JPH10166417A - Production of thermoplastic resin molded object - Google Patents

Production of thermoplastic resin molded object

Info

Publication number
JPH10166417A
JPH10166417A JP8332154A JP33215496A JPH10166417A JP H10166417 A JPH10166417 A JP H10166417A JP 8332154 A JP8332154 A JP 8332154A JP 33215496 A JP33215496 A JP 33215496A JP H10166417 A JPH10166417 A JP H10166417A
Authority
JP
Japan
Prior art keywords
resin
mold
reactive gas
pressure
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8332154A
Other languages
Japanese (ja)
Other versions
JP3688412B2 (en
Inventor
Kouki Deguchi
好希 出口
Hideshi Matsumoto
英志 松本
Koji Ichihara
幸治 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP33215496A priority Critical patent/JP3688412B2/en
Publication of JPH10166417A publication Critical patent/JPH10166417A/en
Application granted granted Critical
Publication of JP3688412B2 publication Critical patent/JP3688412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molded object from a hardly moldable resin with high productivity without taking labor for removing or recovering an org. solvent and generating the reduction of a mol. wt. at a time of molding. SOLUTION: A hardly moldable resin is supplied to an extruder 1 from a pressure-resistant hopper 2 to be transformed from a solid phase to a molten phase within the extruder and this molten resin is introduced into a mold 3 to be extruded and shaped. In this case, the difficult-to-mold resin is transformed while non-reactive gas held to a high pressure state is dissolved in the resin to produce a thermoplastic resin molded object. The molten resin is pref. introduced into the mold 3 while held to a pressurized state. It is pref. to supply the non-reactive gas to the region from the pressure-resistant hopper 2 to the solid transport part of the extruder 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂、特
に、溶融粘度が高くて溶融押出が困難な樹脂や、熱分解
しやすい樹脂、低沸点の添加剤もしくは熱分解しやすい
添加剤を含有する樹脂等の難成形樹脂の成形体の製造方
法に関するものである。
The present invention relates to a thermoplastic resin, particularly a resin having a high melt viscosity, which is difficult to melt-extrude, a resin which is easily thermally decomposed, an additive having a low boiling point or an additive which is easily thermally decomposed. The present invention relates to a method for producing a molded article of a difficult-to-mold resin such as a resin to be formed.

【0002】[0002]

【従来の技術】超高分子量ポリエチレンや、超高重合度
ポリ塩化ビニルなどの樹脂は、溶融粘度が高い、分解し
やすい等の理由で成形が非常に難しい樹脂とされ、一般
に難成形樹脂と称されている。
2. Description of the Related Art Resins such as ultrahigh molecular weight polyethylene and ultrahigh polymerization degree polyvinyl chloride are very difficult to mold because of their high melt viscosity and easy decomposition, and are generally called difficult-to-mold resins. Have been.

【0003】従来、このように溶融粘度が非常に高い難
成形樹脂では、同樹脂から成形体を製造するのに、つぎ
のような方法が採られている。
Conventionally, in the case of such a difficult-to-mold resin having a very high melt viscosity, the following method has been employed for producing a molded article from the resin.

【0004】(1) 圧縮成形またはラム押出成形によ
り、板状あるいは棒状の成形体を作成し、この成形体を
切削等の切出し加工により所望の製品に賦形する方法、
(2) 難成形樹脂を有機溶媒に溶解し、キャスティング
法によりフィルム化またはシート化する方法、(3) 特
衡平4−47608号公報記載のように難成形樹脂の粉
末に有機溶媒を加えて得られる分散物または混合物を加
熱溶融したあと押出成形し、成形後に有機溶媒を揮散さ
せる方法。
(1) A method of forming a plate-like or rod-like molded body by compression molding or ram extrusion molding, and shaping the molded body into a desired product by cutting out such as cutting;
(2) A method of dissolving a difficult-to-mold resin in an organic solvent and forming a film or a sheet by a casting method; (3) A method of adding an organic solvent to a powder of a difficult-to-mold resin as described in Japanese Patent Publication No. Hei 4-47608. A method in which the resulting dispersion or mixture is heated and melted, then extruded, and the organic solvent is volatilized after the molding.

【0005】しかしながら、上記(1) の方法は、生産性
が極めて低いという欠点がある。また、上記(2) および
(3) の方法では、溶媒が成形体中に残っていると成形体
の物性の低下を招くため、成形体を加熱して溶媒を揮散
させなければならないが、溶媒の完全揮散のためには大
掛りな装置が必要であると共に、長時間を要し、やはり
生産性が低い。加えて、溶媒をそのまま大気中に揮散さ
せたのでは公害を招く恐れがあるため、溶媒の回収を行
わなければならず、回収設備等の設備コストが嵩むとい
う問題がある。
[0005] However, the method (1) has a disadvantage that productivity is extremely low. In addition, the above (2) and
In the method (3), if the solvent remains in the molded body, the physical properties of the molded body are deteriorated.Therefore, it is necessary to heat the molded body to evaporate the solvent. It requires a large-scale device, requires a long time, and also has low productivity. In addition, if the solvent is volatilized in the air as it is, there is a risk of causing pollution. Therefore, the solvent must be recovered, and there is a problem that the equipment cost of the recovery equipment and the like increases.

【0006】また、分解温度と成形温度が近接している
難成形樹脂では、樹脂に安定剤や可塑剤を加え、樹脂の
分解を極力抑えて成形をする方法が採られている。しか
し、この方法では、安定剤や可塑剤の添加量に比例して
樹脂の物性が低下してしまい、逆に安定剤や可塑剤を添
加せずに成形すると樹脂の分解による成形体外観の劣化
や分子量減少による成形体の品質低下が避けられない。
In the case of a difficult-to-mold resin whose decomposition temperature and molding temperature are close to each other, a method has been adopted in which a stabilizer or a plasticizer is added to the resin to minimize the decomposition of the resin. However, in this method, the physical properties of the resin decrease in proportion to the amount of the stabilizer or plasticizer added. Conversely, when the resin is molded without adding the stabilizer or plasticizer, the appearance of the molded article is deteriorated due to decomposition of the resin. Inevitably, the quality of the molded product is deteriorated due to the decrease in the molecular weight.

