JPH06185750A - Mixing type hot water feeding device - Google Patents

Mixing type hot water feeding device

Info

Publication number
JPH06185750A
JPH06185750A JP33728592A JP33728592A JPH06185750A JP H06185750 A JPH06185750 A JP H06185750A JP 33728592 A JP33728592 A JP 33728592A JP 33728592 A JP33728592 A JP 33728592A JP H06185750 A JPH06185750 A JP H06185750A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
amount
set temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33728592A
Other languages
Japanese (ja)
Inventor
Yutaka Aoki
豊 青木
Yoshio Suzuki
義生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP33728592A priority Critical patent/JPH06185750A/en
Publication of JPH06185750A publication Critical patent/JPH06185750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable a continuous proper feeding of hot water to be kept in a mixing type hot water feeding device by a method wherein the temperature of hot water flowing out of a heat exchanger is decreased when a hot water feeding set temperature is low and controlled to cause the amount of water detected by a water amount sensor to be larger than that which can be detected. CONSTITUTION:A temperature setting device 100 generates a signal representing a desired set temperature Too of hot water to be fed out of a hot water feeding- out faucet 70 as a set temperature signal. A water volume sensor 100a detects the water feeding volume Q1 supplied from a water feeding pipe 10 to a heat exchanger 30 and outputs a water volume sensing signal. Then, a microcomputer 110 decreases the temperature of hot water flowing out of the heat exchanger 30 when the hot water feeding set temperature Too is low and then controls in such a manner that the water volume detected by the water volume sensor 110a is higher than that which can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は給湯装置に係り、特に、
熱交換器から流出する湯を、水と混合し、所望の給湯設
定温度として出湯する混合型給湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater,
The present invention relates to a mixing-type hot water supply device that mixes hot water flowing out of a heat exchanger with water and discharges the hot water at a desired hot water supply set temperature.

【0002】[0002]

【従来の技術】従来、この種の混合型給湯装置において
は、熱交換器への給水の量を水量センサにより検出し、
この検出給水量に応じて、熱交換器から流出する湯の温
度を、出湯すべき湯の給湯設定温度よりも高い所定の温
度となるように制御し、前記熱交換器からの湯を、同熱
交換器への給水からの分流水と混合弁により混合して、
出湯温度を給湯設定温度に維持するようにしたものがあ
る。
2. Description of the Related Art Conventionally, in this type of mixed water heater, the amount of water supplied to the heat exchanger is detected by a water amount sensor,
According to the detected water supply amount, the temperature of the hot water flowing out of the heat exchanger is controlled to be a predetermined temperature higher than the hot water supply set temperature of the hot water to be discharged, and the hot water from the heat exchanger is Mix with the diverted water from the water supply to the heat exchanger by the mixing valve,
There is one that keeps the hot water discharge temperature at the hot water supply set temperature.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
構成においては、水量センサによる検出水量が所定の下
限給水量を越えたときにバーナーを着火させ、熱交換器
から流出する湯の温度が上昇するまでは分流水の量を零
に維持し、熱交換器からの湯の温度が上昇すると分流水
量を増大させ熱交換器からの湯の混合量を減少させて設
定温度の出湯を得るようになっている。ところで、安定
した燃焼を得るためにはバーナへのガス量は所定の最小
量以上とする必要があり、一方過熱による熱交換器内で
の沸騰を防止するためには、熱交換器への下限水量を、
例えば、1.5リットル/分に制限する必要がある。従っ
て、給湯設定温度が低い状態で出湯量を減少させた場合
には、熱交換器を流れる検出水量が、前記下限水量より
も下まわってバーナーが消火してしまう。
By the way, in such a structure, when the water amount detected by the water amount sensor exceeds a predetermined lower limit water supply amount, the burner is ignited and the temperature of the hot water flowing out from the heat exchanger rises. Until the temperature of hot water from the heat exchanger rises, the amount of split water is increased and the amount of hot water mixed from the heat exchanger is decreased to obtain hot water at the set temperature. Has become. By the way, in order to obtain stable combustion, the amount of gas to the burner must be a predetermined minimum amount or more, while in order to prevent boiling in the heat exchanger due to overheating, the lower limit to the heat exchanger. The amount of water
For example, it should be limited to 1.5 liters / minute. Therefore, when the hot water supply amount is reduced in the state where the hot water supply set temperature is low, the detected water amount flowing through the heat exchanger falls below the lower limit water amount and the burner extinguishes.

【0004】かかる場合、熱交換器からの湯の温度を給
湯設定温度よりも少し高い程度の温度にしておけば、熱
交換器への給水量が相対的に増大するので、給湯設定温
度が低い状態で出湯量を減少させても、ある程度までは
バーナーの着火状態をそのまま維持することができる。
しかし、熱交換器から流出する湯の温度をこのように設
定しておくと、出湯量が多い状態で使用した場合の間欠
使用時に熱交換器から流出する湯の温度がすぐに給湯設
定温度よりも低くなってしまい、その結果、給湯温度の
好ましくない低下を招き、使用者に対し著しい不快感を
与えることになる。
In such a case, if the temperature of the hot water from the heat exchanger is set to a temperature slightly higher than the hot water supply set temperature, the amount of water supplied to the heat exchanger relatively increases, so the hot water supply set temperature is low. Even if the amount of hot water discharged is reduced, the ignition state of the burner can be maintained as it is to some extent.
However, if the temperature of the hot water flowing out of the heat exchanger is set in this way, the temperature of the hot water flowing out of the heat exchanger will immediately become higher than the hot water supply set temperature during intermittent use when used with a large amount of hot water discharged. As a result, the hot water supply temperature is undesirably lowered, and the user is significantly uncomfortable.

【0005】そこで、本発明は、このようなことに対処
すべく、混合型給湯装置において、給湯設定温度が低い
ときに熱交換器から流出する湯の温度を低く設定するこ
とで、水量検出手段の検出水量を検出可能な水量よりも
多くするように制御して、適正な給湯の継続を維持する
ようにしようとするものである。
In view of the above, the present invention addresses this problem by setting the temperature of hot water flowing out of the heat exchanger to be low when the hot water supply set temperature is low in the mixed hot water supply device. The amount of detected water is controlled to be larger than the amount of water that can be detected to maintain proper continuation of hot water supply.

【0006】[0006]

【課題を解決するための手段】上記課題の解決にあた
り、本発明においては、図1にて図示実線により示すご
とく、燃料供給源1から燃料を供給されて燃焼させる燃
料燃焼手段2と、燃料燃焼手段2からの燃料の燃焼に応
じ給水管からの給水を加熱する熱交換手段3と、燃料供
給源1から燃料燃焼手段2への燃料の供給量を調節する
燃料供給量調節手段4と、前記給水管から分岐管を通し
分流される前記給水の分流水を熱交換手段3からの湯と
混合する混合手段5と、熱交換手段3への前記給水の量
を検出する水量検出手段6と、前記検出給水量が所定の
下限給水量以上のとき熱交換手段3から流出する湯の温
度が湯側設定温度になるように燃料供給量調節手段4を
制御する調節度合制御手段7と、混合手段5からの混合
湯の温度が給湯設定温度となるように混合手段5の混合
比を制御する混合比制御手段8とを備えて、混合手段5
で混合した湯を出湯するようにした混合型給湯装置にお
いて、以下のように構成したことにその特徴がある。
In order to solve the above-mentioned problems, in the present invention, as shown by a solid line in FIG. 1, a fuel combustion means 2 for supplying fuel from a fuel supply source 1 to burn the fuel and a fuel combustion means. A heat exchange means 3 for heating the feed water from the feed pipe in response to the combustion of the fuel from the means 2, a fuel supply amount adjusting means 4 for adjusting the supply amount of the fuel from the fuel supply source 1 to the fuel combustion means 2, Mixing means 5 for mixing the split water of the feed water, which is branched from the water supply pipe through the branch pipe, with the hot water from the heat exchange means 3, and a water amount detection means 6 for detecting the amount of the water supply to the heat exchange means 3. When the detected water supply amount is equal to or more than a predetermined lower limit water supply amount, the adjustment degree control unit 7 for controlling the fuel supply amount adjusting unit 4 so that the temperature of the hot water flowing out from the heat exchanging unit 3 reaches the hot water set temperature, and the mixing unit. The temperature of the mixed hot water from 5 is set as hot water supply And a mixing ratio control means 8 for controlling the mixing ratio of the mixing means 5 such that the degree, mixing means 5
The mixing type hot water supply device that discharges the hot water mixed in 1. is characterized by being configured as follows.

【0007】即ち、本発明の構成上の特徴は、前記給湯
設定温度が低い状態にて前記検出給水量が少ないとき前
記湯側設定温度を低くするように変更する湯側設定温度
変更手段9を設けるようにしたことにある。
That is, the structural feature of the present invention is that the hot water side preset temperature changing means 9 is configured to change the hot water preset temperature to be low when the detected hot water supply amount is small while the hot water preset temperature is low. I have decided to provide it.

【0008】また、本発明は、図1にて図示破線により
示すごとく、前記給水の温度を検出する給水温度検出手
段9aを設けて、前記給湯設定温度が低い状態にて前記
検出給水量が少ないとき、湯側設定温度変更手段9が前
記湯側設定温度を前記検出給水温度に応じて変更するよ
うにしてもよい。
Further, according to the present invention, as shown by a broken line in FIG. 1, a water supply temperature detecting means 9a for detecting the temperature of the water supply is provided so that the detected water supply amount is small when the hot water supply set temperature is low. At this time, the hot water side set temperature changing means 9 may change the hot water side set temperature according to the detected water supply temperature.

【0009】[0009]

【発明の作用・効果】このように本発明を構成したこと
により、前記給湯設定温度が低い状態にて前記検出給水
量が少ないときには、湯側設定温度変更手段9が前記湯
側設定温度を低くするように変更するので、熱交換手段
3に流入する給水量、つまり、水量検出手段6による検
出給水量は、湯側設定温度が高い場合に比して増大す
る。このため、出湯量を相当に減少させても前記給水量
が燃料燃焼手段2の燃料燃焼停止となる下限給水量まで
減少しにくくなる。一方、給湯設定温度が低くない場
合、または、検出水量が多い場合には、湯側中間設定温
度変更手段9が湯側設定温度を高くするようにするの
で、出湯量が多い状態の間欠使用時においても、熱交換
手段3の下流側に滞留する高温湯と水とを混合できるた
め、出湯温度が低下することはなく、その結果、使用勝
手が悪くなることもない。
With the above configuration of the present invention, when the detected hot water supply amount is small and the hot water supply set temperature is low, the hot water side set temperature changing means 9 lowers the hot water set temperature. Therefore, the water supply amount flowing into the heat exchange means 3, that is, the water supply amount detected by the water amount detection means 6 is increased as compared with the case where the hot water set temperature is high. For this reason, even if the amount of hot water discharged is considerably reduced, it becomes difficult for the amount of water supply to decrease to the lower limit amount of water supply at which the fuel combustion of the fuel combustion means 2 is stopped. On the other hand, when the hot water supply set temperature is not low, or when the detected water amount is large, the hot water side intermediate set temperature changing means 9 raises the hot water side set temperature. Also in this case, since the hot water and water that stays on the downstream side of the heat exchange means 3 can be mixed, the hot water discharge temperature does not decrease, and as a result, usability does not deteriorate.

【0010】また、本発明において、給水の温度を検出
する給水温度検出手段9aを設けて、湯側設定温度変更
手段9が、給湯設定温度が低い状態にて検出給水量が減
少したとき、湯側設定温度を検出給水温度に応じて変更
するようにした場合には、上記作用効果を達成し得るこ
とは勿論のこと、前記湯側設定温度の変更にあたり、前
記給水温度をも考慮して、同給水温度が高い場合には当
該給水温度が低い場合よりも前記湯側設定温度を低くす
ることで、前記熱交通水量及び熱交換手段3から流出す
る湯の温度が同じ場合に前記給水温度が高くても、低い
給水温度のときに比べて、混合手段5への分流水量が増
大しないように制御できる。その結果、如何なる給水温
度であっても、出湯量が減少して燃料燃焼手段2が燃料
供給を停止するときの流量が同一とすることができる。
Further, in the present invention, the water supply temperature detecting means 9a for detecting the temperature of the water supply is provided, and when the hot water side set temperature changing means 9 reduces the detected water supply amount when the hot water supply set temperature is low, When the side set temperature is changed according to the detected water supply temperature, it is of course possible to achieve the above-mentioned effects, and in changing the hot water side set temperature, also considering the water supply temperature, When the water supply temperature is high, the hot water-side set temperature is made lower than when the water supply temperature is low, so that the water supply temperature is the same when the hot water flow rate and the hot water flowing out from the heat exchanging means 3 are the same. Even if the temperature is high, it is possible to control so that the amount of the branched water to the mixing means 5 does not increase as compared with the case of the low water supply temperature. As a result, the flow rate when the amount of hot water discharged decreases and the fuel combustion means 2 stops the fuel supply can be made the same regardless of the temperature of the supplied water.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面により説明す
ると、図2は混合型瞬間湯沸器に本発明が適用された例
を示しており、この瞬間湯沸器は、湯沸器本体Bと、制
御回路Eとによって構成されている。湯沸器本体Bは、
給水源(図示せず)から給水管10を通し供給される水
を、バーナー20による燃焼ガス量に応じて熱交換器3
0により加熱して給湯管40内に流入させ、この給湯管
40からの湯と、給水管10の上流部から分岐する分岐
管10aからの分流水とを、給湯設定温度となるよう
に、混合弁50により混合して、この混合湯を出湯管6
0を介し出湯栓70から出湯するようになっている。か
かる場合、バーナー20は、図示しない点火回路による
点火作用のもとに、ガス供給源(図示せず)からガス供
給管80及びこのガス供給管80中に介装した比例電磁
弁90を通し供給されるガスを着火燃焼させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows an example in which the present invention is applied to a mixed type instant water heater. It is composed of a main body B and a control circuit E. The water heater body B is
Water supplied from a water supply source (not shown) through the water supply pipe 10 is supplied to the heat exchanger 3 depending on the amount of combustion gas from the burner 20.
It is heated by 0 to flow into the hot water supply pipe 40, and the hot water from the hot water supply pipe 40 and the branched water from the branch pipe 10a branched from the upstream portion of the water supply pipe 10 are mixed so as to reach the hot water supply set temperature. The mixed water is mixed by the valve 50, and the hot water discharge pipe 6
Hot water is tapped from the tap 70 through 0. In this case, the burner 20 is supplied from a gas supply source (not shown) through a gas supply pipe 80 and a proportional solenoid valve 90 interposed in the gas supply pipe 80 under the ignition action of an ignition circuit (not shown). The gas is ignited and burned.

