものを使用すると良い。窒素ガスの供給
方法は押出機シリンダに設けた小孔から供給する方法な
ど窒素ガスが押出機内へ確実に供給でき、熱可塑性樹脂
や熱可塑性樹脂組成物が供給口を通じて押出機から出て
こないような方法であれば、特に限定しない。押出機シ
リンダにそのような小孔を有していれば良い。
Further, when the thermoplastic resin, the additive, and the thermoplastic resin composition are supplied into the extruder through the supply port provided in the cylinder of the extruder on the extrusion direction side of the nitrogen gas supply port of the present invention, The present invention is effective. In this case, the number of supply ports provided in the cylinder of the extruder on the extrusion direction side of the nitrogen gas supply port may be one or plural. The "nitrogen gas" used in the present invention is preferably 99.98% or more, and more preferably 99.999%, for the purpose of exerting the effects of the present invention and for being in direct contact with the product.
It is recommended to use one with a purity of at least%. Nitrogen gas can be supplied from the small holes provided in the extruder cylinder so that nitrogen gas can be reliably supplied into the extruder and that the thermoplastic resin or thermoplastic resin composition does not come out of the extruder through the supply port. There is no particular limitation as long as it is a proper method. It is sufficient that the extruder cylinder has such small holes.

【0018】窒素ガスの供給量としては、押出機の軸方
向の長さ1m当たりのシリンダとスクリュウの間隙で形
成される流路容積に対して、0℃、1気圧という標準状
態の窒素で1分間当たり3倍量以上供給することが好ま
しい。1分間当たり3倍量より少ないと酸化防止効果が
ほとんどなく、色調変動や炭化物の発生の防止に効果が
得られない。また、供給量の上限は特にないが実用上は
押出機の軸方向の長さ1m当たりのシリンダとスクリュ
ウの間隙で形成される流路容積に対して、0℃、1気圧
と言う標準状態の窒素ガスで1分間当たり15倍量程度
までで十分である。それ以上の窒素ガスを供給しても色
調変動や炭化物の発生防止効果の向上はなく、窒素ガス
の供給量が増える分製造コストが増加するだけで意味が
ない。
The nitrogen gas is supplied at a standard condition of 0 ° C. and 1 atm with respect to the volume of the flow passage formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. It is preferable to supply at least three times the amount per minute. If the amount is less than 3 times per minute, there is almost no antioxidant effect, and no effect can be obtained in preventing color tone variation and generation of carbides. Although there is no particular upper limit to the supply amount, in practice the standard state of 0 ° C. and 1 atm is used with respect to the flow path volume formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. Up to about 15 times the amount of nitrogen gas per minute is sufficient. Even if more nitrogen gas is supplied, the effect of preventing the color tone change and the generation of carbides is not improved, and the manufacturing cost increases as the supply amount of nitrogen gas increases, which is meaningless.

【0019】本発明で用いる熱可塑性樹脂組成物の製造
用押出機への窒素ガスの代表的な供給方法例を図1に示
す、1、2はそれぞれ押出機のシリンダ及びスクリュウ
である。3は、固体状態の熱可塑性樹脂または熱可塑性
樹脂組成物を供給するホッパーを示し、このホッパー3
から熱可塑性樹脂または熱可塑性樹脂組成物は定量供給
装置4によって押出機のシリンダ1中へ供給される。供
給された熱可塑性樹脂または熱可塑性樹脂組成物は、固
体状態で輸送されるゾーン6に続いて、固体から溶融状
態への遷移状態であるゾーン7を経て、ゾーン8では溶
融状態で輸送されていく。
A typical example of a method for supplying nitrogen gas to the extruder for producing the thermoplastic resin composition used in the present invention is shown in FIG. 1, and 1 and 2 are the cylinder and screw of the extruder, respectively. Reference numeral 3 denotes a hopper that supplies a thermoplastic resin or a thermoplastic resin composition in a solid state.
The thermoplastic resin or the thermoplastic resin composition is supplied into the cylinder 1 of the extruder by the constant amount supply device 4. The supplied thermoplastic resin or thermoplastic resin composition is transported in a molten state in a zone 8 through a zone 7 in a solid state, a zone 7 in a transition state from a solid state to a molten state, and a zone 8 in a molten state in a zone 8. Go.

【0020】本発明においては、窒素ガスの供給口5
は、固体状態で輸送されるゾーン6または固体から溶融
状態への遷移状態であるゾーン7に配置されることがよ
い。即ち、樹脂が実質的に溶融する位置よりシリンダ1
の駆動側にあることがよく、より好ましくは、ゾーン6
にあるのがよい。このゾーン6にガス供給口5を設け、
窒素ガスを供給する。
In the present invention, the nitrogen gas supply port 5
May be placed in zone 6 which is transported in the solid state or zone 7 which is the transition state from solid to molten state. That is, from the position where the resin is substantially melted, the cylinder 1
Is preferably on the drive side of, and more preferably zone 6
It is good to be in The gas supply port 5 is provided in this zone 6,
Supply nitrogen gas.

【0021】[0021]

【作用】熱可塑性樹脂と他の熱可塑性樹脂および/また
は添加剤を、押出機中で溶融・混練して、多くの優れた
特性を有した熱可塑性樹脂組成物に改質する際、押出機
中は少なくとも樹脂の融点以上の高温になっており、原
材料と共に持ち込まれた空気中に含まれる酸素の存在下
では、熱可塑性樹脂は熱酸化分解反応や架橋反応などの
劣化反応を起こしやすい。これらの劣化反応の結果、製
品としての熱可塑性樹脂組成物の色調変動や炭化物の発
生がひきおこされる。従って、押出機内の酸素濃度を下
げることができれば、劣化反応を抑えることができ、熱
可塑性樹脂組成物の色調変動や炭化物の発生を防止でき
る。本発明では、押出機内の酸素濃度を熱可塑性樹脂や
熱可塑性樹脂組成物を供給した第1供給口より押出方向
側で、該樹脂が実質的に溶融する位置より駆動側のシリ
ンダに設けたガス供給口から窒素ガスを供給し、押出機
内を窒素ガスで充満させながら溶融・混練することによ
り、押出機内の酸素濃度を有効に下げることができ、該
樹脂の熱酸化分解反応や架橋反応などの劣化反応を抑え
ることができ、製品としての該樹脂の色調変動や炭化物
の発生を防止できたと考えられる。
When the thermoplastic resin and other thermoplastic resins and / or additives are melted and kneaded in the extruder to be modified into a thermoplastic resin composition having many excellent properties, the extruder is used. The inside temperature is at least higher than the melting point of the resin, and in the presence of oxygen contained in the air brought in together with the raw materials, the thermoplastic resin is apt to undergo deterioration reactions such as thermal oxidative decomposition reaction and crosslinking reaction. As a result of these deterioration reactions, the color tone of the thermoplastic resin composition as a product changes and the generation of carbides occurs. Therefore, if the oxygen concentration in the extruder can be lowered, the deterioration reaction can be suppressed, and the color tone variation of the thermoplastic resin composition and the generation of carbides can be prevented. In the present invention, the oxygen concentration in the extruder is the gas provided in the cylinder on the drive side from the position where the resin is substantially melted on the extrusion direction side from the first supply port that supplies the thermoplastic resin or the thermoplastic resin composition. By supplying nitrogen gas from the supply port and melting and kneading while filling the inside of the extruder with nitrogen gas, the oxygen concentration in the extruder can be effectively reduced, such as thermal oxidative decomposition reaction and crosslinking reaction of the resin. It is considered that the deterioration reaction could be suppressed, and the variation of the color tone of the resin as a product and the generation of carbide could be prevented.

【0022】[0022]

【実施例】以下、実施例・比較例を挙げて本発明を具体
的に説明する。10個のブロック・シリンダから成り、
第1番目のブロック・シリンダに供給口を有し、第9番
目のブロック・シリンダにベント孔を有するスクリュウ
直径47mm、スクリュウ長さ1645mmの同方向回転2
軸押出機 (日本製鋼所製TEX44) を使用し、スクリ
ュウの駆動側端 (シリンダの駆動側端と同じ) から47
0mmまでは押出方向に沿って漸次スクリュウ・ピッチが
小さくなるようなフルフライト・スクリュウの配列で、
470mmから800mmまでは溶融・混練させるためのス
クリュウ・エレメント (いわゆるニーディング・ディス
クと逆ネジスクリュウの組み合わせ) で、800mmから
945mmまではフルフライト・スクリュウの配列で、9
45mmから1090mmまでは再び溶融・混練させるため
のスクリュウ・エレメントの配列で、1090mm以降1
645mmまではフルフライト・スクリュウで漸次スクリ
ュウ・ピッチが小さくなるようにして押出圧力を発生さ
せるようなスクリュウ配列とした。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. Consisting of 10 block cylinders,
Rotation in the same direction with screw diameter 47 mm and screw length 1645 mm, which has a supply port in the first block cylinder and a vent hole in the ninth block cylinder 2
Using a screw extruder (TEX44 manufactured by Japan Steel Works), from the screw driving side end (same as the cylinder driving side end) to 47
The array of full flight screws is such that the screw pitch gradually becomes smaller along the extrusion direction up to 0 mm.
From 470 mm to 800 mm, it is a screw element (a combination of so-called kneading disk and reverse screw screw) for melting and kneading, and from 800 mm to 945 mm, it is a full flight screw arrangement, and 9
From 45 mm to 1090 mm, the screw element arrangement for melting and kneading again is from 1090 mm to 1
Up to 645 mm, the screw arrangement is such that a full flight screw gradually reduces the screw pitch to generate an extrusion pressure.

【0023】実施例1〜5では窒素ガス供給用の小孔を
シリンダの駆動側端から250mmの位置に設け、純度9
9.98%の窒素ガスを供給できるようにした。窒素ガ
スの供給量は、該押出機の軸方向の長さ1m当たりのシ
リンダとスクリュウの間隙で形成される流路容積に対し
て、0℃、1気圧という標準状態の窒素で1分間当たり
3倍量、7倍量、11倍量、15倍量、19倍量の5水
準に変化させて供給した。
In Examples 1 to 5, a small hole for supplying nitrogen gas was provided at a position 250 mm from the driving side end of the cylinder, and the purity was 9
It was made possible to supply 9.98% nitrogen gas. The supply amount of nitrogen gas is 3 ° C. per minute with nitrogen in a standard state of 0 ° C. and 1 atm with respect to the flow channel volume formed by the gap between the cylinder and the screw per 1 m in the axial direction of the extruder. It was supplied after being changed into 5 levels of double amount, 7-fold amount, 11-fold amount, 15-fold amount and 19-fold amount.

【0024】比較例1では実施例1〜5と同様の装置で
窒素ガスを供給しなかった。比較例2、3では第1番目
のブロック・シリンダに設けた供給口にナイロンペレッ
トを供給できるように設置したホッパに窒素ガス供給用
の小孔を設け、実施例1〜5と同様の窒素ガスを供給で
きるようにした。窒素ガスの供給量も、実施例1〜5と
同様で、該押出機の軸方向の長さ1m当たりのシリンダ
とスクリュウの間隙で形成される流路容積に対して、0
℃、1気圧という標準状態の窒素で1分間当たり3倍量
と19倍量の2水準に変化させて供給した。
In Comparative Example 1, nitrogen gas was not supplied in the same apparatus as in Examples 1-5. In Comparative Examples 2 and 3, a hopper provided so that nylon pellets can be supplied to the supply port provided in the first block cylinder was provided with small holes for supplying nitrogen gas, and the same nitrogen gas as in Examples 1 to 5 was prepared. To be able to supply. The supply amount of nitrogen gas was also the same as in Examples 1 to 5, and was 0 with respect to the flow path volume formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder.
It was supplied with nitrogen in a standard state of 1 ° C. at 3 ° C., which was changed to two levels of 3 times and 19 times per minute.

【0025】上記装置において、第1番目のブロック・
シリンダに設けた供給口から濃硫酸相対粘度2.95の
ナイロン66を80kg/hrの速度でASTM:D−12
38法によるメルトインデックスが0.7の亜鉛イオン
タイプのアイオノマー樹脂 (三井ポリケミカル社製“ハ
イミラン”1706) を20kg/hrの速度で定量供給
し、シリンダ設定温度280℃、スクリュウ回転数20
0rpm で押出した。この時、窒素ガス供給用の小孔にお
いてナイロン66は固体のまま輸送されていることを目
視確認した。また、ベント孔からは−720mmHgの減圧
度で水などの揮発成分を脱揮した。押出機先端のダイス
から熱可塑性樹脂組成物を、ストランド状で押出し、冷
却バス中で水冷後ペレタイズし、直径3mm、長さ3mmの
円筒状のペレットを得た。
In the above device, the first block
Nylon 66 having a relative viscosity of concentrated sulfuric acid of 2.95 is supplied from the supply port provided in the cylinder at a speed of 80 kg / hr according to ASTM: D-12.
A zinc ion type ionomer resin (“HIMIRAN” 1706 manufactured by Mitsui Polychemicals Co., Ltd.) having a melt index of 0.7 according to the No. 38 method is supplied at a constant rate of 20 kg / hr, the cylinder temperature is 280 ° C., and the screw rotation speed is 20.
Extruded at 0 rpm. At this time, it was visually confirmed that nylon 66 was transported as a solid in the small holes for supplying nitrogen gas. In addition, volatile components such as water were devolatilized from the vent hole at a reduced pressure of -720 mmHg. The thermoplastic resin composition was extruded in a strand form from a die at the tip of the extruder, water-cooled in a cooling bath and then pelletized to obtain a cylindrical pellet having a diameter of 3 mm and a length of 3 mm.

【0026】該ペレットの色調評価として、黄色度 (イ
エロー・インデックス:Y1) をスガ試験機 (株) のカ
ラーコンピュータを使用して測定した。又、製品中の炭
化物量は該ペレット300〜500gを目視検査し、大
蔵省印刷局製造のきょう雑物測定図表にある面積0.0
8mm2 以上の黒茶色異物の量を、ペレット100g当た
りの数値で表した。
As a color tone evaluation of the pellets, yellowness (yellow index: Y1) was measured using a color computer of Suga Test Instruments Co., Ltd. The amount of carbide in the product was visually inspected for 300 to 500 g of the pellet, and the area of 0.0 in the foreign matter measurement chart manufactured by the Ministry of Finance
The amount of black-brown foreign matter of 8 mm 2 or more was expressed as a numerical value per 100 g of pellets.

【0027】結果を表1に示す。 倍量は、0℃、1気圧という標準状態の窒素の1分間当
たりの供給量を押出機の軸方向の長さ1m当たりのシリ
ンダとスクリュウの間隙で形成される流路容積に対する
倍数で示した。比較例2・3においては、窒素ガスの供
給位置を、第1番目のブロック・シリンダに設けた供給
口にナイロンペレットを供給できるように設置したホッ
パに設けた小孔とした。──────────────
──────────────────────
The results are shown in Table 1. The double amount is a multiple of the supply amount of nitrogen in a standard state of 0 ° C. and 1 atm per minute with respect to the flow path volume formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. . In Comparative Examples 2 and 3, the nitrogen gas supply position was a small hole provided in the hopper installed so that the nylon pellets could be supplied to the supply port provided in the first block cylinder. ──────────────
──────────────────────

【0028】窒素ガスの供給量が、該押出機の軸方向の
長さ1m当たりのシリンダとスクリュウの間隙で形成さ
れる流路容積に対して、0℃、1気圧という標準状態の
窒素で1分間当たり3倍量、7倍量、11倍量、15倍
量、19倍量の範囲では、黄色度が17〜22の範囲で
あり、炭化物量は0〜0.1個/100gの範囲であっ
た。比較例1で示すように窒素ガスの供給なしの場合は
黄色度が30で、炭化物量は5.0個/100gであっ
た。また、比較例2、3では、窒素ガスを第1番目のブ
ロック・シリンダに設けた供給口にナイロンペレットを
供給できるように設置したホッパに設けた小孔から、該
押出機の軸方向の長さ1m当たりのシリンダとスクリュ
ウの間隙で形成される流路容積に対して、0℃、1気圧
という標準状態の窒素で1分間当たり3倍量、19倍量
供給したが、窒素ガスの供給なしの場合と、黄色度・炭
化物量共、差がなかった。
The nitrogen gas is supplied at a standard condition of 0 ° C. and 1 atm with respect to the volume of the flow passage formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. In the range of 3-fold amount, 7-fold amount, 11-fold amount, 15-fold amount, and 19-fold amount per minute, the yellowness is in the range of 17 to 22, and the amount of carbide is in the range of 0 to 0.1 pieces / 100 g. there were. As shown in Comparative Example 1, the yellowness was 30 and the amount of carbide was 5.0 pieces / 100 g when nitrogen gas was not supplied. Further, in Comparative Examples 2 and 3, the axial length of the extruder is changed from the small hole provided in the hopper installed so that the nitrogen pellets can be supplied to the supply port provided in the first block cylinder with nitrogen gas. Nitrogen gas was not supplied although nitrogen was supplied in standard conditions of 0 ° C and 1 atmosphere per minute to the flow path volume formed by the gap between the cylinder and the screw per 1 m There was no difference in both the yellowness and the amount of carbide.

【0029】窒素ガスを実施例1〜5で示すような量、
供給することで混練前後の色調変化を小さく、即ち黄色
度を小さくすることができ、炭化物量も1/10以下に
することができるという画期的な効果があることが分か
った。また、実施例4と5を比較してわかるように窒素
ガスの供給量が15倍量と19倍量では、黄色度と炭化
物量に差はなく15倍量以上供給しても、酸化劣化防止
効果は向上しないと言える。
An amount of nitrogen gas as shown in Examples 1 to 5,
It has been found that the supply of the toner has an epoch-making effect that the change in color tone before and after kneading can be reduced, that is, the yellowness can be reduced, and the amount of carbide can be reduced to 1/10 or less. Further, as can be seen by comparing Examples 4 and 5, when the supply amount of nitrogen gas is 15 times and 19 times, there is no difference in the yellowness and the amount of carbide, and even if it is supplied 15 times or more, oxidative deterioration is prevented. It can be said that the effect does not improve.

【0030】次に実施例1〜5・比較例1〜3と同じ装
置・同じ供給方法で、実施例6〜10・比較例4〜6で
は濃硫酸相対粘度2.95のナイロン66を95kg/hr
の速度で、メラミン・シアヌレート (三菱油化製) を5
kg/hrの速度で定量供給し、シリンダ設定温度280
℃、スクリュウ回転数200rpm で押出した。窒素ガス
供給用の小孔におけるナイロン66の固体輸送の確認、
揮発物除去用のベント減圧度、押出・冷却・ペレタイズ
の方法・黄色度・炭化物量の評価も実施例1〜5と同様
に実施した。
Next, in Examples 1 to 5 and Comparative Examples 1 to 3, using the same apparatus and the same supply method, in Examples 6 to 10 and Comparative Examples 4 to 6, 95 kg / mL of nylon 66 having a relative sulfuric acid relative viscosity of 2.95 was used. hr
Melamine cyanurate (manufactured by Mitsubishi Yuka) at a speed of 5
Constant supply at a speed of kg / hr, cylinder set temperature 280
Extrusion was carried out at a temperature of ℃ and a screw rotation speed of 200 rpm. Confirmation of solid transport of nylon 66 in small holes for supplying nitrogen gas,
The vent decompression degree for removing volatile matter, the method of extrusion / cooling / pelletizing, the degree of yellowness, and the amount of carbide were also evaluated in the same manner as in Examples 1 to 5.

【0031】結果を表2に示す。 倍量は、0℃、1気圧という標準状態の窒素の1分間当
たりの供給量を押出機の軸方向の長さ1m当たりのシリ
ンダとスクリュウの間隙で形成される流路容積に対する
倍数で示した。比較例5・6においては、窒素ガスの供
給位置を、第1番目のブロック・シリンダに設けた供給
口にナイロンペレットを供給できるように設置したホッ
パに設けた小孔とした。──────────────
─────────────────────
The results are shown in Table 2. The double amount is a multiple of the supply amount of nitrogen in a standard state of 0 ° C. and 1 atm per minute with respect to the flow path volume formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. . In Comparative Examples 5 and 6, the nitrogen gas supply position was a small hole provided in the hopper installed so that the nylon pellets could be supplied to the supply port provided in the first block cylinder. ──────────────
─────────────────────

【0032】実施例6〜10においては黄色度は7〜1
0の範囲であり炭化物量は0〜0.2個/100gの範
囲であった。一方、比較例4〜6で示すように窒素ガス
の供給なしの場合、または窒素ガスを第1供給口ホッパ
に設けた小孔から供給した場合には、黄色度が15で炭
化物量は7個/100gであった。ナイロン66とメラ
ミン・シアヌレートという処方においても、窒素ガスを
本発明のような方法で供給すれば、黄色度を小さくする
ことができ、炭化物量も1/10以下にすることができ
るという画期的効果があることが分かった。
In Examples 6-10, the yellowness index is 7-1.
The range was 0 and the amount of carbide was in the range of 0 to 0.2 pieces / 100 g. On the other hand, as shown in Comparative Examples 4 to 6, when the nitrogen gas was not supplied or when the nitrogen gas was supplied from the small holes provided in the first supply port hopper, the yellowness was 15 and the amount of carbide was 7 pieces. It was / 100 g. Even in the formulation of nylon 66 and melamine cyanurate, if nitrogen gas is supplied by the method according to the present invention, the yellowness can be reduced and the amount of carbide can be reduced to 1/10 or less. It turned out to be effective.

【0033】実施例11〜15・比較例7〜9において
は、濃硫酸相対粘度2.95のナイロン66を70kg/
hrの速度で第1供給口から定量供給し、10ブロックの
うち駆動側から数えて第6番目のシリンダへ、チョップ
ド・ストランドタイプのガラス繊維 (日本電気硝子製E
CS−03−TN202) を30kg/hrの速度でサイド
フィードした。シリンダ設定温度280℃、スクリュウ
回転数200rpm で押出し、窒素ガス供給用の小孔にお
けるナイロン66の固体輸送の確認、揮発物除去用のベ
ント減圧度、押出・冷却、ペレタイズの方法・黄色度・
炭化物量の評価は実施例1〜5・比較例1〜3と同様に
実施した。
In Examples 11 to 15 and Comparative Examples 7 to 9, 70 kg of nylon 66 having a relative viscosity of concentrated sulfuric acid of 2.95 was used at 70 kg /
A fixed amount is supplied from the first supply port at a speed of hr, and a chopped strand type glass fiber (Nippon Electric Glass E
CS-03-TN202) was side-fed at a rate of 30 kg / hr. Extruded at a cylinder set temperature of 280 ° C and a screw rotation speed of 200 rpm, confirming solid transportation of nylon 66 through small holes for supplying nitrogen gas, vent decompression degree for volatile matter removal, extrusion / cooling, pelletizing method / yellowness degree
The amount of carbide was evaluated in the same manner as in Examples 1-5 and Comparative Examples 1-3.

【0034】結果を表3に示す。 倍量は、0℃、1気圧という標準状態の窒素の1分間当
たりの供給量を押出機の軸方向の長さ1m当たりのシリ
ンダとスクリュウの間隙で形成される流路容積に対する
倍数で示した。比較例8・9においては、窒素ガスの供
給位置を、第1番目のブロック・シリンダに設けた供給
口にナイロンペレットを供給できるように設置したホッ
パに設けた小孔とした。──────────────
──────────────────────
The results are shown in Table 3. The double amount is a multiple of the supply amount of nitrogen in a standard state of 0 ° C. and 1 atm per minute with respect to the flow path volume formed by the gap between the cylinder and the screw per 1 m of the axial length of the extruder. . In Comparative Examples 8 and 9, the nitrogen gas supply position was a small hole provided in a hopper installed so that nylon pellets could be supplied to the supply port provided in the first block cylinder. ──────────────
──────────────────────

【0035】実施例11〜15においては、黄色度は1
0〜13の範囲であり、炭化物量は0〜0.2個/10
0gの範囲であった。一方、比較例7〜9で示すよう
に、窒素ガスの供給なしの場合は、または窒素ガスを第
1供給口ホッパに設けた小孔から供給した場合には、黄
色度が19で、炭化物量は5個/100gであった。ナ
イロン66とガラス繊維という処方においても、窒素ガ
スを本発明のような方法で供給すれば、黄色度を小さく
することができ、炭化物量も1/10以下にすることが
できるという画期的効果があることが分かった。
In Examples 11 to 15, the yellowness index is 1.
The range is 0 to 13, and the amount of carbide is 0 to 0.2 pieces / 10
It was in the range of 0 g. On the other hand, as shown in Comparative Examples 7 to 9, when the nitrogen gas was not supplied, or when the nitrogen gas was supplied from the small holes provided in the first supply port hopper, the yellowness was 19 and the amount of carbides was Was 5 pieces / 100 g. Even in the formulation of nylon 66 and glass fiber, if the nitrogen gas is supplied by the method according to the present invention, the yellowness can be reduced and the amount of carbide can be reduced to 1/10 or less. I found out that

【0036】[0036]

【発明の効果】熱可塑性樹脂と他の熱可塑性樹脂および
/または添加剤を押出機内で混練して成形用材料を製造
するにあたり、押出機駆動側の第1供給口から少なくと
も1種の熱可塑性樹脂を供給し、該第1供給口より押出
方向側で該樹脂が実質的に溶融する位置より駆動側のシ
リンダに設けたガス供給口から窒素ガスを供給し、押出
機内を窒素ガスで充満させながら溶融混練することによ
り、溶融混練前後で酸化劣化が少ないため色調変化が少
なくて黄色度が小さく、製品としての熱可塑性樹脂組成
物中に炭化物・ゲル化物などの異物が少ない品質の優れ
た熱可塑性樹脂組成物を製造できるという効果が得られ
る。
INDUSTRIAL APPLICABILITY At the time of kneading a thermoplastic resin and other thermoplastic resin and / or additives in an extruder to produce a molding material, at least one thermoplastic resin is fed from a first feed port on the driving side of the extruder. A resin is supplied, and nitrogen gas is supplied from a gas supply port provided in a cylinder on the drive side of a position where the resin is substantially melted on the extrusion direction side of the first supply port to fill the inside of the extruder with nitrogen gas. While melt-kneading, there is little oxidative deterioration before and after melt-kneading, so there is little change in color tone and yellowness is small, and there are few foreign substances such as carbides and gels in the thermoplastic resin composition as a product. The effect that a plastic resin composition can be manufactured is acquired.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた2軸押出機への窒素ガ
ス供給方法を示す概略図である。
FIG. 1 is a schematic diagram showing a method of supplying nitrogen gas to a twin-screw extruder used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 スクリュウ 3 ホッパー 4 定量供給装
置 5 窒素ガス用供給口 6 固体状態で
輸送されるゾーン 7 固体から溶融状態への遷移ゾーン 8 溶融状態で
輸送されるゾーン
1 Cylinder 2 Screw 3 Hopper 4 Constant Supply Device 5 Nitrogen Gas Supply Port 6 Zone Transported in Solid State 7 Transition Zone from Solid to Molten State 8 Zone Transported in Melted State

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂と他の熱可塑性樹脂および
/または添加剤を押出機内で混練して成形用材料を製造
するにあたり、押出機駆動側の第1供給口から少なくと
も1種の熱可塑性樹脂を供給し、該第1供給口より押出
方向側で該樹脂が実質的に溶融する位置より駆動側のシ
リンダに設けたガス供給口から窒素ガスを供給し、押出
機内を窒素ガスで充満させながら溶融混練することを特
徴とする熱可塑性樹脂組成物の製造方法。
1. When kneading a thermoplastic resin with another thermoplastic resin and / or an additive in an extruder to produce a molding material, at least one thermoplastic resin is fed from a first supply port on the driving side of the extruder. A resin is supplied, and nitrogen gas is supplied from a gas supply port provided in a cylinder on the drive side of a position where the resin is substantially melted on the extrusion direction side of the first supply port to fill the inside of the extruder with nitrogen gas. A method for producing a thermoplastic resin composition, which comprises melt-kneading the mixture while it is being mixed.
JP5002775A 1993-01-11 1993-01-11 Production of thermoplastic resin composition Pending JPH06206216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002775A JPH06206216A (en) 1993-01-11 1993-01-11 Production of thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002775A JPH06206216A (en) 1993-01-11 1993-01-11 Production of thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH06206216A true JPH06206216A (en) 1994-07-26

Family

ID=11538719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002775A Pending JPH06206216A (en) 1993-01-11 1993-01-11 Production of thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH06206216A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034726A (en) * 1996-07-19 1998-02-10 Sekisui Chem Co Ltd Manufacture of difficult-to-mold resin molded body
JPH10119109A (en) * 1996-10-23 1998-05-12 Sekisui Chem Co Ltd Production of molding of hardly moldable resin
JPH10166417A (en) * 1996-12-12 1998-06-23 Sekisui Chem Co Ltd Production of thermoplastic resin molded object
JP2005271460A (en) * 2004-03-25 2005-10-06 Kuraray Co Ltd Manufacturing method for resin composition
JP2006305909A (en) * 2005-04-28 2006-11-09 Sekisui Chem Co Ltd Method for producing thermoplastic resin film
JP2011037164A (en) * 2009-08-12 2011-02-24 Mitsubishi Engineering Plastics Corp Method for producing polycarbonate resin molding material
JP2011184596A (en) * 2010-03-09 2011-09-22 Asahi Kasei Chemicals Corp Thermoplastic resin composition and production method
JP2020131630A (en) * 2019-02-22 2020-08-31 東レ株式会社 Manufacturing method of polyamide-imide resin pellet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034726A (en) * 1996-07-19 1998-02-10 Sekisui Chem Co Ltd Manufacture of difficult-to-mold resin molded body
JPH10119109A (en) * 1996-10-23 1998-05-12 Sekisui Chem Co Ltd Production of molding of hardly moldable resin
JPH10166417A (en) * 1996-12-12 1998-06-23 Sekisui Chem Co Ltd Production of thermoplastic resin molded object
JP2005271460A (en) * 2004-03-25 2005-10-06 Kuraray Co Ltd Manufacturing method for resin composition
JP2006305909A (en) * 2005-04-28 2006-11-09 Sekisui Chem Co Ltd Method for producing thermoplastic resin film
JP2011037164A (en) * 2009-08-12 2011-02-24 Mitsubishi Engineering Plastics Corp Method for producing polycarbonate resin molding material
JP2011184596A (en) * 2010-03-09 2011-09-22 Asahi Kasei Chemicals Corp Thermoplastic resin composition and production method
JP2020131630A (en) * 2019-02-22 2020-08-31 東レ株式会社 Manufacturing method of polyamide-imide resin pellet

Similar Documents

Publication Publication Date Title
US4006209A (en) Method for additive feeding
US7641833B2 (en) Method for producing a pellet from a fiber-filled resin composition and injection-molded products thereof
TWI428232B (en) Method for manufacturing resin composition pellet containing fibrous filler at high concentration
EP1864775A1 (en) Method of producing carbon microfiber-containing resin composition
WO2011001745A1 (en) Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
US20110215499A1 (en) Extrusion nozzle for polymers
JPH06206216A (en) Production of thermoplastic resin composition
TW202043003A (en) Carbon fiber composite material containing recycled carbon fibers, molded body, and method for producing carbon fiber composite material
JP2008036942A (en) Manufacturing process of thermoplastic resin composition pellet
EP1419041B1 (en) Mixing and kneading device for polymer compositions
JP4000677B2 (en) Manufacturing method of resin material for molding
EP1090946A1 (en) Method for manufacturing glass fiber-reinforced resin moldings
JPH06285848A (en) Manufacture of thermoplastic resin composition
EP3922427B1 (en) Molding machine, and method for manufacturing a molded article of thermoplastic resin composition
JPS5839659B2 (en) Thermoplastic extrusion method
JP7426450B1 (en) Method for producing glass fiber reinforced polyamide resin composition
JP7426451B1 (en) Method for producing glass fiber reinforced polyamide resin composition
WO2024070499A1 (en) Production method for glass fiber-reinforced polyamide resin composition
JP2007223274A (en) Extrusion device and method of polymer composition
JP2748491B2 (en) Manufacturing method of injection molded products
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JP4564534B2 (en) Breaker plate and method for granulating thermoplastic resin composition using the same
JP5092394B2 (en) Method for producing thermoplastic resin composition
JPH0221363B2 (en)
JP2010228408A (en) Extruder for kneading thermoplastic resin and method for manufacturing thermoplastic resin composition