【0007】[0007]

【発明が解決しようとする課題】本発明は、有機溶媒の
除去や回収の手間が必要でなく、また成形時に分子量減
少を起こすことなく、高い生産性で難成形樹脂成形体を
得ることができる難成形樹脂成形体の製造方法を提供す
ることを目的とする。
According to the present invention, it is possible to obtain a difficult-to-mold resin molded product with high productivity without requiring the trouble of removing and recovering the organic solvent and without causing a decrease in the molecular weight at the time of molding. An object of the present invention is to provide a method for producing a difficult-to-mold resin molded article.

【0008】[0008]

【課題を解決するための手段】本発明による難成形樹脂
成形体の製造方法は、上記目的を達成すべく工夫された
ものであり、難成形樹脂を耐圧ホッパから押出機に供給
して押出機内で固相から溶融相へ変態せしめ、この溶融
樹脂を金型に導入して押出賦形するに当たり、該難成形
樹脂に高圧状態の非反応性ガスを溶解させながら樹脂を
変態させることを特徴とするものである。
SUMMARY OF THE INVENTION The method for producing a difficult-to-mold resin molded article according to the present invention has been devised in order to achieve the above object, and supplies the difficult-to-mold resin to an extruder from a pressure-resistant hopper. In the step of transforming the solid phase into a molten phase, and introducing the molten resin into a mold for extrusion molding, the resin is transformed while dissolving a non-reactive gas in a high-pressure state in the difficult-to-mold resin. Is what you do.

【0009】本発明における難成形樹脂としては、溶融
粘度が高くて溶融押出が困難な樹脂や、熱分解しやすい
樹脂、低沸点の添加剤もしくは熱分解しやすい添加剤を
含有する樹脂等が挙げられる。
Examples of the difficult-to-mold resin in the present invention include a resin having a high melt viscosity, which is difficult to be melt-extruded, a resin which is easily decomposed by heat, a resin having a low boiling point additive or an additive which is easily decomposed by heat. Can be

【0010】溶融粘度が高くて溶融押出が困難な樹脂と
しては、超高分子量ポリエチレン、超高重合度ポリ塩化
ビニル、ポリテトラフルオロエチレン、ポリイミド等の
エンジニアリング用プラスチック、いわゆるスーパーエ
ンプラ系の樹脂等が挙げられる。
Examples of the resin having a high melt viscosity that are difficult to melt-extrude include engineering plastics such as ultrahigh molecular weight polyethylene, ultrahigh polymerization degree polyvinyl chloride, polytetrafluoroethylene, and polyimide, so-called super engineering plastic resins. No.

【0011】また、熱分解しやすい樹脂としては、高塩
素化度ポリ塩化ビニル、ポリ乳酸等の生分解性樹脂、ポ
リアクリロニトリル等が挙げられる。
Examples of the resin which is easily decomposed by heat include biodegradable resins such as polyvinyl chloride and polylactic acid having a high degree of chlorination, and polyacrylonitrile.

【0012】本発明において使用される非反応性ガス
は、常温常圧で気体であって、上記難成形樹脂と反応を
起こさず同樹脂を劣化させないものであれば、特に限定
されず使用できる。例えば、炭酸ガス、窒素、アルゴ
ン、ネオン、ヘリウム、酸素等が挙げられる。これらは
単独で使用されても良いし、2種以上併用されても良
い。このうち炭酸ガスは樹脂に対する溶解度が高く、樹
脂の溶融粘度の低下が大きいため最も好ましい。
The non-reactive gas used in the present invention can be used without particular limitation as long as it is a gas at normal temperature and normal pressure and does not react with the difficult-to-mold resin and does not deteriorate the resin. For example, carbon dioxide, nitrogen, argon, neon, helium, oxygen and the like can be mentioned. These may be used alone or in combination of two or more. Of these, carbon dioxide is most preferable because it has high solubility in the resin and the melt viscosity of the resin is greatly reduced.

【0013】樹脂に非反応性ガスを溶解させる具体的な
方法としては、特に限定されないが、たとえば、成形装
置の耐圧ホッパから押出機の固体輸送部に至る領域に非
反応性ガスを供給し樹脂中に溶解させる方法が挙げられ
る。上記領域への非反応性ガスの供給は、ガスをガスボ
ンベから押出機へ直接供給してもよいし、加圧ポンプ等
を用いて高圧にして供給してもよい。
The specific method for dissolving the non-reactive gas in the resin is not particularly limited. For example, the non-reactive gas is supplied to the region from the pressure hopper of the molding apparatus to the solid transport section of the extruder to supply the non-reactive gas. And a method of dissolving it in the solution. For the supply of the non-reactive gas to the above-mentioned region, the gas may be supplied directly from the gas cylinder to the extruder, or may be supplied at a high pressure using a pressure pump or the like.

【0014】非反応性ガスの高圧状態を保持するために
は押出機にスクリュ駆動軸およびホッパの耐圧シール構
造を組み入れることが好ましい。さらにスクリュ駆動軸
を押出機先端側に設置することによって同駆動軸を溶融
樹脂に対する耐圧シール構造とすることが比較的容易に
できる。この方法は耐圧性を高めるのにより好ましい。
In order to maintain the high pressure state of the non-reactive gas, it is preferable to incorporate a screw drive shaft and a pressure-resistant seal structure of a hopper into the extruder. Further, by installing the screw drive shaft on the tip side of the extruder, it is relatively easy to make the drive shaft a pressure-resistant seal structure for molten resin. This method is more preferable for increasing the pressure resistance.

【0015】非反応性ガスの溶解量は、溶解によって樹
脂の溶融粘度が成形に適した粘度になるような値であれ
ば特に限定されず、樹脂の種類、非反応性ガスの種類に
よって適宜選択することができる。
The amount of the non-reactive gas dissolved is not particularly limited as long as the melt viscosity of the resin becomes a viscosity suitable for molding by dissolution, and is appropriately selected depending on the type of the resin and the type of the non-reactive gas. can do.

【0016】つぎに、金型へ溶融樹脂を導入するに際し
ては、樹脂を加圧状態に維持しておくのが好ましい。一
旦圧力が低下すると溶融樹脂に溶解していた非反応性ガ
スが揮散したり気泡化する恐れがある。このような場
合、金型内での溶融樹脂の流動中に樹脂中の非反応性ガ
スの溶解量が低下し、溶融粘度が上昇して賦形が困難と
なる。また後述するような非発泡成形体が得られなかっ
たり、発泡成形体が気泡径のばらついた成形体となる。
Next, when introducing the molten resin into the mold, it is preferable to keep the resin in a pressurized state. Once the pressure is reduced, the non-reactive gas dissolved in the molten resin may volatilize or bubble. In such a case, the amount of non-reactive gas dissolved in the resin decreases during the flow of the molten resin in the mold, and the melt viscosity increases, making shaping difficult. Further, a non-foamed molded article as described later cannot be obtained, or the foamed molded article becomes a molded article having a variable cell diameter.

【0017】なお、本発明による成形体の製造方法は、
発泡成形体および非発泡成形体のいずれの成形体の製造
にも適用できる。
The method for producing a molded article according to the present invention comprises:
It can be applied to the production of both foamed and non-foamed molded products.

【0018】発泡成形体を得る場合には、押出成形時に
従来の押出発泡用の構造の金型を用いれば良く、金型出
口での圧力降下度合いに影響を与える金型形状、樹脂流
動粘度、または金型温度、押出量等の成形条件を適宜設
定することによって気泡の形態および気泡径をコントロ
ールすることができる。
In order to obtain a foamed molded product, a mold having a conventional structure for extrusion foaming may be used at the time of extrusion molding. The mold shape, resin flow viscosity, Alternatively, the bubble shape and bubble diameter can be controlled by appropriately setting the molding conditions such as the mold temperature and the extrusion amount.

【0019】一方、非発泡成形体を得る場合には、以下
のような方法を採用することができる。
On the other hand, when a non-foamed molded article is obtained, the following method can be adopted.

【0020】(1) 金型内で樹脂を充分冷却させて固化
状態で押し出す方法。この方法では、金型内での樹脂流
動抵抗を小さくするために液体潤滑剤を用いたり、金型
に振動を与えて壁面と樹脂表面との摩擦抵抗を小さくす
る等の対策を講じることも好ましい。 (2) 金型出口から圧力を保持したまま急冷サイジング
を行う方法。 (3) 金型出口から発泡した成形体を賦形する時に塑性
変形の温度領域でこれを加圧することにより成形体から
気泡を除去する方法。
(1) A method in which the resin is sufficiently cooled in a mold and extruded in a solidified state. In this method, it is also preferable to take measures such as using a liquid lubricant to reduce the resin flow resistance in the mold, or applying vibration to the mold to reduce the frictional resistance between the wall surface and the resin surface. . (2) A method of performing rapid cooling sizing while maintaining the pressure from the mold outlet. (3) A method of removing air bubbles from a molded article by applying pressure in a temperature range of plastic deformation when forming a foamed article from a mold outlet.

【0021】上記(1) の方法において液体潤滑剤を用い
る方法としては、従来公知の方法が任意に適用できる。
この方法に用いられる液体潤滑剤としては、成形温度で
分解、沸騰などが起こりにくく、かつ樹脂に溶解せず、
樹脂の劣化を促進することのない化学的に安定な物質が
好ましい。このような条件を満足する潤滑剤の例として
は、液状のポリシロキサン、エチレングリコール等の多
価アルコール、およびそのアルキルエステル並びにアル
キルエーテル、ポリオキシアルキレンおよびそのアルキ
ルエステル並びにアルキルエーテル、ポリオキシアルキ
レンおよびその2種以上のアルキレンオキサイドのラン
ダム、ブロックまたはグラフトコポリマー等が挙げられ
る。中でも成形体の表面に付着した後の除去が容易な点
で上記のような多価アルコール等の水溶性の潤滑剤が好
ましい。
As the method using a liquid lubricant in the above method (1), a conventionally known method can be arbitrarily applied.
As a liquid lubricant used in this method, decomposition, boiling and the like are unlikely to occur at the molding temperature, and do not dissolve in the resin,
A chemically stable substance that does not promote the deterioration of the resin is preferable. Examples of the lubricant satisfying such conditions include liquid polysiloxane, polyhydric alcohol such as ethylene glycol, and its alkyl ester and alkyl ether, polyoxyalkylene and its alkyl ester, and alkyl ether, polyoxyalkylene and Examples thereof include random, block or graft copolymers of two or more alkylene oxides. Above all, water-soluble lubricants such as the above-mentioned polyhydric alcohols are preferable in that they are easily removed after adhering to the surface of the molded article.

【0022】また、樹脂表面が潤滑剤で一様に覆われる
ためには金型壁面は多孔質体で構成されていることが望
ましい。多孔質体の材質としては例えば、アルミニウ
ム、ステンレス鋼、チタン、金、銀、銅等を主体とした
金属系材料とアルミナ、ムライト、ケイ酸、ジルコニア
等を主体とした非金属系材料がある。潤滑剤供給に必要
な圧力および流量は使用する潤滑剤の種類と、金型壁面
を構成する多孔質体の気孔径、気孔率、金型壁厚で決定
される。
In order to uniformly cover the resin surface with the lubricant, it is desirable that the wall surface of the mold is made of a porous material. Examples of the material of the porous body include a metal material mainly composed of aluminum, stainless steel, titanium, gold, silver, copper and the like, and a nonmetallic material mainly composed of alumina, mullite, silicic acid, zirconia and the like. The pressure and flow rate required for lubricant supply are determined by the type of lubricant used and the pore diameter, porosity, and mold wall thickness of the porous body constituting the mold wall.

【0023】潤滑剤を樹脂界面に均一に塗布するために
は、金型壁面を構成する多孔質体として、細孔分布曲線
がシャープで、細孔が均一に分散したものを選定するこ
とが好ましい。このような条件を満足する多孔質体とし
ては、非鉄金属系材料を使用することが望ましい。
In order to uniformly apply the lubricant to the resin interface, it is preferable to select a porous body having a sharp pore distribution curve and uniformly dispersed pores as the porous body constituting the mold wall surface. . As a porous body satisfying such conditions, it is desirable to use a non-ferrous metal-based material.

【0024】また、金型に振動を与える手段としては、
従来公知のものが適用でき、たとえば、振動モーター、
バイブレーター、超音波等を用いて金型に振動を与え
る。この場合、振動の周波数は、特に限定されないが、
好ましくは100〜100000Hz、より好ましくは
500〜30000Hzである。振動数が100Hz未
満では壁面での摩擦抵抗を充分低下できずに押出不可に
なる恐れがあり、100000Hzを越えると振動を与
えるために多くのエネルギーを要し、製造コストが嵩む
場合がある。
As means for applying vibration to the mold,
Conventionally known ones can be applied, for example, a vibration motor,
Vibration is given to the mold using a vibrator, ultrasonic waves or the like. In this case, the frequency of the vibration is not particularly limited,
Preferably it is 100 to 100,000 Hz, more preferably, 500 to 30,000 Hz. If the frequency is less than 100 Hz, the frictional resistance on the wall surface cannot be sufficiently reduced, and extrusion may not be possible. If the frequency is more than 100,000 Hz, a large amount of energy is required to apply vibration, and the production cost may increase.

【0025】一方、振動の振幅は好ましくは0.5〜1
000μm、より好ましくは1〜500μmである。振
幅が0.5μm未満では壁面での摩擦抵抗を充分低下で
きずに押出不可になる恐れがあり、1000μmを越え
ると成形体の外観を劣化させる恐れがある。
On the other hand, the amplitude of the vibration is preferably 0.5 to 1
000 μm, more preferably 1 to 500 μm. If the amplitude is less than 0.5 μm, the friction resistance on the wall surface cannot be sufficiently reduced, and extrusion may not be possible. If the amplitude exceeds 1000 μm, the appearance of the molded article may be deteriorated.

【0026】上記(3) の方法において、難成形樹脂が結
晶性樹脂である場合、塑性変形の温度領域は、好ましく
は(融点−20℃)〜(融点+100℃)の温度範囲、
より好ましくは(融点)〜(融点+50℃)の温度範囲
である。(融点−20℃)より低い温度で成形体を賦形
すると、樹脂内部に発泡が残り均一な形状の成形体が得
られず、所望の物性も十分に発現しなくなる恐れがあ
り、(融点+100℃)より高いと、賦形後に重ねられ
た成形体の剥離が困難となる場合がある。
In the above method (3), when the difficult-to-mold resin is a crystalline resin, the temperature range of the plastic deformation is preferably in the range of (melting point−20 ° C.) to (melting point + 100 ° C.)
The temperature range is more preferably from (melting point) to (melting point + 50 ° C.). If the molded body is shaped at a temperature lower than (melting point −20 ° C.), foam may remain inside the resin, and a molded body having a uniform shape may not be obtained, and desired physical properties may not be sufficiently exhibited. If the temperature is higher than (° C.), it may be difficult to peel off the molded articles stacked after shaping.

【0027】一方、難成形樹脂が非晶性樹脂である場
合、塑性変形の温度領域は、好ましくは(ガラス転移温
度−10℃)〜(ガラス転移温度+150℃)の温度範
囲、より好ましくは(ガラス転移温度)〜(ガラス転移
温度+80℃)の温度範囲である。(ガラス転移温度−
10℃)より低い温度で成形体を賦形すると、樹脂内部
に発泡が残り均一な形状の成形体が得られず、所望の物
性も充分に発現しなくなる恐れがあり、(ガラス転移温
度+150℃)より高いと、賦形後に重ねられた成形体
の剥離が困難となる場合がある。
On the other hand, when the difficult-to-mold resin is an amorphous resin, the plastic deformation temperature range is preferably in the range of (glass transition temperature -10 ° C.) to (glass transition temperature + 150 ° C.), more preferably (glass transition temperature + 150 ° C.). (Glass transition temperature) to (glass transition temperature + 80 ° C.). (Glass transition temperature-
If the molded body is formed at a temperature lower than (10 ° C.), foam may remain inside the resin, and a uniform-shaped molded body may not be obtained, and the desired physical properties may not be sufficiently exhibited. If the ratio is higher than the above range, it may be difficult to peel off the formed body after the shaping.

【0028】賦形に際して成形体に掛ける圧力は、好ま
しくは2〜300kgf/cm2 、より好ましくは5〜
250kgf/cm2 、特に好ましくは10〜200k
gf/cm2 である。この圧力が2kgf/cm2 未満
であると樹脂内部に発泡が残り均一な形状の成形体が得
られず、所望の物性も充分に発現しなくなる恐れがあ
り、300kgf/cm2 を越えると、成形体が過剰に
圧延され、所望の厚み精度のものが得られなくなる恐れ
がある。
The pressure applied to the compact during shaping is preferably 2 to 300 kgf / cm 2 , more preferably 5 to 300 kgf / cm 2 .
250 kgf / cm 2 , particularly preferably 10 to 200 k
gf / cm 2 . The pressure is not obtained molded body having a uniform shape remainder foam inside the resin is less than 2 kgf / cm 2, there may not be sufficiently exhibited even desired properties, exceeds 300 kgf / cm 2, molding The body may be rolled excessively and the desired thickness accuracy may not be obtained.

【0029】加圧下の賦形に要する時間(以下、「賦形
時間」と記す)は好ましくは1秒以上、より好ましくは
5秒以上である。賦形時間が1秒未満であると樹脂内部
に発泡が残り均一な形状の成形体が得られず、所望の物
性も充分に発現しなくなる恐れがある。また、賦形時間
の上限は特にないが、この時間があまり長いと生産性が
低くなるので好ましくない。
The time required for shaping under pressure (hereinafter referred to as "shaping time") is preferably at least 1 second, more preferably at least 5 seconds. If the shaping time is less than 1 second, foaming remains in the resin, a molded article having a uniform shape cannot be obtained, and desired physical properties may not be sufficiently exhibited. There is no particular upper limit on the shaping time, but if this time is too long, the productivity is lowered, which is not preferable.

【0030】成形体に圧力を掛ける方法としては、上記
所定の圧力および賦形時間を満足できるものであれば特
に限定されないが、たとえば、成形体を、ダブルベルト
プレスのように面圧で賦形する方法や、ベルトとロール
の間で賦形する方法や、ロールとロールとの間で賦形す
る方法等が挙げられる。
The method for applying pressure to the compact is not particularly limited as long as the above-mentioned predetermined pressure and shaping time can be satisfied. For example, the compact is shaped by a surface pressure such as a double belt press. , A method of shaping between a belt and a roll, a method of shaping between a roll and a roll, and the like.

【0031】また、賦形に際してロールやベルト表面に
エンボス模様などの凹凸模様を施しておくことによっ
て、成形体表面にも凹凸模様が転写され、装飾性に優れ
た難成形樹脂成形体を得ることができる。
Further, by forming an uneven pattern such as an embossed pattern on the surface of a roll or a belt at the time of shaping, the uneven pattern is transferred to the surface of the molded article, and a difficult-to-mold resin molded article having excellent decorativeness can be obtained. Can be.

【0032】賦形後の冷却温度は樹脂の熱変形温度未満
である。冷却温度が熱変形温度以上であると、巻取り等
の工程で成形体が変形してしまう恐れがある。
The cooling temperature after shaping is lower than the heat deformation temperature of the resin. If the cooling temperature is equal to or higher than the heat deformation temperature, the molded body may be deformed in a process such as winding.

【0033】(作用)本発明は、該難成形樹脂に高圧状
態の非反応性ガスを溶解させながら樹脂を固相から溶融
相へ変態させることを特徴とするが、その理由は次の通
りである。
(Function) The present invention is characterized by transforming a resin from a solid phase to a molten phase while dissolving a high-pressure non-reactive gas in the difficult-to-mold resin, for the following reasons. is there.

【0034】固相例えばペレットやパウダー状態の樹脂
に非反応性ガスを溶解させ、次いで非反応性ガスの非存
在下に樹脂を加熱溶融させると、温度を上げていく過程
では、拡散により樹脂に溶解していた非反応性ガスが揮
散したり、発泡化したりする恐れがある。また、溶融し
た樹脂に非反応性ガスを溶解させる際に、溶融粘度が非
常に高い樹脂の場合には、例えばスクリュで樹脂を可塑
化する際にトルクの急激な上昇によりスクリュが回転不
能に陥る等の問題が起きる恐れがあり、さらに熱に非常
に敏感な樹脂の場合には、溶融状態では非反応性ガスの
溶解前に樹脂の分解が進む恐れがある。
When a non-reactive gas is dissolved in a solid phase, for example, a resin in a pellet or powder state, and then the resin is heated and melted in the absence of the non-reactive gas, the process of increasing the temperature involves diffusion into the resin by diffusion. The dissolved non-reactive gas may volatilize or foam. Also, when dissolving the non-reactive gas in the molten resin, in the case of a resin having a very high melt viscosity, for example, when plasticizing the resin with the screw, the screw becomes unrotatable due to a sudden increase in torque. In the case of a resin that is very sensitive to heat, the decomposition of the resin may proceed before the non-reactive gas is dissolved in a molten state.

【0035】本発明による方法では、樹脂を固相から溶
融相へ変態している間、該難成形樹脂に高圧状態の非反
応性ガスを溶解させ樹脂と非反応性ガスの完全相溶状態
を形成するため、樹脂に溶解した非反応性ガスは、樹脂
が溶融される前に樹脂から揮散したり発泡を来たすこと
がない。したがって、非反応性ガスによって樹脂が可塑
化する際のエネルギーが下がり、トルクが低減し、スク
リュの回転がスムーズに行えると共に、溶融時の成形温
度も低下できる。しかも、非反応性ガスは難成形樹脂中
の溶解状態を維持しているために樹脂の溶融粘度が低下
し、押出機からスムーズに溶融樹脂を押し出すことがで
きる。さらに溶融粘度の低下度合いに依存して成形温度
も低下させることができる。
In the method according to the present invention, while the resin is being transformed from the solid phase to the molten phase, the non-reactive gas under high pressure is dissolved in the difficult-to-mold resin, and the completely compatible state of the resin and the non-reactive gas is changed. Due to the formation, the non-reactive gas dissolved in the resin does not volatilize or foam from the resin before the resin is melted. Accordingly, the energy required for plasticizing the resin by the non-reactive gas is reduced, the torque is reduced, the screw can be rotated smoothly, and the molding temperature during melting can be reduced. Moreover, since the non-reactive gas maintains the dissolved state in the difficult-to-mold resin, the melt viscosity of the resin decreases, and the molten resin can be extruded smoothly from the extruder. Further, the molding temperature can be reduced depending on the degree of decrease in the melt viscosity.

【0036】[0036]

【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings.

【0037】図1は、本発明の難成形樹脂成形体の製造
方法に使用される成形装置の一例を模式的に示したもの
である。
FIG. 1 schematically shows an example of a molding apparatus used in the method for producing a difficult-to-mold resin molded article of the present invention.

【0038】図1において、この成形装置(A) は、押出
機(1) 、耐圧ホッパ(2) および潤滑冷却金型(3) から主
として構成されている。押出機(1) は、シリンダー(11)
とその内部に配されたスクリュ(12)とからなり、シリン
ダー(11)の基端部に耐圧ホッパ(2) の下端が開閉弁(6)
を介して接続され、シリンダー(11)の先端部に潤滑冷却
金型(3) が取付けられている。また、シリンダー(11)の
基端部にある固体輸送部にガス供給口(13)が設けられ
る。非反応性ガスはガスボンベ(15)から加圧ポンプ(16)
および開閉弁(14)(22)を経てガス供給口(13)および耐圧
ホッパ(2) へ高圧で給送される。スクリュ軸は耐圧シー
ル構造となっており、供給された非反応性ガスを高圧状
態に保持することができる。
Referring to FIG. 1, the molding apparatus (A) mainly comprises an extruder (1), a pressure hopper (2) and a lubricating cooling mold (3). Extruder (1) is a cylinder (11)
And a screw (12) arranged inside the cylinder. (11) The lower end of the pressure-resistant hopper (2) is located at the base end of the cylinder (11).
And a lubricating cooling mold (3) is attached to the tip of the cylinder (11). Further, a gas supply port (13) is provided in a solid transport section at the base end of the cylinder (11). Non-reactive gas is supplied from gas cylinder (15) to pressurized pump (16)
The gas is supplied to the gas supply port (13) and the pressure-resistant hopper (2) through the open / close valves (14) and (22) at a high pressure. The screw shaft has a pressure-resistant seal structure, and can maintain the supplied non-reactive gas in a high pressure state.

【0039】潤滑冷却金型(3) は、押出機(1) から加圧
状態を維持して導かれて来る溶融樹脂原料を所望の形状
に成形しつつ押出すようになっていると共に、金型外壁
面に設けられた潤滑剤供給口(31)から金型内面(32)に潤
滑剤を供給できるようになっている。ここで押出機(1)
と潤滑冷却金型(3) はいずれも温度コントロール装置
(図示省略)を備え、所定の温度に制御できるようにな
っている。
The lubricating cooling mold (3) extrudes a molten resin raw material, which is guided from the extruder (1) while maintaining a pressurized state, while forming it into a desired shape. A lubricant can be supplied to the mold inner surface (32) from a lubricant supply port (31) provided on the outer wall surface of the mold. Here extruder (1)
Each of the lubricating and cooling molds (3) is provided with a temperature control device (not shown) so that it can be controlled to a predetermined temperature.

【0040】本発明の難成形樹脂成形体の製造方法で
は、上記構成の成形装置(A) を用い、まず、耐圧ホッパ
(2) に充填された難成形樹脂(4) をシリンダー(11)内に
供給し、シリンダー(11)内のスクリュ(12)によって前方
へ輸送しながら溶融する。
In the method for producing a difficult-to-mold resin molded article according to the present invention, first, a pressure hopper is
The difficult-to-form resin (4) filled in (2) is supplied into a cylinder (11) and melted while being transported forward by a screw (12) in the cylinder (11).

【0041】この時、開閉弁(14)を開くことによって、
シリンダー(11)の固体輸送部内へガス供給孔(13)から非
反応性ガスを高圧で供給し、シリンダー(11)内で難成形
樹脂(4) が固相から溶融相に変態するときに同樹脂に非
反応性ガスを高圧状態で溶解させる。また、必要に応じ
て、開閉弁(22)を開くことによって、予め難成形樹脂
(4) を充填した密閉状態の耐圧ホッパ(2) に非反応性ガ
スを高圧で注入し、難成形樹脂(4) に非反応性ガスを溶
解させる。
At this time, by opening the on-off valve (14),
A non-reactive gas is supplied at a high pressure from the gas supply hole (13) into the solid transport section of the cylinder (11), and the same occurs when the difficult-to-mold resin (4) transforms from the solid phase to the molten phase in the cylinder (11). The non-reactive gas is dissolved in the resin under high pressure. Also, if necessary, open the on-off valve (22) so that the resin
A non-reactive gas is injected at a high pressure into the pressure-resistant hopper (2) filled with (4) to dissolve the non-reactive gas in the difficult-to-mold resin (4).

【0042】非反応性ガスが溶解した溶融樹脂をスクリ
ュ(12)により完全に溶融状態とし、潤滑冷却金型(3) へ
加圧状態を維持して供給し、金型内を潤滑に押出しなが
ら冷却固化させ、所定の成形体(5) を得る。
The molten resin in which the non-reactive gas is dissolved is completely melted by the screw (12), and supplied to the lubricating cooling mold (3) while maintaining the pressurized state. It is cooled and solidified to obtain a predetermined molded body (5).

【0043】この製造方法では、以上のように、押出機
(1) 内で難成形樹脂(4) が溶融混練される前に、難成形
樹脂(4) に予め非反応性ガスが溶解しているため、非反
応性ガスによって難成形樹脂(4) が可塑化する際にエネ
ルギーが下がり、トルクが低減し、スクリュ(12)の回転
がスムーズになしえる上に、溶融樹脂温度も低下でき
る。しかも、非反応性ガスが難成形樹脂中に溶解後も溶
解状態を維持しているために溶融粘度が低下し、溶融樹
脂を押出機(1) からスムーズに潤滑冷却金型(3)に導入
し、ここから押出賦形することができる。さらに溶融粘
度の低下度合いに依存して成形温度も低下させることが
できる。
In this production method, as described above, the extruder
Before the hard-to-mold resin (4) is melted and kneaded in (1), since the non-reactive gas is dissolved in the hard-to-mold resin (4) in advance, the hard-to-mold resin (4) is The energy is reduced during plasticization, the torque is reduced, the screw (12) can rotate smoothly, and the temperature of the molten resin can be reduced. In addition, since the non-reactive gas maintains the dissolved state even after being dissolved in the difficult-to-mold resin, the melt viscosity decreases, and the molten resin is smoothly introduced from the extruder (1) into the lubrication cooling mold (3). Then, extrusion molding can be performed from here. Further, the molding temperature can be reduced depending on the degree of decrease in the melt viscosity.

【0044】また、潤滑冷却金型(2) は温度コントロー
ル装置によって低温に保たれているため、潤滑冷却金型
(3) に導かれた溶融樹脂は金型内で急冷され、溶融樹脂
中に溶解した非反応性ガスが金型内で揮発膨張すること
がない。さらに、金型(2) 内での溶融樹脂の急冷によっ
て溶融粘度が上がり流動性が低下するが、金型(2) には
潤滑剤が供給されているため、この潤滑剤が流動性の低
下した溶融樹脂と金型(2) の内壁面との間で層流を生
じ、壁面抵抗を小さくし、スムーズな押出を可能にす
る。
Since the lubricating cooling mold (2) is kept at a low temperature by the temperature control device, the lubricating cooling mold (2)
The molten resin guided to (3) is rapidly cooled in the mold, and the non-reactive gas dissolved in the molten resin does not volatilize and expand in the mold. Furthermore, the quenching of the molten resin in the mold (2) increases the melt viscosity and decreases the fluidity, but the lubricant is supplied to the mold (2), and this lubricant reduces the fluidity. A laminar flow is generated between the melted resin and the inner wall surface of the mold (2), thereby reducing wall resistance and enabling smooth extrusion.

【0045】したがって、押出された成形体(5) は、発
泡もなく、金型(2) の形状に沿う、表面が平滑なもので
ある。
Accordingly, the extruded molded body (5) has no foaming and has a smooth surface conforming to the shape of the mold (2).

【0046】しかも、得られた成形体中には非反応性ガ
スが溶解しているが、非反応性ガスは自然に樹脂から抜
け出るために、樹脂を有機溶媒で可塑化させる従来方法
のような溶媒回収工程が必要でなく、生産性が高い上
に、設備の小型化および製造コストの低減が可能であ
る。
In addition, although the non-reactive gas is dissolved in the obtained molded body, the non-reactive gas spontaneously escapes from the resin. A solvent recovery step is not required, productivity is high, and downsizing of equipment and reduction of manufacturing cost are possible.

【0047】[0047]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0048】実施例1 超高粘度樹脂として超高分子量ポリエチレン樹脂である
ハイゼックス・ミリオン240M(三井石油化学社製、
重量平均分子量230万、融点136℃)を図1に示す
成形装置(A) の耐圧ホッパ(2) から単軸押出機(1) (ス
クリュ径40mm、L/D=30)に供給した。非反応
性ガスとしては炭酸ガスを用い、これをガス供給口(13)
から押出機の固体輸送部に200kg/cm2 の圧力で
圧入した。この時、押出機(1) はスクリュ軸駆動の高圧
軸シール機構と耐圧ホッパ構造で炭酸ガスの高圧状態を
保持した。押出機(1) に供給された樹脂は、その内部で
押出量2kg/h、スクリュ回転数30rpm、バレル
設定温度200℃の条件下で充分に溶融混練することが
できた。
Example 1 As an ultrahigh-viscosity resin, an ultrahigh molecular weight polyethylene resin, HIZEX Million 240M (manufactured by Mitsui Petrochemical Co.
The weight-average molecular weight of 2.3 million and the melting point of 136 ° C.) were supplied to a single screw extruder (1) (screw diameter: 40 mm, L / D = 30) from a pressure hopper (2) of a molding apparatus (A) shown in FIG. Carbon dioxide gas is used as the non-reactive gas, and this is supplied to the gas supply port (13).
From the extruder at a pressure of 200 kg / cm 2 . At this time, the extruder (1) maintained a high-pressure state of carbon dioxide gas by a high-pressure shaft seal mechanism driven by a screw shaft and a pressure-resistant hopper structure. The resin supplied to the extruder (1) could be sufficiently melt-kneaded under the conditions of an extrusion rate of 2 kg / h, a screw rotation speed of 30 rpm, and a barrel setting temperature of 200 ° C.

【0049】続いてこの溶融樹脂を80℃に設定された
潤滑冷却金型(3) に導き、同金型に潤滑剤としてポリア
ルキレングリコールを5cc/minの割合で供給し
た。溶融樹脂を押出賦形時に金型内で冷却固化させ、超
高分子量ポリエチレンのロッドを得た。なお、この金型
は、潤滑剤をその溜り部から金型壁面の多孔質体を通し
て溶融樹脂との界面全周にわたって溶融樹脂に均一に塗
布するようになっている。
Subsequently, the molten resin was introduced into a lubricating cooling mold (3) set at 80 ° C., and polyalkylene glycol was supplied as a lubricant at a rate of 5 cc / min to the mold. The molten resin was cooled and solidified in a mold during extrusion molding to obtain an ultrahigh molecular weight polyethylene rod. In this mold, the lubricant is uniformly applied to the molten resin over the entire periphery of the interface with the molten resin from the reservoir through the porous body on the mold wall.

【0050】得られた超高分子量ポリエチレンのロッド
は直径20mmのものであり、その断面を顕微鏡観察し
たところ、気泡や層構造は確認されず、また表面は平滑
で均一であった。
The obtained ultra high molecular weight polyethylene rod had a diameter of 20 mm, and when its cross section was observed with a microscope, no bubbles or a layer structure were confirmed, and the surface was smooth and uniform.

【0051】実施例2 熱分解し易い樹脂として、ポリ乳酸樹脂であるRESO
MER L209(Boehringer Ingelheim社製、重量平
均分子量50万)を用い、固体輸送部への炭酸ガスの圧
入圧力を150kg/cm2 とし、バレル設定温度を1
50℃として点を除いて、実施例1と同じ条件で成形を
行い、ポリ乳酸のロッドを得た。
Example 2 As a resin easily decomposed by heat, RESO which is a polylactic acid resin is used.
Using MER L209 (manufactured by Boehringer Ingelheim, weight average molecular weight: 500,000), the pressure for injecting carbon dioxide into the solid transporting section was set to 150 kg / cm 2 , and the barrel setting temperature was set to 1
Molding was performed under the same conditions as in Example 1 except that the temperature was set to 50 ° C., and a polylactic acid rod was obtained.

【0052】得られたポリ乳酸のロッドは直径10mm
のものであり、その断面を顕微鏡観察したところ、気泡
や層構造は確認されず、表面も平滑で均一であった。ま
た、ゲル透過クロマトグラフィーによる分子量測定を行
ったところ、押出の前後で分子量減少は見られず、樹脂
の熱分解等は起っていないことが分かった。
The obtained polylactic acid rod had a diameter of 10 mm.
Microscopic observation of the cross section revealed no bubbles or layer structure, and the surface was smooth and uniform. Further, when the molecular weight was measured by gel permeation chromatography, no decrease in the molecular weight was observed before and after the extrusion, and it was found that thermal decomposition of the resin did not occur.

【0053】[0053]

【発明の効果】本発明の方法によれば、非反応性ガスを
高圧下で樹脂の固相から溶融相に変態せしめる状態に溶
解させるので、樹脂を効果的に可塑化させることがで
き、超高粘度樹脂の溶融押出や熱分解し易い樹脂の低温
成形が可能である。また、非反応性ガスは押出後樹脂か
ら自然に抜け出るために、有機溶媒で可塑化させる従来
方法のような溶媒回収工程が必要でない。加えて、金型
の形状や成形条件または後加工等により発泡および非発
泡の成形体を任意に提供することができる。
According to the method of the present invention, the non-reactive gas is dissolved under high pressure in a state where the resin is transformed from a solid phase to a molten phase, so that the resin can be effectively plasticized. Melt extrusion of a high-viscosity resin and low-temperature molding of a resin that easily undergoes thermal decomposition are possible. In addition, since the non-reactive gas naturally escapes from the resin after extrusion, a solvent recovery step such as the conventional method of plasticizing with an organic solvent is not required. In addition, foamed and non-foamed molded articles can be arbitrarily provided depending on the shape of the mold, molding conditions, post-processing, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1および2で用いた成形装置の
垂直縦断図である。
FIG. 1 is a vertical sectional view of a molding apparatus used in Examples 1 and 2 of the present invention.

【符号の説明】[Explanation of symbols]

(A) :成形装置 (1) :押出機 (2) :耐圧ホッパ (3) :潤滑冷却金型 (11):シリンダー (12):スクリュ (13):ガス供給口 (14):開閉弁 (22):開閉弁 (15):ガスホンベ (16):加圧ポンプ (31):潤滑剤供給口 (32):金型内面 (A): Molding device (1): Extruder (2): Pressure hopper (3): Lubrication cooling mold (11): Cylinder (12): Screw (13): Gas supply port (14): On-off valve ( 22): On-off valve (15): Gas cylinder (16): Pressurizing pump (31): Lubricant supply port (32): Mold inner surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 難成形樹脂を耐圧ホッパから押出機に供
給して押出機内で固相から溶融相へ変態せしめ、この溶
融樹脂を金型に導入して押出賦形するに当たり、該難成
形樹脂に高圧状態の非反応性ガスを溶解させながら樹脂
を変態させることを特徴とする熱可塑性樹脂成形体の製
造方法。
1. A hard-to-mold resin is supplied from a pressure hopper to an extruder to be transformed from a solid phase to a molten phase in the extruder, and the molten resin is introduced into a mold for extrusion molding. A method for producing a thermoplastic resin article, comprising transforming a resin while dissolving a non-reactive gas in a high pressure state.
【請求項2】 溶融樹脂を加圧状態に維持しながら金型
に導入する請求項1記載の熱可塑性樹脂成形体の製造方
法。
2. The method for producing a thermoplastic resin article according to claim 1, wherein the molten resin is introduced into a mold while being maintained in a pressurized state.
【請求項3】 非反応性ガスを耐圧ホッパから押出機の
固体輸送部に至る領域に供給する請求項1または2記載
の熱可塑性樹脂成形体の製造方法。
3. The method for producing a thermoplastic resin article according to claim 1, wherein the non-reactive gas is supplied to a region from the pressure hopper to a solid transport section of the extruder.
JP33215496A 1996-12-12 1996-12-12 Method for producing molded thermoplastic resin Expired - Fee Related JP3688412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33215496A JP3688412B2 (en) 1996-12-12 1996-12-12 Method for producing molded thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33215496A JP3688412B2 (en) 1996-12-12 1996-12-12 Method for producing molded thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH10166417A true JPH10166417A (en) 1998-06-23
JP3688412B2 JP3688412B2 (en) 2005-08-31

Family

ID=18251763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33215496A Expired - Fee Related JP3688412B2 (en) 1996-12-12 1996-12-12 Method for producing molded thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3688412B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832954A (en) * 1971-09-01 1973-05-04
JPS63176127A (en) * 1987-01-19 1988-07-20 Toray Ind Inc Extruding method for thermoplastic polymer
JPH0376623A (en) * 1989-08-21 1991-04-02 Fujikura Ltd Extrusion of resin incorporated with crosslinking agent
JPH04125121A (en) * 1990-09-17 1992-04-24 Showa Denko Kk Extrusion molding method and its device
JPH051165A (en) * 1990-09-27 1993-01-08 Dainippon Printing Co Ltd Production of ultrahigh-molecular weight polyethylene porous sheet or film
JPH06206216A (en) * 1993-01-11 1994-07-26 Toray Ind Inc Production of thermoplastic resin composition
WO1994025242A1 (en) * 1993-05-05 1994-11-10 Boehringer Ingelheim Kg Process for forming thermoplastic materials, in particular absorbable thermoplastics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832954A (en) * 1971-09-01 1973-05-04
JPS63176127A (en) * 1987-01-19 1988-07-20 Toray Ind Inc Extruding method for thermoplastic polymer
JPH0376623A (en) * 1989-08-21 1991-04-02 Fujikura Ltd Extrusion of resin incorporated with crosslinking agent
JPH04125121A (en) * 1990-09-17 1992-04-24 Showa Denko Kk Extrusion molding method and its device
JPH051165A (en) * 1990-09-27 1993-01-08 Dainippon Printing Co Ltd Production of ultrahigh-molecular weight polyethylene porous sheet or film
JPH06206216A (en) * 1993-01-11 1994-07-26 Toray Ind Inc Production of thermoplastic resin composition
WO1994025242A1 (en) * 1993-05-05 1994-11-10 Boehringer Ingelheim Kg Process for forming thermoplastic materials, in particular absorbable thermoplastics

Also Published As

Publication number Publication date
JP3688412B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
JP2625576B2 (en) Microporous foam material
US20070085231A1 (en) Method for producing microporous plastic products and the plastic products obtainable according to this method, as well as a plastic source material
KR100250372B1 (en) Process for the production of products of light cellular plastic with closed cells
TW200831266A (en) Method for preparation of microcellular foam with uniform foaming ratio and extruding and foaming system for the same
JP2022000350A (en) Manufacturing method of foam molding body
KR20080053537A (en) Method for preparation of extruded objects with brilliant gloss
JPH0885129A (en) Method and apparatus for producing foamed structure
JP3688412B2 (en) Method for producing molded thermoplastic resin
JP3634522B2 (en) Method for producing difficult-to-mold resin molded body
JPH10193426A (en) Manufacture of hard molding resin molding
KR100764900B1 (en) A method for preparing a microcellular foam by using a die having improved cooling property
JPH10230541A (en) Apparatus for producing resin molded object
JPH11179784A (en) Manufacture device of resin molded body
JPH10286861A (en) Production of hardly moldable resin sheet
JPH1034726A (en) Manufacture of difficult-to-mold resin molded body
JPH11147246A (en) Manufacture of ultrahigh molecular weight polyethylene sheet
JP3910723B2 (en) Method for producing molded thermoplastic resin
JP3490050B2 (en) Method for producing thermoplastic resin foam
JP4295161B2 (en) Extrusion foam molding method and extrusion foam molding apparatus for fine cell foam
JP3769353B2 (en) Production method of difficult-to-mold resin sheet
JPH11198213A (en) Production of ultra-high molecular weight polyethylene molding
JP3887108B2 (en) Ultra high molecular weight polyethylene pipe and method for producing the same
CN110862569B (en) Preparation method of polypropylene foaming particles with low melt strength
JP2000000871A (en) Apparatus for manufacture of resin molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees