JPH06196163A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH06196163A
JPH06196163A JP4357500A JP35750092A JPH06196163A JP H06196163 A JPH06196163 A JP H06196163A JP 4357500 A JP4357500 A JP 4357500A JP 35750092 A JP35750092 A JP 35750092A JP H06196163 A JPH06196163 A JP H06196163A
Authority
JP
Japan
Prior art keywords
powder
electrode plate
storage battery
concentration
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4357500A
Other languages
Japanese (ja)
Other versions
JP2530281B2 (en
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP4357500A priority Critical patent/JP2530281B2/en
Priority to US08/095,257 priority patent/US5395712A/en
Priority to CA002101312A priority patent/CA2101312C/en
Priority to EP93112093A priority patent/EP0581275B1/en
Priority to DE69317173T priority patent/DE69317173T2/en
Publication of JPH06196163A publication Critical patent/JPH06196163A/en
Application granted granted Critical
Publication of JP2530281B2 publication Critical patent/JP2530281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a utilization factor in a positive electrode of a storage battery, and improve battery capacity and a rapid discharge characteristic by using a material having concentration of not less than 35% as alkaline electrolyte for a paste type nickel plate. CONSTITUTION:In an alkaline storage battery having a positive electrode of a paste type plate containing Co powder and/or CoO powder as an electrically conductive material, concentration of alkaline electrolyte contained inside is set not less than 35wt.%. As a result of experiment, it became clear that when concentration of the alkaline electrolyte is set not less than 30wt.%, either one or all of battery capacity and the utilization factor, rapid discharge capacity and the utilization factor and the cycle service life become lower or shorter than when the electrolyte having concentration of 35% is used. When used together with Ni powder as the electrically conductive material or when the Ni powder is used with mixed powder of particulate powder and coarse particle powder, a far better effect can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池に関す
る。
FIELD OF THE INVENTION The present invention relates to an alkaline storage battery.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム電池、ニッ
ケル−水素電池などのアルカリ蓄電池の正極として、焼
結式ニッケル極板とペースト式ニッケル極板があるが、
特にペースト式ニッケル極板は、電池の高容量化が可能
なために注目されている。
2. Description of the Related Art Conventionally, as a positive electrode of an alkaline storage battery such as a nickel-cadmium battery or a nickel-hydrogen battery, there are a sintered nickel electrode plate and a paste nickel electrode plate.
In particular, the paste-type nickel electrode plate has attracted attention because it can increase the battery capacity.

【0003】ペースト式ニッケル極板は、発泡ニッケル
基板やニッケル繊維フェルトなどの三次元網状組織から
成る多孔性金属基板に、活物質である水酸化ニッケル粉
末を増粘剤の水溶液で混練して成るペーストを充填し、
乾燥、圧延して成るものであるが、焼結式に比べて利用
率、急放電特性に劣り、また寿命が短い欠点があるの
で、導電性を高め、分極を小さくする目的で、水酸化ニ
ッケル粉末に水酸化コバルトを少量含有させ、更にこの
活物質にNi粉末(ニッケル粉末)、Co粉末(コバルト粉
末)、CoO粉末(酸化コバルト粉末)などの導電材を添
加し、増粘剤の水溶液で混練して成る混合物のペースト
を使用することが提案されている。
The paste type nickel electrode plate is formed by kneading nickel hydroxide powder as an active material with an aqueous solution of a thickening agent on a porous metal substrate having a three-dimensional network structure such as a foamed nickel substrate or a nickel fiber felt. Fill the paste,
Although it is formed by drying and rolling, it has inferior utilization and rapid discharge characteristics compared to the sintering type and has a short life. Therefore, nickel hydroxide is used for the purpose of enhancing conductivity and reducing polarization. A small amount of cobalt hydroxide is added to the powder, and a conductive material such as Ni powder (nickel powder), Co powder (cobalt powder), CoO powder (cobalt oxide powder) is added to the active material, and an aqueous thickener solution is used. It has been proposed to use pastes of the kneaded mixture.

【0004】[0004]

【発明が解決しようとする課題】しかし乍ら、かゝる導
電材としてCo又はCoOを含んだペースト式ニッケル極板
を正極とし、これを水素吸蔵合金極板などの負極板とを
セパレータを介して積層して極板群を構成し、これを電
槽缶に挿入し、一般に好ましく用いられる30wt.%前後の
高濃度のアルカリ電解液を挿入した後、施蓋、封口して
密閉型ニッケル−水素アルカリ蓄電池を製造し、その電
池容量、急放電容量、サイクル寿命を測定し、その夫々
の利用率を調べた所、電池容量及び急放電容量の両方の
利用率が得られず、またサイクル寿命は極めて短いもの
しか得られなかった。従って、これらの電池特性を全て
向上させることが望まれる。
However, a paste type nickel electrode plate containing Co or CoO as such a conductive material is used as a positive electrode, and this is connected to a negative electrode plate such as a hydrogen storage alloy electrode plate through a separator. To form an electrode plate group, which is then inserted into a battery case, and a generally-used high-concentration alkaline electrolyte of about 30 wt. When hydrogen alkaline storage battery was manufactured, its battery capacity, rapid discharge capacity and cycle life were measured, and the utilization rate of each was examined, the utilization rate of both battery capacity and rapid discharge capacity was not obtained, and the cycle life was also Got only a very short one. Therefore, it is desired to improve all of these battery characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来のペ
ースト式ニッケル極板を正極として用いたアルカリ蓄電
池の上記の欠点を解消し、正極の利用率が向上し、急放
電性能に優れ且つ頂寿命のアルカリ蓄電池を提供するも
ので、導電材として少なくともCo粉末又は/及びCoO粉
末を含有するペースト式ニッケル正極板と負極板とをセ
パレータを介して積層して成る極板群とアルカリ電解液
とを内蔵して成るアルカリ蓄電池において、該アルカリ
電解液として濃度35%以上のものを用いたことを特徴と
する。
The present invention solves the above-mentioned drawbacks of the alkaline storage battery using the above-mentioned conventional paste type nickel electrode plate as a positive electrode, improves the utilization factor of the positive electrode, and is excellent in rapid discharge performance. Provided is an alkaline storage battery having a top life, and an electrode plate group and an alkaline electrolyte which are obtained by stacking a paste type nickel positive electrode plate containing at least Co powder and / or CoO powder as a conductive material and a negative electrode plate via a separator. In an alkaline storage battery having a built-in battery, the alkaline electrolyte having a concentration of 35% or more is used.

【0006】[0006]

【作用】正極に含有するCoO粉末はアルカリ電解液中で
HCoO2 - イオンとなって溶解し、このイオンは活物質
粉末粒子間、或いは導電材としてNi粉末を併用した場合
はNi粉末粒子の間に拡散し、充電と共にCoOOHに酸化さ
れ、導電材として機能する。Co粉末はそれ自体のアルカ
リ電解液への溶解は起こらないが、アルカリ電解液中の
溶存酸素が作用して酸化し、CoOとなり、これがHCoO
2 - イオンとなり同様に機能すると考えられる。このよ
うな機能は、電解液の濃度が35wt.%以上であるとき顕著
に効果を発揮し、利用率の向上をもたらす。
[Function] The CoO powder contained in the positive electrode is dissolved in the alkaline electrolyte as HCoO 2 ions, and these ions are dissolved between the active material powder particles, or between the Ni powder particles when Ni powder is also used as the conductive material. Diffuses into and is oxidized to CoOOH at the time of charging and functions as a conductive material. Although the Co powder does not dissolve itself in the alkaline electrolyte, it is oxidized by the action of dissolved oxygen in the alkaline electrolyte to form CoO, which is HCoO.
It is considered to be a 2 - ion and function similarly. Such a function exerts a remarkable effect when the concentration of the electrolytic solution is 35 wt.% Or more, and improves the utilization rate.