【0012】次に、制御回路Eの構成について説明する
と、この制御回路Eは、図2にて図示実線により示すご
とく、温度設定器100を有しており、この温度設定器
100は、その設定操作に伴い、出湯栓70から出湯す
べき所望の給湯設定温度(以下、給湯設定温度Tooとい
う)を設定温度信号として発生する。水量センサ100
aは、給水管10から熱交換器30に供給される給水量
Qiを検出し水量検出信号として発生する。湯側温度セ
ンサ100bは熱交換器30から給湯管40へ流出する
湯の温度を検出し湯側湯温検出信号として発生する。出
湯温度センサ100cは、混合弁50から出湯管60内
に流入する湯の温度を検出し出湯温度検出信号として発
生する。
Next, the configuration of the control circuit E will be described. The control circuit E has a temperature setter 100 as shown by the solid line in FIG. 2, and the temperature setter 100 sets the temperature. Along with the operation, a desired hot water supply set temperature at which hot water is to be discharged from the hot water tap 70 (hereinafter referred to as hot water supply set temperature Too) is generated as a set temperature signal. Water amount sensor 100
“A” detects the water supply amount Qi supplied from the water supply pipe 10 to the heat exchanger 30 and is generated as a water amount detection signal. The hot water temperature sensor 100b detects the temperature of the hot water flowing from the heat exchanger 30 to the hot water supply pipe 40, and generates the hot water temperature detection signal. Hot water temperature sensor 100c detects the temperature of hot water flowing from mixing valve 50 into hot water pipe 60, and generates it as a hot water temperature detection signal.

【0013】マイクロコンピュータ110は、コンピュ
ータプログラムを、図3及び図4に示すフローチャート
に従い、温度設定器100、水量センサ100a、湯側
温度センサ100b及び出湯温度センサ100cとの協
働により実行し、この実行中において、混合弁70及び
比例電磁弁90にそれぞれ接続した各駆動回路120及
び130を駆動制御するに要する演算処理を行う。な
お、上述のコンピュータプログラムは、マイクロコンピ
ュータ110のROMに予め記憶されている。
The microcomputer 110 executes a computer program in accordance with the flowcharts shown in FIGS. 3 and 4, in cooperation with the temperature setter 100, the water amount sensor 100a, the hot water temperature sensor 100b and the hot water temperature sensor 100c. During execution, arithmetic processing required to drive and control the drive circuits 120 and 130 respectively connected to the mixing valve 70 and the proportional solenoid valve 90 is performed. The computer program described above is stored in the ROM of the microcomputer 110 in advance.

【0014】以上のように構成した本実施例において、
制御回路Eを作動状態におけば、マイクロコンピュータ
110が図3及び図4のフローチャートに従いコンピュ
ータプログラムの実行をステップ200にて開始する。
現段階にて、出湯栓70が開かれれば、前記給水源から
給水管10内に給水される。しかして、水量センサ10
0aにより検出される熱交換器30への給水量が所定の
検出可能な下限水量(例えば、1.5リットル/分)よりも
多ければ、マイクロコンピュータ110が、ステップ2
10にて、水量センサ100aからの水量検出信号に基
づき「YES」と判別し、ステップ220にて、比例電
磁弁90の初期開度を表す初期開度出力信号を発生す
る。すると、駆動回路130がマイクロコンピュータ9
0からの初期開度出力信号に基づき比例電磁弁90を初
期開度だけ開くように駆動する。このため、バーナー2
0が、前記ガス供給源からのガスをガス供給管80及び
比例電磁弁90を通し供給されて、点火回路(図示せ
ず)による点火処理のもとに、供給ガスを着火燃焼させ
る。
In the present embodiment configured as described above,
When the control circuit E is activated, the microcomputer 110 starts execution of the computer program in step 200 according to the flowcharts of FIGS.
At this stage, if the tap 70 is opened, water is supplied from the water supply source into the water supply pipe 10. Then, the water amount sensor 10
If the amount of water supplied to the heat exchanger 30 detected by 0a is greater than a predetermined detectable lower limit amount of water (for example, 1.5 liters / minute), the microcomputer 110 causes the step 2
At 10, it is determined to be "YES" based on the water amount detection signal from the water amount sensor 100a, and at step 220, an initial opening output signal representing the initial opening of the proportional solenoid valve 90 is generated. Then, the drive circuit 130 causes the microcomputer 9 to
Based on the initial opening output signal from 0, the proportional solenoid valve 90 is driven to open only the initial opening. Therefore, burner 2
0 is supplied with the gas from the gas supply source through the gas supply pipe 80 and the proportional solenoid valve 90, and ignites and burns the supplied gas under the ignition process by the ignition circuit (not shown).

【0015】ステップ220における燃焼処理が終了す
ると、マイクロコンピュータ110が、ステップ230
にて、温度設定器100からの設定温度信号の値を給湯
設定温度Tooとして読み込む。然る後、この給湯設定温
度Tooが60℃よりも高ければ、マイクロコンピュータ
110がステップ240にて「YES」と判別し、ステ
ップ240aにて、熱交換器30からの湯の湯側設定温
度Tioを80℃にセットし、ステップ280にて、湯側
温度センサ100bからの湯側湯温検出信号の値を湯側
湯温Tiaとして読み込み、ステップ290にて、比例電
磁弁90の開度をTio=80℃と湯側湯温Tiaとの偏差
に応じた開度にするための開度出力信号を発生し、ステ
ップ300にて、出湯温度センサ100からの出湯温度
検出信号の値を出湯温度Toaとして読み込み、かつ、ス
テップ310にて、給湯管40からの湯と分岐管10a
からの分流水との混合比を、出湯温度Toaを給湯設定温
度Tooに一致させるように決定し、混合比出力信号とし
て発生する。
When the burning process in step 220 is completed, the microcomputer 110 causes the step 230 to proceed.
At, the value of the set temperature signal from the temperature setter 100 is read as the hot water supply set temperature Too. Thereafter, if the hot water supply set temperature Too is higher than 60 ° C., the microcomputer 110 determines “YES” in step 240, and in step 240a, the hot water side set temperature Too of the hot water from the heat exchanger 30. Is set to 80 ° C., the value of the hot water temperature detection signal from the hot water temperature sensor 100b is read as the hot water temperature Tia in step 280, and the opening of the proportional solenoid valve 90 is set to Tio in step 290. = 80 ° C and an opening output signal for opening the opening according to the deviation between the hot water temperature Tia and the value of the hot water temperature detection signal from the hot water temperature sensor 100 at step 300. And the hot water from the hot water supply pipe 40 and the branch pipe 10a in step 310.
The mixing ratio with the diverted water from is determined so that the hot water outlet temperature Toa matches the hot water supply set temperature Too, and is generated as a mixing ratio output signal.

【0016】すると、比例電磁弁90が、マイクロコン
ピュータ110からの開度出力信号に応答して駆動回路
130により駆動されて、Tio=80℃と湯側湯温Tia
との差に応じた開度まで開くとともに、混合弁50が、
マイクロコンピュータ110からの混合比出力信号に応
答して駆動回路120により駆動されて、給湯管40か
らの湯と分岐管10aからのバイパス水との混合比を、
出湯温度Toaを給湯設定温度Tooに一致させるように制
御する。このため、出湯栓70からの出湯温度が給湯設
定温度Tooに維持される。
Then, the proportional solenoid valve 90 is driven by the drive circuit 130 in response to the opening output signal from the microcomputer 110, and Tio = 80 ° C. and the hot water temperature Tia.
While opening to the opening according to the difference with
Driven by the drive circuit 120 in response to the mixing ratio output signal from the microcomputer 110, the mixing ratio of the hot water from the hot water supply pipe 40 and the bypass water from the branch pipe 10a is
The hot water outlet temperature Toa is controlled to match the hot water supply set temperature Too. Therefore, the temperature of hot water discharged from hot water tap 70 is maintained at hot water supply set temperature Too.

【0017】一方、上述のステップ240における判別
が「NO」となる場合において、給湯設定温度Tooが4
7℃以上で60℃以下のときには、マイクロコンピュー
タ110がステップ250にて「YES」と判別し、ス
テップ250aにて、熱交換器30からの湯の湯側設定
温度Tioを75℃にセットし、ステップ290にて、比
例電磁弁90の開度をTio=75℃とステップ280に
おける湯側湯温Tiaとの差に応じた開度にするための開
度出力信号を発生し、ステップ300にて、出湯温度セ
ンサ100からの出湯温度検出信号の値を出湯温度Toa
として読み込み、かつ、ステップ310にて、上述と同
様に、給湯管40からの湯と分岐管10aからの分流水
との混合比を、混合比出力信号として発生する。
On the other hand, when the determination in step 240 is "NO", the hot water supply set temperature Too is 4
When the temperature is 7 ° C. or higher and 60 ° C. or lower, the microcomputer 110 determines “YES” in step 250, and sets the hot water side preset temperature Tio from the heat exchanger 30 to 75 ° C. in step 250a. In step 290, an opening output signal is generated to set the opening of the proportional solenoid valve 90 according to the difference between Tio = 75 ° C. and the hot water temperature Tia in step 280, and in step 300. , The value of the tapping temperature detection signal from the tapping temperature sensor 100 is referred to as tapping temperature Toa.
In step 310, the mixing ratio of the hot water from the hot water supply pipe 40 and the diverted water from the branch pipe 10a is generated as a mixing ratio output signal in the same manner as described above.

【0018】すると、比例電磁弁90が、マイクロコン
ピュータ110からの開度出力信号に応答して駆動回路
130により駆動されて、Tio=75℃と湯側湯温Tia
との偏差に応じた開度まで開くとともに、混合弁50
が、マイクロコンピュータ110からの混合比出力信号
に応答する駆動回路120による駆動のもとに、給湯管
40からの湯と分岐管10aからの分流水との混合比
を、出湯温度Toaを給湯設定温度Tooに一致させるよう
に制御する。このため、出湯栓70からの出湯温度が給
湯設定温度Tooに維持される。
Then, the proportional solenoid valve 90 is driven by the drive circuit 130 in response to the opening output signal from the microcomputer 110, and Tio = 75 ° C. and the hot water temperature Tia.
And the mixing valve 50
However, under the drive of the drive circuit 120 responding to the mixture ratio output signal from the microcomputer 110, the mixture ratio of the hot water from the hot water supply pipe 40 and the diverted water from the branch pipe 10a is set as the hot water supply temperature Toa. Control is performed so as to match the temperature Too. Therefore, the temperature of hot water discharged from hot water tap 70 is maintained at hot water supply set temperature Too.

【0019】また、ステップ250における判別が「N
O」となる場合、つまり、給湯設定温度Tooが47℃未
満で、水量センサ100aからの水量検出信号の値、即
ち、検出水量Qiが5リットル/分よりも少ない場合には、
マイクロコンピュータ110が、ステップ260にて、
「NO」と判別し、ステップ260aにて、熱交換器3
0からの湯の湯側設定温度Tioを55℃にセットし、以
下、ステップ250aでのセット処理後の演算処理と同
様の演算処理を行い、比例電磁弁90の開度及び混合弁
50による混合比を決定し、出湯栓70からの出湯温度
を給湯設定温度Tooに維持する。
Further, the determination in step 250 is "N
When it is “O”, that is, when the hot water supply set temperature Too is less than 47 ° C. and the value of the water amount detection signal from the water amount sensor 100a, that is, the detected water amount Qi is less than 5 liters / minute,
The microcomputer 110, in step 260,
It is determined to be “NO”, and in step 260a, the heat exchanger 3
The hot water side preset temperature Tio from 0 is set to 55 ° C., and thereafter, the same calculation processing as the calculation processing after the setting processing in step 250a is performed, and the opening degree of the proportional solenoid valve 90 and the mixing by the mixing valve 50 are performed. The ratio is determined and the hot water outlet temperature from the hot water tap 70 is maintained at the hot water supply set temperature Too.

【0020】但し、ステップ260aで湯側設定温度T
ioを55℃にセットしたのは以下の理由による。本実施
例では、前記給水源からの給水量と混合弁50からの出
湯量とは一致することになるから、混合弁50は、全出
湯量を変えずに、給湯管40からの湯量と分岐管10a
からの水量との混合比を変化させることによって、出湯
温度を給湯設定温度Tooに維持使用とする特性をもつ。
換言すれば、全出湯量を変えないで同じ出湯温を維持す
る場合、熱交換器30からの流出湯の湯側設定温度Tio
を高くすればする程、熱交換器30からの流出湯量が減
少する。 従って、全出湯量、即ち全給水量が少ないと
きに、熱交換器30からの流出湯の温度、即ち湯側湯温
が高いと、同熱交換器30からの流出湯量、即ち水量セ
ンサ100aへの流入水量Qiが消火水量以下になり、
その結果、消火を招く事態となり易い。このような現象
は、湯側湯温を低くすれば防止できるが、余り低くする
と、出湯温度が給湯設定温度Tooよりも落ち込み易くな
る。このようなことは、水量センサ100aへの流入水
量Qiが消火水量近辺の量となっている場合の間欠的な
使用時に著しい。そこで、間欠的使用時にも出湯温度が
給湯設定温度Tooよりも落ち込まないように維持しつつ
水量センサ100aへの流入水量Qiが消火水量まで減
少しないようにするために、本実施例では、湯側設定温
度Tioを、例えば、55℃と選定した。
However, in step 260a, the temperature T on the hot water side is set.
The reason for setting io to 55 ° C is as follows. In the present embodiment, since the amount of water supplied from the water supply source and the amount of hot water discharged from the mixing valve 50 are the same, the mixing valve 50 branches with the amount of hot water from the hot water supply pipe 40 without changing the total amount of hot water discharged. Tube 10a
By changing the mixing ratio with the amount of water from the hot water supply, the hot water outlet temperature is maintained at the hot water supply set temperature Too.
In other words, when the same hot water temperature is maintained without changing the total hot water discharge amount, the hot water side set temperature Tio of the hot water discharged from the heat exchanger 30.
The higher the value, the smaller the amount of hot water flowing out from the heat exchanger 30. Therefore, when the total amount of hot water discharged, that is, the total amount of supplied water is small, and the temperature of the hot water discharged from the heat exchanger 30, that is, the hot water temperature on the hot side is high, the amount of hot water discharged from the heat exchanger 30, that is, the water amount sensor 100a The inflow water amount Qi of
As a result, a fire is likely to occur. Such a phenomenon can be prevented by lowering the hot water on the hot water side, but if the hot water temperature is too low, the hot water outlet temperature tends to fall below the hot water supply set temperature Too. This is remarkable in intermittent use when the inflow water amount Qi into the water amount sensor 100a is near the fire extinguishing water amount. Therefore, in order to prevent the inflow water amount Qi to the water amount sensor 100a from decreasing to the fire extinguishing water amount while maintaining the hot water outlet temperature not to fall below the hot water supply set temperature Too even during intermittent use, in the present embodiment, The set temperature Tio was selected to be 55 ° C., for example.

【0021】一方、ステップ260における判別が「Y
ES」となる場合、つまり、検出水量Qiが5リットル/分
以上の場合には、マイクロコンピュータ110が、ステ
ップ260bにて、湯側設定温度Tioを65℃にセット
し、ステップ260cにて、ステップ280〜ステップ
310における演算処理と同様の演算処理を行い、Tio
=65℃と湯側湯温Tiaとの差に応じた開度まで比例電
磁弁90を開くとともに、給湯管40からの湯と分岐管
10aからの分流水との混合比を、出湯温度Toaが給湯
設定温度Tooに一致するように混合弁50により制御す
る。
On the other hand, the determination in step 260 is "Y".
In the case of “ES”, that is, when the detected water amount Qi is 5 liters / minute or more, the microcomputer 110 sets the hot water side preset temperature Tio to 65 ° C. in step 260b, and in step 260c, 280 to 310, the same calculation process as the calculation process is performed, and Tio
The proportional solenoid valve 90 is opened up to an opening corresponding to the difference between the hot water temperature Tia of 65 ° C. and the hot water temperature Tia, and the hot water temperature Toa changes the mixing ratio of the hot water from the hot water supply pipe 40 and the branched water from the branch pipe 10a. The mixing valve 50 controls the hot water supply temperature to match the set temperature Too.

【0022】これに伴い、検出水量Qiが2リットル/分以
下に減少すると、マイクロコンピュータ110が、ステ
ップ270にて「YES」と判別し、ステップ270a
にて、湯側設定温度Tioを、ステップ260aの場合と
同様に55℃にセットし、ステップ280〜ステップ3
10における演算処理を上述と同様に行い、Tio=55
℃と湯側湯温Tiaとの差に応じた開度まで比例電磁弁9
0を開くとともに、給湯管40からの湯と分岐管10a
からの分流水との混合比を、出湯温度Toaを給湯設定温
度Tooに一致させるように混合弁50により制御する。
なお、ステップ270における判別が「NO」となる場
合において、給湯設定温度Tooの変更がなければ、マイ
クロコンピュータ110が、ステップ320にて「N
O」と判別し、ステップ260b以降の演算処理を繰り
返す。また、ステップ320における判別が「YES」
となる場合には、コンピュータプログラムがステップ2
10に戻る。
As a result, when the detected water amount Qi decreases to 2 liters / minute or less, the microcomputer 110 determines "YES" in step 270, and the step 270a.
Then, the hot water set temperature Tio is set to 55 ° C. as in the case of step 260a, and step 280 to step 3
The arithmetic processing in 10 is performed in the same manner as described above, and Tio = 55
Proportional solenoid valve 9 up to the opening according to the difference between ℃ and hot water temperature Tia
Opening 0, hot water from the hot water supply pipe 40 and the branch pipe 10a
A mixing valve 50 controls the mixing ratio with the branched water from the hot water supply temperature Toa to match the hot water supply set temperature Too.
If the determination in step 270 is “NO” and the hot water supply set temperature Too is not changed, the microcomputer 110 returns “N” in step 320.
It is determined to be "O", and the calculation processing from step 260b is repeated. Further, the determination in step 320 is “YES”.
If so, the computer program proceeds to step 2
Return to 10.

【0023】以上説明したように、給湯設定温度Tooが
47℃よりも低く検出水量Qiが5リットル/分よりも多い
場合には、湯側設定温度Tioを給湯設定温度Tooよりも
かなり高く、65℃に設定することにより、検出水量を
消火を招く水量よりも多く維持しつつ再着火時の湯側温
度の出湯温度以下への落込みを防止する。このため、消
火を伴うことなく間欠使用時の出湯温の落込みを少なく
できて使用に便利である。
As described above, when the hot water supply set temperature Too is lower than 47 ° C. and the detected water amount Qi is higher than 5 liters / minute, the hot water side set temperature Tio is considerably higher than the hot water supply set temperature Too, that is, 65 By setting the temperature at ℃, the detected water amount is kept larger than the water amount causing fire extinguishing, and the fall of the hot water temperature at the time of re-ignition below the tapping temperature is prevented. Therefore, it is convenient to use because the drop of hot water temperature during intermittent use can be reduced without extinguishing the fire.

【0024】また、給湯設定温度Tooが47℃よりも低
く検出水量Qiが5リットル/分よりも少ない場合には、湯
側設定温度Tioを55℃と低く設定することにより、湯
側設定温度Tioと給湯設定温度Tooとの差を小さくし
て、熱交換器30から流出する湯の温度を湯側設定温度
Tioから給湯設定温度Tooまで低下させるに必要な分岐
管10aから混合弁70への分流水量を減少させる。こ
のため、検出水量Qiを消火を招く量よりも多く維持し
つつ、熱交換器から流出する湯の温度を給湯設定温度T
oo以上に維持することができ、その結果、間欠使用等の
再出湯時にも、常に給湯設定温度Tooの出湯を確保でき
て使用勝手がよく、また、バーナー20におけるガスの
燃焼が停止することもない。
When the hot water supply set temperature Too is lower than 47 ° C. and the detected water amount Qi is lower than 5 liters / minute, the hot water side set temperature Tio is set low to 55 ° C. to set the hot water side set temperature Tio. Between the branch pipe 10a and the mixing valve 70 necessary to reduce the temperature difference between the hot water supply set temperature Too and the hot water supply temperature Too to decrease the temperature of the hot water flowing out of the heat exchanger 30 from the hot water set temperature Tio to the hot water supply set temperature Too. Reduce the amount of water. Therefore, the temperature of the hot water flowing out from the heat exchanger is set to the hot water supply set temperature T while maintaining the detected water amount Qi larger than the amount causing fire extinguishing.
It is possible to maintain above oo, and as a result, even when re-opening hot water such as intermittent use, it is possible to secure hot water supply at the hot water supply set temperature Too at all times, which is convenient for use, and the combustion of gas in the burner 20 may be stopped. Absent.

【0025】また、湯側設定温度Tio65℃の状態で検
出水量Qiが2リットル/分以下になった場合には、湯側設
定温度Tioを上述と同様に55℃に設定するので、検出
水量Qiが上述と同様に増大する。このため、出湯量を
相当に減少させても、検出水量Qiはマイクロコンピュ
ータ110が比例電磁弁90を閉じてバーナ20へのガ
ス供給を停止する下限給水量まで減少することがない。
なお、ステップ250における判別が「YES」となる
場合には、ステップ250aにて湯側設定温度Tioを7
5℃と高く設定することで、間欠使用時の出湯温の落込
みを防止できる。
Further, when the detected water amount Qi becomes 2 liters / minute or less in the state where the hot water set temperature Tio is 65 ° C., the hot water set temperature Tio is set to 55 ° C. in the same manner as described above. Is increased as above. Therefore, even if the hot water discharge amount is considerably reduced, the detected water amount Qi does not decrease to the lower limit water supply amount at which the microcomputer 110 closes the proportional solenoid valve 90 and stops the gas supply to the burner 20.
If the determination in step 250 is “YES”, the hot water side preset temperature Tio is set to 7 in step 250a.
By setting the temperature as high as 5 ° C, it is possible to prevent the tap water temperature from dropping during intermittent use.

【0026】次に、前記実施例の変形例を図2及び図5
を参照して説明すると、この変形例においては、図1に
て破線にて示すごとく給水温度センサ100dを付加的
に採用するとともに前記実施例にて述べたフローチャー
ト(図3及び図4参照)の一部を図5に示すごとく変更
し、この変更後のフローチャートに従うコンピュータプ
ログラム(以下、第2コンピュータプログラムという)
を前記実施例にて述べたコンピュータプログラムに代え
てマイクロコンピュータ110のROMに予め記憶する
ようにしたことにその構成上の特徴がある。給水温度セ
ンサ100dは、給水管10への給水の温度を検出し給
水温度検出信号を発生しマイクロコンピュータ110に
出力する。その他の構成は前記実施例と同様である。
Next, a modified example of the above embodiment is shown in FIGS.
In this modified example, a feed water temperature sensor 100d is additionally employed as shown by a broken line in FIG. 1 and the flow chart of the embodiment described above (see FIGS. 3 and 4). A computer program that is partially modified as shown in FIG. 5 and that follows this modified flowchart (hereinafter referred to as the second computer program)
Is characterized in that it is stored in advance in the ROM of the microcomputer 110 instead of the computer program described in the above embodiment. The water supply temperature sensor 100d detects the temperature of the water supply to the water supply pipe 10, generates a water supply temperature detection signal, and outputs the signal to the microcomputer 110. The other structure is the same as that of the above embodiment.

【0027】このように構成した本変形例において、前
記実施例と同様にステップ250における判別が「YE
S」になると、マイクロコンピュータ110が、ステッ
プ250bにて、次の数1にて示す関係式に基づき、給
湯設定温度Too及び給水温度センサ100dからの給水
温度検出信号の値(以下、給水温度tという)に応じて
湯側設定温度Tioを演算する。
In the modified example thus constructed, the determination in step 250 is "YE" as in the case of the above-described embodiment.
S ”, the microcomputer 110 determines in step 250b the hot water supply set temperature Too and the value of the water supply temperature detection signal from the water supply temperature sensor 100d (hereinafter referred to as the water supply temperature t based on the relational expression shown in the following equation 1). The hot water set temperature Tio is calculated according to the above.

【0028】[0028]

【数1】Tio=Too−0.3t+20 また、前記実施例と同様に、ステップ260における判
別が「NO」となる場合には、マイクロコンピュータ1
10が、ステップ260dにて、次の数2にて示す関係
式に基づき、給湯設定温度Too及び給水温度センサ10
0dからの給水温度tに応じて湯側設定温度Tioを演算
する。
## EQU1 ## Tio = Too-0.3t + 20 Further, similarly to the above-described embodiment, when the determination in step 260 is "NO", the microcomputer 1
10 in step 260d, based on the relational expression shown in the following equation 2, hot water supply set temperature Too and water supply temperature sensor 10
The hot-water set temperature Tio is calculated according to the supplied water temperature t from 0d.

【0029】[0029]

【数2】Tio=Too−0.3t+15 但し、数1及び数2の各関係式は、給湯設定温度Tooが
低い場合に、水量センサ100aへの流入水量が同水量
センサ100aの下限検出水量よりも低下することがな
いようにしてバーナー90の燃焼継続を維持し、間欠的
な再出湯時にも中間湯温が給湯設定温度Tooよりも低く
落ち込まないようにし、かつ給湯設定温度Tooが高い場
合に、湯側設定温度Tioが沸騰する恐れのある温度にな
らないようにするために導入されたものである。従っ
て、各関係式における給水温度tの係数「0.3」並び
に数1の関係式における定数「20」及び数2の関係式
における定数「15」は、例示にすぎず、必要に応じて
適宜変更してもよい。
[Equation 2] Too = Too−0.3t + 15 However, in the respective relational expressions of Equation 1 and Equation 2, when the hot water supply set temperature Too is low, the inflow water amount into the water amount sensor 100a is lower than the lower limit detected water amount of the water amount sensor 100a. In order to maintain the combustion of the burner 90 so that the intermediate hot water temperature does not drop below the hot water supply set temperature Too even when the hot water is intermittently discharged again, and when the hot water supply set temperature Too is high. This is introduced in order to prevent the hot water set temperature Tio from reaching a temperature at which boiling may occur. Therefore, the coefficient “0.3” of the feed water temperature t in each relational expression, the constant “20” in the relational expression of Formula 1 and the constant “15” in the relational formula of Formula 2 are merely examples, and may be appropriately changed as necessary. You may change it.

【0030】また、前記実施例と同様に、ステップ27
0における判別が「YES」となる場合には、マイクロ
コンピュータ110が、ステップ270bにて、数2の
関係式に基づき、給湯設定温度Too及び給水温度センサ
100dからの給水温度tに応じて湯側設定温度Tioを
演算する。
Further, as in the above embodiment, step 27
If the determination in 0 is "YES", the microcomputer 110 determines in step 270b based on the relational expression of Equation 2 according to the hot water supply set temperature Too and the hot water supply temperature t from the hot water supply temperature sensor 100d. The set temperature Tio is calculated.

【0031】しかして、上述のようにステップ250
b、260d又は270bにおける演算処理がなされる
と、マイクロコンピュータ110が、前記実施例と同様
にステップ280以後の演算処理を行う。
Then, as described above, step 250
When the calculation process of b, 260d, or 270b is performed, the microcomputer 110 performs the calculation process of step 280 and the subsequent steps, as in the above embodiment.

【0032】また、前記実施例と同様にステップ260
における判別が「YES」になると、マイクロコンピュ
ータ110が、ステップ260eにて、数1の関係式に
基づき、給湯設定温度Too及び給水温度センサ100d
からの給水温度tに応じて湯側設定温度Tioを演算す
る。その後は、前記実施例と同様にステップ260c以
後の演算処理を行う。その他の作動説明は前記実施例と
同様である。
Also, as in the above embodiment, step 260
If the determination is YES, the microcomputer 110 determines in step 260e the hot water supply set temperature Too and the water supply temperature sensor 100d based on the relational expression of Equation 1.
The hot water-side set temperature Tio is calculated in accordance with the supplied water temperature t from. After that, similar to the above-described embodiment, the arithmetic processing after step 260c is performed. The other operation description is the same as that of the above-mentioned embodiment.

【0033】以上説明したように、本変形例において
は、給湯設定温度Tooが47℃よりも低く検出水量Qi
が2リットル/分よりも多い場合には、湯側設定温度Tio
を、関係式Tio=Too−0.3t+20或いはTio=T
oo−0.3t+15に基づき給湯設定温度Tooよりもか
なり高く設定するので、前記実施例と同様に、間欠的な
使用時にも、熱交換器から流出する湯の温度が給湯設定
温度Tooを下回ることがなく、その結果、再出湯時の使
用勝手がよく、また、燃焼が停止することもない。
As described above, in the present modification, the hot water supply set temperature Too is lower than 47 ° C. and the detected water amount Qi.
Is more than 2 liters / minute, the hot water set temperature Tio
Is the relational expression Tio = Too−0.3t + 20 or Tio = T
Since it is set considerably higher than the hot water supply set temperature Too based on oo−0.3t + 15, the temperature of the hot water flowing out of the heat exchanger should be lower than the hot water supply set temperature Too even in the intermittent use, as in the above embodiment. As a result, it is easy to use when hot water is re-exposed, and combustion does not stop.

【0034】また、このような状態にて、検出水量Qi
が、少なく、2リットル/分以下になった場合には、湯側設
定温度Tioを関係式Tio=Too−0.3t+15に基づ
き給湯設定温度Tooよりも少し高く設定するので、前記
実施例と同様に燃焼停止となるような熱交換器の流量に
なることがなく、また、間欠的使用時において給水量が
少なかれば熱交換器から流出する湯の温度の落込みが少
なく、その結果、使用勝手が悪くなることもない。
Further, in such a state, the detected water amount Qi
However, when it is less than 2 liters / minute, the hot water set temperature Tio is set to be slightly higher than the hot water supply set temperature Too based on the relational expression Too = Too−0.3t + 15. The flow rate of the heat exchanger that would stop combustion will not occur, and if the amount of water supply is small during intermittent use, the temperature of the hot water that flows out of the heat exchanger will not drop, and as a result Does not get worse.

【0035】また、本変形例では、湯側設定温度Tioの
設定にあたり、給水温度tを考慮して、給水温度tが高
い場合には給水温度tが低い場合よりも湯側設定温度T
ioを低くすることで、給水量及び中間湯温が同じ場合に
給水温度tが高くても、混合弁50への分流水量が低給
水温度のときに比べ増大することがなく、如何なる給水
温度tであっても、出湯量が減少してバーナ20へのガ
ス供給が停止されるときの流量を同一とすることができ
る。また、給水温度tが高い場合には、給水温度tが低
い場合よりも間欠使用時の落込みが少なく、その結果、
使用勝手が悪くなることもない。
Further, in the present modification, when setting the hot water set temperature Tio, the hot water set temperature T is taken into consideration when the hot water supply temperature t is higher than when the hot water supply temperature t is low.
By lowering io, even if the feed water temperature t is high when the feed water amount and the intermediate hot water temperature are the same, the split water amount to the mixing valve 50 does not increase as compared with the low feed water temperature, and any feed water temperature t Even in this case, the flow rate when the amount of hot water discharged is reduced and the gas supply to the burner 20 is stopped can be made the same. Further, when the water supply temperature t is high, the drop during intermittent use is less than when the water supply temperature t is low, and as a result,
Usability does not deteriorate.

【0036】因みに、前記実施例及び変形例における作
用効果を確認するために、給水温度t=30℃のとき水
量センサ100aによる検出水量Qiをパラメータとし
て給湯設定温度Tooと全給水量(すなわち出湯量)Qと
の関係において消火水量がどのようになるかを実験によ
り確認したところ、図6にて示すような結果が得られ
た。即ち、前記実施例にて述べたように、給湯設定温度
Too及び熱交換器30の通水量Qiに基づき湯側設定温
度Tooを変更する場合には、消火水量が、Qi=Qa及
びQi=Qbのとき、各曲線La及びLbにより特定さ
れることが確認された。また、前記変形例にて述べたよ
うに、給湯設定温度Too、全給水量Q及び給水温度tに
基づき湯側設定温度Tooを変更する場合には、消火水量
が、Qi=Qa及びQi=Qbのとき、各曲線Lc及び
Ldにより特定されることが確認された。これらによれ
ば、従来の消火水量を特定する曲線Leに比べ、バーナ
ー20がかなり消火し難くなることが分かる。また、前
記実施例の場合に比べ、前記変形例の方がさらに消火し
難いことも分かる。
In order to confirm the function and effect in the above-mentioned embodiment and modification, the hot water supply set temperature Too and the total water supply amount (that is, the amount of hot water discharged) are set by using the water amount Qi detected by the water amount sensor 100a as a parameter when the water temperature is 30 ° C. ) When the amount of fire extinguishing water in relation to Q was confirmed by experiments, the results shown in FIG. 6 were obtained. That is, as described in the above embodiment, when the hot water set temperature Too is changed based on the hot water supply set temperature Too and the water flow rate Qi of the heat exchanger 30, the fire extinguishing water quantity is Qi = Qa and Qi = Qb. At that time, it was confirmed that each curve was specified by the curves La and Lb. Further, as described in the modification, when the hot water set temperature Too is changed based on the hot water supply set temperature Too, the total water supply amount Q and the water supply temperature t, the extinguishing water amount is Qi = Qa and Qi = Qb. At that time, it was confirmed that each curve was specified by the curves Lc and Ld. According to these, it can be seen that the burner 20 is much more difficult to extinguish the fire as compared with the conventional curve Le that specifies the amount of fire extinguishing water. Also, it can be seen that the modified example is more difficult to extinguish the fire as compared with the case of the example.

【0037】なお、前記実施例及び変形例においては、
給湯設定温度の設定にあたり温度設定器100を採用し
た例について説明したが、これに代えて、複数の給湯設
定温度をマイクロコンピュータ110のROMに予め記
憶し、これら各給湯設定温度を選択的に読みだすように
して実施してもよい。また、本発明の実施にあたって
は、混合型瞬間湯沸器に限ることなく、各種の混合型給
湯装置に本発明を適用して実施してもよい。
In the above-mentioned embodiment and modification,
Although the example in which the temperature setting device 100 is adopted for setting the hot water supply set temperature has been described, instead of this, a plurality of hot water supply set temperatures are stored in advance in the ROM of the microcomputer 110, and these hot water supply set temperatures are selectively read. You may carry out by putting it out. Further, in carrying out the present invention, the present invention is not limited to the mixed type instantaneous water heater, and the present invention may be applied to various mixed type hot water supply devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】特許請求の範囲の記載に対する対応図である。FIG. 1 is a diagram corresponding to the description of the claims.

【図2】本発明の一実施例を示す全体構成図である。FIG. 2 is an overall configuration diagram showing an embodiment of the present invention.

【図3】図2のマイクロコンピュータの作用を示すフロ
ーチャートの前段部である。
FIG. 3 is a front part of a flowchart showing the operation of the microcomputer of FIG.

【図4】同フローチャートの後段部である。FIG. 4 is a latter part of the flowchart.

【図5】前記実施例の変形例を示す要部フローチャート
である。
FIG. 5 is a main part flowchart showing a modified example of the embodiment.

【図6】前記実施例及び変形例における実験結果を示す
グラフである。
FIG. 6 is a graph showing experimental results in the example and the modification.

【符号の説明】[Explanation of symbols]

10…給水管、10a…分枝管、20…バーナー、30
…熱交換器、40…出湯管、50…混合弁、80…ガス
供給管、90…比例電磁弁、100…温度設定器、10
0a…水量センサ、100b…湯側温度センサ、100
c…出湯温度センサ、100d…給水温度センサ、11
0…マイクロコンピュータ。
10 ... Water supply pipe, 10a ... Branch pipe, 20 ... Burner, 30
... Heat exchanger, 40 ... Hot water pipe, 50 ... Mixing valve, 80 ... Gas supply pipe, 90 ... Proportional solenoid valve, 100 ... Temperature setter, 10
0a ... Water amount sensor, 100b ... Hot water temperature sensor, 100
c ... Hot water temperature sensor, 100d ... Water supply temperature sensor, 11
0 ... Microcomputer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料供給源から燃料を供給されて燃焼させ
る燃料燃焼手段と、 燃料燃焼手段からの燃料の燃焼に応じ給水管からの給水
を加熱する熱交換手段と、 前記燃料供給源から前記燃料燃焼手段への燃料の供給量
を調節する燃料供給量調節手段と、 前記給水管から分岐管を通し分流される前記給水の分流
水を前記熱交換手段からの湯と混合する混合手段と、 前記熱交換手段への前記給水の量を検出する水量検出手
段と、 前記検出給水量が所定の下限給水量以上のとき前記熱交
換手段からの湯温が湯側設定温度になるように前記燃料
供給量調節手段を制御する調節度合制御手段と、 前記混合手段からの混合湯の温度が給湯設定温度となる
ように前記混合手段の混合比を制御する混合比制御手段
とを備えて、前記混合手段で混合した湯を出湯するよう
にした混合型給湯装置において、 前記給湯設定温度が低い状態にて前記検出給水量が少な
いとき前記湯側設定温度を低くするように変更する湯側
設定温度変更手段を備えたことを特徴とする混合型給湯
装置。
1. A fuel combustion means for supplying fuel from a fuel supply source to burn the fuel, a heat exchange means for heating supply water from a water supply pipe in response to combustion of the fuel from the fuel combustion means, and the fuel supply source to the Fuel supply amount adjusting means for adjusting the amount of fuel supplied to the fuel combustion means, and mixing means for mixing the diverted water of the feed water, which is diverted from the water supply pipe through a branch pipe, with the hot water from the heat exchange means, A water amount detecting means for detecting the amount of the water supplied to the heat exchanging means, and the fuel so that the hot water temperature from the heat exchanging means becomes a hot water set temperature when the detected water supply amount is equal to or more than a predetermined lower limit water supply amount. The mixing degree control means for controlling the supply amount adjusting means, and the mixing ratio control means for controlling the mixing ratio of the mixing means such that the temperature of the mixed hot water from the mixing means reaches the hot water supply set temperature, Deliver hot water mixed by means In the mixed hot water supply device, the hot water supply side preset temperature changing means is provided for changing the hot water supply side preset temperature to be low when the detected hot water supply amount is small in a state where the hot water supply preset temperature is low. Mixing type hot water supply device.
【請求項2】前記給水の温度を検出する給水温度検出手
段を設けて、前記給湯設定温度が低い状態にて前記検出
給水量が少ないとき、前記湯側設定温度変更手段が、前
記湯側設定温度を、前記検出給水温度に応じて変更する
ようにしたことを特徴とする請求項1に記載の混合型給
湯装置。
2. A hot water supply temperature detecting means for detecting the temperature of the hot water supply is provided, and when the detected hot water supply amount is small and the hot water supply set temperature is low, the hot water side set temperature changing means sets the hot water side setting. The mixed water heater according to claim 1, wherein the temperature is changed according to the detected water supply temperature.
JP33728592A 1992-12-17 1992-12-17 Mixing type hot water feeding device Pending JPH06185750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33728592A JPH06185750A (en) 1992-12-17 1992-12-17 Mixing type hot water feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33728592A JPH06185750A (en) 1992-12-17 1992-12-17 Mixing type hot water feeding device

Publications (1)

Publication Number Publication Date
JPH06185750A true JPH06185750A (en) 1994-07-08

Family

ID=18307179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33728592A Pending JPH06185750A (en) 1992-12-17 1992-12-17 Mixing type hot water feeding device

Country Status (1)

Country Link
JP (1) JPH06185750A (en)

Similar Documents

Publication Publication Date Title
JP4350698B2 (en) Connected water heater
JPS62162847A (en) Gas instantaneous type hot water supplier
JPH06185750A (en) Mixing type hot water feeding device
JP2634624B2 (en) Hot water outlet temperature control method
JP3753161B2 (en) Water heater
JPH01247949A (en) Hot water supplying device
JPS59167645A (en) Tap-controlled hot water feeder
JP2576351B2 (en) Water heater
JP2584196B2 (en) Hot water supply control device
JP2855730B2 (en) Water heater
JP2771565B2 (en) Combustion equipment
JPS5911309Y2 (en) Mixing type water heater
JP3534837B2 (en) Water heater and ignition control method using the same
JPH02161255A (en) Heating control device for hot water supplying device
JPH0416690B2 (en)
JPH03186150A (en) Hot water supply control device
JP2000274819A (en) Hot water supplying device
JPH06265206A (en) Temperature control device for hot water feeder
JPS63213745A (en) Hot water supplier
JPH0615257Y2 (en) Cold / hot shower device
JP3067418B2 (en) Water heater control method
JPH02187558A (en) Hot water supply control method for instantaneous water heater
JPS5974425A (en) Hot water supply control device
JPS646383B2 (en)
JPH05288404A (en) Hot water feeder