【0007】この場合、導電材としてNi粉末との併用が
好ましい。Ni粉末は、CoO粉末、Co粉末のようなミクロ
領域の導電性を保障するのではなく、活物質粒子間のマ
イクロな領域での導電性を確保する。また、Ni粉末は、
充電の過程で、その一部が活物質に変化するが、この活
物質化現象は電解液濃度が高い方が一層顕著に起こるも
のと考えられる。尚、Ni粉末は、全てが活物質化したの
では導電材としての機能が失われるので、微細な粒子か
ら成る微粉末ばかりでなく、該微粉末とそれより大きい
粒子から成る粗粉末との混合粉末を使用することが好ま
しい。
In this case, it is preferable to use Ni powder as a conductive material. The Ni powder does not guarantee the conductivity in the micro region like CoO powder and Co powder, but secures the conductivity in the micro region between the active material particles. Also, Ni powder is
A part of the material changes into an active material during the charging process, and it is considered that this phenomenon of becoming an active material is more remarkable when the concentration of the electrolytic solution is high. Incidentally, Ni powder loses its function as a conductive material when all are made into an active material, so not only fine powder consisting of fine particles but also a mixture of the fine powder and coarse powder consisting of particles larger than that. Preference is given to using powder.

【0008】[0008]

【実施例】次に本発明の実施例を詳述する。先ず、下記
の3種類のペースト式ニッケル極板A、B、Cを製造し
た。 極板Aの製造:市販のNi粉末(INCO # 255)10gと市販
のCoO粉末(UN,Extra Fine Co Powder )5gと球状粒
子から成る水酸化ニッケル粉末85gとを配合し、良く混
合した。得られた混合粉末に、2%のカルボキシメチル
セルロース水溶液35gを加えてペースト状とし、該ペー
ストを発泡ニッケル基板に充填し、乾燥し、これに5%
のPTFE分散液を含浸させ、次で乾燥した後圧延して所定
の厚みのペースト式ニッケル極板Aを製造した。 極板Bの製造:市販のNi粉末(INCO # 255)10gと市販
のCoO粉末〔住友金属鉱山(株)製FCO-178 〕5gと球
状粒子から成る水酸化ニッケル粉末85gとを配合し、良
く混合した。得られた混合粉末を用い、以降は、上記極
板Aの製造法と同じ方法でペースト式ニッケル極板Bを
製造した。 極板Cの製造:市販のNi粉末(INCO # 255)5gと、こ
れより粒子の小さいNi粉末(INCO # 210)5gと上記と
同じ市販の〔住友金属鉱山(株)製FCO-178 〕5gとを
配合し、良く混合した。得られた混合粉末を用い、以降
は、上記極板Aの製造法と同じ方法で、ペースト式ニッ
ケル極板Cを製造した。 以上のように作製したペースト式ニッケル正極A、B、
Cはいずれも理論容量が 1180mAhとなるようにした。
EXAMPLES Next, examples of the present invention will be described in detail. First, the following three types of paste type nickel electrode plates A, B and C were manufactured. Production of electrode plate A: 10 g of commercially available Ni powder (INCO # 255), 5 g of commercially available CoO powder (UN, Extra Fine Co Powder) and 85 g of nickel hydroxide powder consisting of spherical particles were mixed and mixed well. To the obtained mixed powder, 35 g of a 2% carboxymethyl cellulose aqueous solution was added to form a paste, the nickel foam substrate was filled with the paste, and the paste was dried to give 5%.
Was impregnated with the above PTFE dispersion, dried and then rolled to produce a paste type nickel electrode plate A having a predetermined thickness. Production of electrode plate B: 10 g of commercially available Ni powder (INCO # 255), 5 g of commercially available CoO powder (FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.) and 85 g of nickel hydroxide powder consisting of spherical particles were blended well. Mixed. Using the obtained mixed powder, the paste type nickel electrode plate B was manufactured thereafter by the same method as the manufacturing method of the electrode plate A. Production of electrode plate C: 5 g of commercially available Ni powder (INCO # 255), 5 g of Ni powder with smaller particles (INCO # 210) and 5 g of the same commercially available [FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.] And were mixed and mixed well. Using the obtained mixed powder, the paste type nickel electrode plate C was manufactured thereafter by the same method as the above-mentioned manufacturing method of the electrode plate A. The pasted nickel positive electrodes A and B prepared as described above,
The C has a theoretical capacity of 1180 mAh.

【0009】次に、これら極板A、B、Cの各極板につ
いて、これを正極とし、MmNi系の水素吸蔵合金極板を負
極とし、これら極板をセパレータを介して積層し、捲回
して捲回極板群を夫々作製し、次でこれら3種の極板群
の各種について同じ寸法の円筒缶に挿入したものを多数
個作製し、その各種電池缶について、電解液濃度が25
%、30%、35%、37%、39%と異なり且つKOH、NaOH、
LiOHの組成から成るアルカリ電解液を各缶に等量づつ、
例えば、2ccづつ注入し、直ちに常法により施蓋、封口
して、単3サイズで定格容量 1100mAhの密閉型ニッケル
−水素化物電池を多数個製造した。
Next, for each of the electrode plates A, B, and C, this is used as a positive electrode, the MmNi-based hydrogen storage alloy electrode plate is used as a negative electrode, and these electrode plates are laminated via a separator and wound. Each of these three types of electrode plate groups was then inserted into a cylindrical can of the same size for each of these three types of electrode plate groups, and each of these battery cans had an electrolyte concentration of 25
%, 30%, 35%, 37%, 39% and KOH, NaOH,
Equal amount of alkaline electrolyte consisting of LiOH composition to each can,
For example, 2 cc each was injected, and a lid and a lid were immediately closed by a conventional method to manufacture a number of AA size sealed nickel-hydride batteries having a rated capacity of 1100 mAh.

【0010】これらの電池につき、夫々、20℃の環境下
で 0.2Cの電流で 7.5時間充電し、同じ電流で電池電圧
が 1.0Vになるまで放電する操作を2回繰り返し、その
後40℃で24時間放電して初期活性化を行った。初期活性
化の後、以下の電池試験を行った。
Each of these batteries was charged twice at a current of 0.2 C under an environment of 20 ° C. for 7.5 hours, and discharged at the same current until the battery voltage became 1.0 V, which was repeated twice at 40 ° C. Initial discharge was performed by discharging for a period of time. After the initial activation, the following battery test was conducted.

【0011】容量試験:20℃、 0.2Cの電流で 7.5時
間充電した後、 0.2Cで電池電圧が 1.0Vになるまで放
電して容量を測定し、利用率を調べた。 急放電試験:20℃、 0.2Cの電流で 7.5時間充電した
後、3Cで電池電圧が 1.0Vになるまで放電して容量を
測定し、利用率を調べた。 サイクル寿命試験:25℃、1C−ΔV方式で充電を行
い、3Cで電池電圧が 1.0Vになるまで放電することを
繰り返し、電池容量が700mAhになるまでの充放電サイク
ル数を調べた。
Capacity test: After charging at 20 ° C. and a current of 0.2 C for 7.5 hours, the battery was discharged at 0.2 C until the battery voltage became 1.0 V, the capacity was measured, and the utilization rate was investigated. Rapid discharge test: After charging at 20 ° C. and 0.2 C current for 7.5 hours, the battery was discharged at 3 C until the battery voltage became 1.0 V, the capacity was measured, and the utilization rate was investigated. Cycle life test: Charging was performed at 25 ° C. in 1C-ΔV system, and discharging was repeated at 3C until the battery voltage became 1.0 V, and the number of charge / discharge cycles until the battery capacity reached 700 mAh was examined.

【0012】以上の電池試験の結果を表1に示す。The results of the above battery test are shown in Table 1.

【0013】[0013]

【表1】[Table 1]

【0014】上記表1から明らかなように、アルカリ電
解液の濃度が25wt.%の場合は、電池容量とその利用率並
びに急放電容量とその利用率が低く、またサイクル寿命
も 250以下と極めて短い。またその濃度が30wt.%の場合
は、電池容量とその利用率の向上は満足するが、急放電
容量とその利用率の向上が不充分で、更にサイクル寿命
は 400サイクル未満と短い。これに対し、アルカリ電解
液濃度が35wt.%以上の場合は、電池容量及びその利用
率、急放電容量とその利用率は共に著しく高くなり、又
サイクル寿命は 500サイクル以上と長寿命となる。
As is clear from Table 1 above, when the concentration of the alkaline electrolyte is 25 wt.%, The battery capacity and its utilization rate and the rapid discharge capacity and its utilization rate are low, and the cycle life is extremely less than 250. short. When the concentration is 30 wt.%, The improvement of the battery capacity and its utilization rate is satisfied, but the rapid discharge capacity and its utilization rate are insufficiently improved, and the cycle life is shorter than 400 cycles. On the other hand, when the concentration of the alkaline electrolyte is 35 wt.% Or more, the battery capacity and its utilization rate, the rapid discharge capacity and its utilization rate are both significantly high, and the cycle life is 500 cycles or more, which is a long life.

【0015】尚、上記の実施例に示されなかったが、導
電材としてCo粉末とCoO粉末とを混合したものを使用し
て同様にニッケル極板を作製し、これを正極として組み
込んだアルカリ蓄電池もアルカリ電解液濃度35wt.%〜39
wt.%の範囲で上記と同様の電池特性の改善、利用率の向
上を示した。
Although not shown in the above examples, a nickel electrode plate was similarly prepared by using a mixture of Co powder and CoO powder as a conductive material, and this was incorporated as a positive electrode in an alkaline storage battery. Alkaline electrolyte concentration 35 wt.% ~ 39
In the wt.% range, the same improvements in battery characteristics and utilization as above were shown.

【0016】尚、上記のCo粉末、CoO粉末、Ni粉末など
の導電材を、そのまゝ使用する代わりに、これらを乳鉢
やボールミルなどで磨砕処理した後、水酸化ニッケル活
物質と混ぜて成る混合物を使用するようにしても良く、
また該混合物を磨砕処理したものを使用するようにして
も良い。また、水酸化ニッケルとして水酸化コバルトを
少量、例えば1wt.%程度含有するものを使用することが
好ましい。
Instead of using the above-mentioned Co powder, CoO powder, Ni powder or the like as a conductive material, these are ground in a mortar or ball mill and then mixed with a nickel hydroxide active material. May be used,
Alternatively, the mixture may be ground and used. Further, it is preferable to use nickel hydroxide containing a small amount of cobalt hydroxide, for example, about 1 wt.%.

【0017】また、アルカリ電解液は、上記の三成分か
ら成る場合、KOHの配合は、三成分の重量の75wt.%以上
を占めることが好ましい。またアルカリ電解液は、KOH
単独でも良く、またNaOH或いはLiOHとの二成分から成る
ものでも良い。
When the alkaline electrolyte is composed of the above-mentioned three components, it is preferable that the content of KOH accounts for 75 wt.% Or more of the weight of the three components. The alkaline electrolyte is KOH.
It may be used alone or may be composed of two components such as NaOH or LiOH.

【0018】[0018]

【発明の効果】このように本発明によれば、導電材とし
て少なくともCo粉末又はCoO粉末又はその両者を含有す
るペースト式ニッケル極板を正極としたアルカリ蓄電池
において、アルカリ電解液の濃度を35wt.%以上とすると
きは、正極の利用率が高く、急放電特性に優れると共
に、長寿命のアルカリ蓄電池が得られる。この場合、導
電材としてNi粉と併用し、或いはNi粉を微粒粉末と粗粒
粉末との混合粉末の使用は、特に優れた電池が得られ
る。
As described above, according to the present invention, in an alkaline storage battery having a positive electrode of a paste type nickel electrode plate containing at least Co powder or CoO powder or both as a conductive material, the concentration of the alkaline electrolyte is 35 wt. When it is at least%, the utilization factor of the positive electrode is high, the rapid discharge characteristic is excellent, and a long-life alkaline storage battery is obtained. In this case, a particularly excellent battery can be obtained by using Ni powder as a conductive material, or using Ni powder as a mixed powder of fine powder and coarse powder.

【表1】 [Table 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月21日[Submission date] June 21, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来のペ
ースト式ニッケル極板を正極として用いたアルカリ蓄電
池の上記の欠点を解消し、正極の利用率が向上し、急放
電性能に優れ且つ寿命のアルカリ蓄電池を提供するも
ので、導電材として少なくともCo粉末又は/及びCo
O粉末を含有するペースト式ニッケル正極板と負極板と
をセパレータを介して積層して成る極板群とアルカリ電
解液とを内蔵して成るアルカリ蓄電池において、該アル
カリ電解液として濃度35%以上のものを用いたことを
特徴とする。
The present invention solves the above-mentioned drawbacks of the alkaline storage battery using the above-mentioned conventional paste type nickel electrode plate as a positive electrode, improves the utilization factor of the positive electrode, and is excellent in rapid discharge performance. The present invention provides a long- life alkaline storage battery, which comprises at least Co powder and / or Co as a conductive material.
An alkaline storage battery comprising an electrode group formed by laminating a paste type nickel positive electrode plate containing O powder and a negative electrode plate with a separator interposed therebetween and an alkaline electrolyte solution, wherein the concentration of the alkaline electrolyte solution is 35% or more. It is characterized by using things.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】この場合、導電材としてNi粉末との併用
が好ましい。Ni粉末は、CoO粉末、Co粉末のよう
なミクロ領域の導電性を保障するのではなく、活物質粒
子間のマクロな領域での導電性を確保する。また、Ni
粉末は、充電の過程で、その一部が活物質に変化する
が、この活物質化現象は電解液濃度が高い方が一層顕著
に起こるものと考えられる。尚、Ni粉末は、全てが活
物質化したのでは導電材としての機能が失われるので、
微細な粒子から成る微粉末ばかりでなく、該微粉末とそ
れより大きい粒子から成る粗粉末との混合粉末を使用す
ることが好ましい。
In this case, it is preferable to use Ni powder as a conductive material. Ni powder, CoO powder, rather than to ensure the conductivity of micro regions such as Co powder, to ensure conductivity in macro area between the active material particles. In addition, Ni
Part of the powder changes into an active material during the charging process, but it is considered that this phenomenon of becoming an active material is more remarkable when the concentration of the electrolyte is high. Since the Ni powder loses its function as a conductive material if all of it is made into an active material,
It is preferable to use not only a fine powder composed of fine particles, but also a mixed powder of the fine powder and a coarse powder composed of larger particles.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【実施例】次に本発明の実施例を詳述する。先ず、下記
の3種類のペースト式ニッケル極板A、B、Cを製造し
た。 極板Aの製造:市販のNi粉末(INCO # 25
5)10gと市販のCo粉末(UM,Extra Fi
ne Co Powder)5gと球状粒子から成る水
酸化ニッケル粉末85gとを配合し、良く混合した。得
られた混合粉末に、2%のカルボキシメチルセルロース
水溶液35gを加えてペースト状とし、該ペーストを発
泡ニッケル基板に充填し、乾燥し、これに5%のPTF
E分散液を含浸させ、次で乾燥した後圧延して所定の厚
みのペースト式ニッケル極板Aを製造した。 極板Bの製造:市販のNi粉末(INCO # 25
5)10gと市販のCoO粉末〔住友金属鉱山(株)製
FCO−178〕5gと球状粒子から成る水酸化ニッケ
ル粉末85gとを配合し、良く混合した。得られた混合
粉末を用い、以降は、上記極板Aの製造法と同じ方法で
ペースト式ニッケル極板Bを製造した。 極板Cの製造:市販のNi粉末(INCO # 25
5)5gと、これより粒子の小さいNi粉末(INCO
# 210)5gと上記と同じ市販の〔住友金属鉱山
(株)製FCO−178〕5gとを配合し、良く混合し
た。得られた混合粉末を用い、以降は、上記極板Aの製
造法と同じ方法で、ペースト式ニッケル極板Cを製造し
た。 以上のように作製したペースト式ニッケル正極A、B、
Cはいずれも理論容量が1180mAhとなるようにし
た。 ─────────────────────────────────────────────────────
EXAMPLES Next, examples of the present invention will be described in detail. First, the following three types of paste type nickel electrode plates A, B and C were manufactured. Production of electrode plate A: commercially available Ni powder (INCO # 25
5) 10g and commercially available Co Powder (UM, Extra Fi
5 g of ne Co Powder) and 85 g of nickel hydroxide powder consisting of spherical particles were mixed and mixed well. To the obtained mixed powder, 35 g of a 2% aqueous carboxymethyl cellulose solution was added to form a paste, the paste was filled in a nickel foam substrate and dried, and 5% PTF was added thereto.
The dispersion liquid E was impregnated, dried and then rolled to manufacture a paste type nickel electrode plate A having a predetermined thickness. Production of electrode plate B: commercially available Ni powder (INCO # 25
5) 10 g, 5 g of commercially available CoO powder [FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.] and 85 g of nickel hydroxide powder consisting of spherical particles were mixed and mixed well. Using the obtained mixed powder, the paste type nickel electrode plate B was manufactured thereafter by the same method as the manufacturing method of the electrode plate A. Production of electrode plate C: commercially available Ni powder (INCO # 25
5) 5g and Ni powder with smaller particles (INCO
5 g of # 210) and 5 g of the same commercially available [FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.] described above were mixed and mixed well. Using the obtained mixed powder, the paste type nickel electrode plate C was manufactured thereafter by the same method as the above-mentioned manufacturing method of the electrode plate A. The pasted nickel positive electrodes A and B prepared as described above,
The theoretical capacity of C was 1180 mAh. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月2日[Submission date] July 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【実施例】次に本発明の実施例を詳述する。先ず、下記
の3種類のペースト式ニッケル極板A、B、Cを製造し
た。 極板Aの製造:市販のNi粉末(INCO # 25
5)10gと市販のCo粉末(UM,Extra Fi
ne Co Powder)5gと球状粒子から成る水
酸化ニッケル粉末85gとを配合し、良く混合した。得
られた混合粉末に、2%のカルボキシメチルセルロース
水溶液35gを加えてペースト状とし、該ペーストを発
泡ニッケル基板に充填し、乾燥し、これに5%のPTF
E分散液を含浸させ、次で乾燥した後圧延して所定の厚
みのペースト式ニッケル極板Aを製造した。 極板Bの製造:市販のNi粉末(INCO # 25
5)10gと市販のCoO粉末〔住友金属鉱山(株)製
FCO−178〕5gと球状粒子から成る水酸化ニッケ
ル粉末85gとを配合し、良く混合した。得られた混合
粉末を用い、以降は、上記極板Aの製造法と同じ方法で
ペースト式ニッケル極板Bを製造した。 極板Cの製造:市販のNi粉末(INCO # 25
5)5gと、これより粒子の小さいNi粉末(INCO
# 210)5gと上記と同じ市販のCoO粉末〔住
友金属鉱山(株)製FCO−178〕5gと水酸化ニッ
ケル85gとを配合し、良く混合した。得られた混合粉
末を用い、以降は、上記極板Aの製造法と同じ方法で、
ペースト式ニッケル極板Cを製造した。 以上のように作製したペースト式ニッケル正極A、B、
Cはいずれも理論容量が1180mAhとなるようにし
た。
EXAMPLES Next, examples of the present invention will be described in detail. First, the following three types of paste type nickel electrode plates A, B and C were manufactured. Production of electrode plate A: commercially available Ni powder (INCO # 25
5) 10 g and commercially available Co powder (UM, Extra Fi
5 g of ne Co Powder) and 85 g of nickel hydroxide powder consisting of spherical particles were mixed and mixed well. To the obtained mixed powder, 35 g of a 2% aqueous carboxymethyl cellulose solution was added to form a paste, the paste was filled in a nickel foam substrate and dried, and 5% PTF was added thereto.
The dispersion liquid E was impregnated, dried and then rolled to manufacture a paste type nickel electrode plate A having a predetermined thickness. Production of electrode plate B: commercially available Ni powder (INCO # 25
5) 10 g, 5 g of commercially available CoO powder [FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.] and 85 g of nickel hydroxide powder consisting of spherical particles were mixed and mixed well. Using the obtained mixed powder, the paste type nickel electrode plate B was manufactured thereafter by the same method as the manufacturing method of the electrode plate A. Production of electrode plate C: commercially available Ni powder (INCO # 25
5) 5g and Ni powder with smaller particles (INCO
# 210) 5 g and the same commercially available CoO powder as the above [FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.] 5 g and hydroxide hydroxide
Kel 85g was blended and mixed well. The obtained mixed powder is used, and thereafter, in the same manner as in the production method of the electrode plate A,
A paste type nickel electrode plate C was manufactured. The pasted nickel positive electrodes A and B prepared as described above,
The theoretical capacity of C was 1180 mAh.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電材として少なくともCo粉末又は/及
びCoO粉末を含有するペースト式ニッケル正極板と負極
板とをセパレータを介して積層して成る極板群とアルカ
リ電解液とを内蔵して成るアルカリ蓄電池において、該
アルカリ電解液として濃度35%以上のものを用いたこと
を特徴とするアルカリ蓄電池。
1. An electrode group formed by laminating a paste type nickel positive electrode plate containing at least Co powder and / or CoO powder as a conductive material and a negative electrode plate via a separator, and an alkaline electrolyte. An alkaline storage battery, characterized in that an alkaline electrolyte having a concentration of 35% or more is used.
【請求項2】 導電材は、Co粉末又は/及びCo粉末とNi
粉末である請求項1記載のアルカリ蓄電池。
2. The conductive material is Co powder or / and Co powder and Ni.
The alkaline storage battery according to claim 1, which is a powder.
【請求項3】 Ni粉末は微粉末とこれよりも粗い粉末と
の混合粉末である請求項1又は2記載のアルカリ蓄電
池。
3. The alkaline storage battery according to claim 1, wherein the Ni powder is a mixed powder of a fine powder and a powder coarser than the fine powder.
【請求項4】 該電解液の濃度は35〜39wt.%の範囲であ
る請求項1記載のアルカリ蓄電池。
4. The alkaline storage battery according to claim 1, wherein the concentration of the electrolytic solution is in the range of 35 to 39 wt.%.
【請求項5】 該電解液は、KOH、NaOH及びLiOHから成
る請求項1又は4記載のアルカリ蓄電池。
5. The alkaline storage battery according to claim 1, wherein the electrolytic solution comprises KOH, NaOH and LiOH.
JP4357500A 1992-07-28 1992-12-24 Alkaline storage battery Expired - Fee Related JP2530281B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4357500A JP2530281B2 (en) 1992-12-24 1992-12-24 Alkaline storage battery
US08/095,257 US5395712A (en) 1992-07-28 1993-07-22 Paste-type nickel electrode for an alkaline storage battery and an alkaline storage battery containing the electrode
CA002101312A CA2101312C (en) 1992-07-28 1993-07-26 A paste type nickel electrode for an alkaline storage battery and an alkaline storage battery containing the electrode
EP93112093A EP0581275B1 (en) 1992-07-28 1993-07-28 A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
DE69317173T DE69317173T2 (en) 1992-07-28 1993-07-28 Pasty nickel electrode for alkaline collector battery and alkaline collector battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357500A JP2530281B2 (en) 1992-12-24 1992-12-24 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH06196163A true JPH06196163A (en) 1994-07-15
JP2530281B2 JP2530281B2 (en) 1996-09-04

Family

ID=18454445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357500A Expired - Fee Related JP2530281B2 (en) 1992-07-28 1992-12-24 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2530281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983347A (en) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
JPS61104565A (en) * 1984-10-25 1986-05-22 Matsushita Electric Ind Co Ltd Preparation of powdered active material for nickel positive electrode of cell
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery
JPS6332856A (en) * 1986-07-25 1988-02-12 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same
JPH02216763A (en) * 1989-02-16 1990-08-29 Yuasa Battery Co Ltd Alkaline storage battery and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983347A (en) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
JPS61104565A (en) * 1984-10-25 1986-05-22 Matsushita Electric Ind Co Ltd Preparation of powdered active material for nickel positive electrode of cell
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery
JPS6332856A (en) * 1986-07-25 1988-02-12 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same
JPH02216763A (en) * 1989-02-16 1990-08-29 Yuasa Battery Co Ltd Alkaline storage battery and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Also Published As

Publication number Publication date
JP2530281B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP2530281B2 (en) Alkaline storage battery
JPH11297352A (en) Alkaline storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JP3263603B2 (en) Alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0714575A (en) Iron electrode plate for alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH09199163A (en) Nickel-hydrogen secondary battery
JPH05314982A (en) Alkaline storage battery and manufacture thereof
JP2001035526A (en) Nickel hydrogen storage battery
JPH09147906A (en) Alkaline storage battery
Selvan et al. Effect of iron addition to the cadmium electrode
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JPH0645002A (en) Sealed alkaline storage battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH06187982A (en) Manufacture of paste type nickel electrode plate for alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPS60258857A (en) Sealed type nickel-cadmium storage battery
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JPH05314981A (en) Alkaline storage battery and manufacture thereof
JPH01279563A (en) Paste type nickel electrode
JPH02155167A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees