JPH06182197A - Production of zeolite adsorbing and separating agent - Google Patents

Production of zeolite adsorbing and separating agent

Info

Publication number
JPH06182197A
JPH06182197A JP33887092A JP33887092A JPH06182197A JP H06182197 A JPH06182197 A JP H06182197A JP 33887092 A JP33887092 A JP 33887092A JP 33887092 A JP33887092 A JP 33887092A JP H06182197 A JPH06182197 A JP H06182197A
Authority
JP
Japan
Prior art keywords
zeolite
adsorption
adsorbing
capacity
adsorption capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33887092A
Other languages
Japanese (ja)
Inventor
Wataru Inaoka
亘 稲岡
Taizo Kawamoto
泰三 河本
Toru Nishimura
西村  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP33887092A priority Critical patent/JPH06182197A/en
Publication of JPH06182197A publication Critical patent/JPH06182197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a zeolite adsorbing and separating agent such that its adsorbing capacity is hardly lowered to the minimum possible extent at the time of baking to attain a high adsorbing capacity by a method where the zeolite is shaped by baking for at most a predetermined time. CONSTITUTION:Zeolite is baked for a residence time of at most 30 minutes. The longer the residence time is, the more the adsorbing capacity of the baked and shaped body is lowered as compared with that of the powdery state. If the baking time is too short, the water contained in the zeolite is not fully removed, resulting in a decrease in the adsorbing capacity. By setting the residence time at 10-30 minutes, the adsorbing capacity of the shaped body can be maintained at the maximum and its lowering value can be held to at most 5% as compared with that of the powdery state. By this method, the zeolite adsorbing and separating agent having a high adsorbing capacity is obtained while avoiding impairment of the adsorbing capacity of the zeolite powder as much as possible and is used as a high performance adsorbing agent in gas separation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸着分離剤として使用さ
れるゼオライト成形体、例えば窒素と酸素とを主成分と
する混合ガスから吸着法によって酸素を分離、濃縮する
などの目的で使用するのに適したゼオライト吸着分離剤
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for the purpose of separating and concentrating oxygen from a zeolite molded product used as an adsorption separator, for example, a mixed gas containing nitrogen and oxygen as main components by an adsorption method. The present invention relates to a method for producing a zeolite adsorption / separation agent suitable for.

【0002】[0002]

【従来の技術】ゼオライトは数オングストロ−ムという
分子オーダーの細孔径を有する結晶性アルミノシリケー
トであり、天然には存在しない構造を有するものも含
め、多種類のゼオライトが人工的に合成されている。こ
れら多くのゼオライトは、ゼオライト結晶中の交換可能
な陽イオンをイオン交換によって他の陽イオンと置換す
ることで、吸着分離剤,触媒などとして広く工業的に利
用されている。現在、工業的に最も多く用いられている
ゼオライトは、A型ゼオライトおよびフォージャサイト
型ゼオライトである。
2. Description of the Related Art Zeolites are crystalline aluminosilicates having a pore size in the molecular order of several angstroms, and many kinds of zeolites have been artificially synthesized, including those having a structure that does not exist in nature. . Many of these zeolites are widely industrially used as adsorption / separation agents, catalysts, etc. by replacing exchangeable cations in zeolite crystals with other cations by ion exchange. At present, the most industrially used zeolites are A type zeolite and faujasite type zeolite.

【0003】以下、A型ゼオライトを例にして説明す
る。A型ゼオライトは、通常、合成された状態ではナト
リウムイオンをその結晶中に含有し、その細孔径は4オ
ングストロームであるが、例えばカルシウムイオンと交
換し細孔径5オングストロームに調整したA型ゼオライ
トは、炭化水素混合物からn−パラフィンの選択的吸着
分離、ブタン−ブチレン留分からブタジエン製造原料の
n−ブチレンの分離、空気中からの酸素の分離濃縮等に
広く使用されている。
The A-type zeolite will be described below as an example. A-type zeolite usually contains sodium ions in its crystal in a synthesized state and its pore size is 4 angstroms. For example, A-type zeolite which is exchanged with calcium ions to adjust the pore size to 5 angstroms is It is widely used for selective adsorption separation of n-paraffin from a hydrocarbon mixture, separation of n-butylene as a butadiene production raw material from butane-butylene fraction, separation and concentration of oxygen from the air, and the like.

【0004】細孔径5オングストロームのA型ゼオライ
トは、通常次のようにして製造されている。まず合成ナ
トリウムA型ゼオライト粉末を塩化カルシウム水溶液中
でイオン交換し、0.67当量分率以上のナトリウムイ
オンをカルシウムイオンで交換して細孔径を5オングス
トロームに調整する。母液と分離後、水で洗浄する。成
形体として用いる場合には、さらに結合剤を加えて成形
する。結合剤としては、粘土系結合剤が多く使用されて
いる。さらにカルボキシメチルセルロース等の成形助剤
を加えた後、水を混合し十分混練して、押出し成形等の
通常の成形法で成形する。乾燥後、400〜700℃の
温度で焼成して、工業的使用に耐え得る物理的強度を有
する細孔径5オングストロームのA型ゼオライト吸着分
離剤が得られる。
A type zeolite having a pore size of 5 angstrom is usually produced as follows. First, the synthetic sodium A-type zeolite powder is ion-exchanged in an aqueous solution of calcium chloride, and sodium ions of 0.67 equivalent fraction or more are exchanged with calcium ions to adjust the pore diameter to 5 angstrom. After separation from the mother liquor, wash with water. When it is used as a molded product, a binder is further added for molding. Clay-based binders are often used as the binder. Further, after adding a molding aid such as carboxymethyl cellulose, water is mixed and sufficiently kneaded, and molding is carried out by a usual molding method such as extrusion molding. After drying, it is calcined at a temperature of 400 to 700 ° C. to obtain an A-type zeolite adsorption / separation agent having a pore size of 5 angstrom and physical strength that can withstand industrial use.

【0005】[0005]

【発明が解決しようとする課題】従来の技術で製造した
ゼオライト吸着分離剤の吸着容量は必ずしも高いもので
はなく、より吸着容量の大きな剤が製造できれば、吸着
剤量の低減,吸着装置の小型化,動力コストの低減が可
能となる。
The adsorption capacity of the zeolite adsorption separation agent produced by the conventional technique is not always high. If an agent having a larger adsorption capacity can be produced, the adsorbent amount can be reduced and the adsorption device can be downsized. , The power cost can be reduced.

【0006】吸着容量の増加方法としては、成形時に加
える結合剤量の低減、バインダーレス化技術の開発、含
有カチオン種等が検討されている。なかでも吸着分離剤
の製造に必須である焼成工程については、従来から焼成
により吸着容量が低下することが知られており、その改
良として例えば、アンモニアガスを含むガス流通下での
焼成、あるいは極めて低圧下での焼成方法等が提案され
ているが、いずれも工業的に有効な方法とは言えない。
As a method of increasing the adsorption capacity, reduction of the amount of binder added at the time of molding, development of a binderless technique, contained cation species and the like have been studied. Among them, regarding the calcination step which is essential for the production of the adsorption separator, it has been conventionally known that calcination reduces the adsorption capacity, and as an improvement thereof, for example, calcination under a gas flow containing ammonia gas, or extremely Although firing methods under low pressure have been proposed, none of them is industrially effective.

【0007】本発明は、ゼオライト成形体の焼成時にお
ける吸着容量の低下をできるだけ抑えた高い吸着容量を
有するゼオライト吸着分離剤を製造できる方法を提供す
るものである。
The present invention provides a method capable of producing a zeolite adsorption / separation agent having a high adsorption capacity while suppressing a decrease in adsorption capacity during firing of a zeolite compact.

【0008】[0008]

【課題を解決するための手段】従来ロータリーキルンな
どによってゼオライト成形体を焼成する際、焼成温度で
の滞在時間は1時間以上であるが、本発明者らは、この
滞在時間をより短くすることにより、吸着容量の高い製
品が得られることを見出し、本発明に至った。すなわ
ち、本発明は、ゼオライト成形体を焼成するに際し、焼
成時間を30分以下とすることによるゼオライト吸着分
離剤の製造方法、を要旨とするものである。
Means for Solving the Problems Conventionally, when a zeolite molded body is fired by a rotary kiln or the like, the residence time at the firing temperature is 1 hour or more. However, the present inventors have made it possible to shorten this residence time. The inventors have found that a product having a high adsorption capacity can be obtained, and have completed the present invention. That is, the gist of the present invention is a method for producing a zeolite adsorptive separating agent by setting the firing time to 30 minutes or less when firing a zeolite molded body.

【0009】以下、本発明を説明する。The present invention will be described below.

【0010】本発明で焼成に用いるゼオライト成形体
は、未焼成成形体あるいは焼成成形体のいずれでも良
い。未焼成成形体としては、例えば、通常の成形方法で
成形され乾燥された乾燥成形体があげられる。また、ゼ
オライトは、A型ゼオライトやフォージャサイト型ゼオ
ライトまたはこれらの混合物でもよい。焼成成形体とし
ては、既に焼成された成形体であって、イオン交換処理
等を行った成形体があげられる。含有するイオン種につ
いては、1価のカチオンでも2価のカチオンでもよい
が、2価のカチオンを用いるとその効果が大きい。その
イオン交換の方法は、粉末状態でもよいし、また、成形
体の状態でも勿論イオン交換できる。焼成方法について
は、外熱式や内熱式が考えられるが、いずれでもよい。
焼成温度は、350〜650℃が好ましく、あまり高く
するとゼオライト結晶そのものが崩壊する。焼成時にお
けるガスの流通は、必ずしも必須ではないが、焼成雰囲
気をコントロールするにはガス流通下での焼成が好まし
い。滞在時間が長いほど、焼成された成形体の吸着容量
は粉末状態の吸着容量に比べその低下が大きい。例え
ば、50分間焼成すると、10〜15%も低下してしま
う。ガスの流通量及び速度を大きくしても、吸着容量の
低下は抑えられない。また、焼成時間があまり短いと、
ゼオライトに含まれている水分が十分に除去されず、そ
のため、吸着容量も低下する結果となるが、この時間は
ガス流通量を大きくすることによりかなり短縮しうる。
滞在時間としては10分以上30分以下とすることによ
り、焼成された成形体の吸着容量を最大に保つことがで
き、その値は粉末状態の吸着容量に比べ5%以下の低下
に抑えられる。
The zeolite compact used for calcination in the present invention may be either an unsintered compact or a sintered compact. Examples of the unfired molded body include a dried molded body which is molded and dried by a usual molding method. The zeolite may be A-type zeolite, faujasite-type zeolite, or a mixture thereof. Examples of the calcined compact include a compact that has already been calcined and that has been subjected to ion exchange treatment or the like. The ionic species contained may be monovalent cations or divalent cations, but the effect is large when divalent cations are used. The ion exchange method may be in the powder state or, of course, in the state of the molded body. The firing method may be an external heating type or an internal heating type, but any method may be used.
The firing temperature is preferably 350 to 650 ° C, and if it is too high, the zeolite crystals themselves will collapse. The circulation of gas during firing is not always essential, but firing under gas circulation is preferable for controlling the firing atmosphere. The longer the residence time, the larger the adsorption capacity of the fired molded body is, compared to the adsorption capacity in the powder state. For example, firing for 50 minutes results in a reduction of 10 to 15%. Even if the gas flow rate and flow rate are increased, the decrease in adsorption capacity cannot be suppressed. Also, if the firing time is too short,
Moisture contained in the zeolite is not sufficiently removed, which results in a decrease in adsorption capacity, but this time can be considerably shortened by increasing the gas flow rate.
By setting the residence time to 10 minutes or more and 30 minutes or less, the adsorption capacity of the fired compact can be kept to the maximum, and the value can be suppressed to 5% or less of the adsorption capacity in the powder state.

【0011】[0011]

【作用】滞在時間を短くした焼成が効果的であることの
本質的な理由は明らかではないが、加熱によりゼオライ
ト結晶から放出された水がつくる高温下での水蒸気雰囲
気にゼオライト結晶がさらされる時間が短いことによ
り、吸着容量の低下が非常に小さくなるものとと思われ
る。
[Effect] Although the essential reason why calcination with a shorter residence time is effective is not clear, the time during which zeolite crystals are exposed to the steam atmosphere at high temperature created by water released from the zeolite crystals by heating. It is considered that the decrease of the adsorption capacity is very small due to the short period.

【0012】[0012]

【発明の効果】以上の説明から明らかなように、本発明
の方法によれば、ゼオライト粉末が有している吸着容量
をできるだけ損うことなく、高い吸着容量を有したゼオ
ライト吸着分離剤が得られ、ガス分離などにおける高性
能な吸着剤として使用できる。
As is apparent from the above description, according to the method of the present invention, a zeolite adsorption separator having a high adsorption capacity can be obtained without impairing the adsorption capacity of the zeolite powder as much as possible. It can be used as a high-performance adsorbent in gas separation.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0014】以下の実施例および比較例における従来法
によるゼオライト吸着分離剤(以下Aという)と本発明
による吸着分離剤(以下Bという)との吸着特性をまと
めると以下のとおりである。
The adsorption characteristics of the conventional zeolite adsorption separator (hereinafter referred to as A) and the adsorption separator according to the present invention (hereinafter referred to as B) in the following Examples and Comparative Examples are summarized below.

【0015】AとBの窒素吸着容量を静的吸着容量測定
方法にしたがって測定した結果では、−10℃,700
mmHgの条件で本発明の吸着分離剤Bの窒素吸着容量
が従来法の吸着分離剤Aのそれよりも約10%以上も大
きい。
The nitrogen adsorption capacities of A and B were measured according to the static adsorption capacity measuring method.
Under the condition of mmHg, the nitrogen adsorption capacity of the adsorption separator B of the present invention is about 10% or more larger than that of the adsorption separator A of the conventional method.

【0016】さらに動的特性を動的評価法にしたがっ
て、測定した結果では、93vol%酸素濃度の製品酸
素ガス取出量は、本発明の吸着分離剤Bでは従来法の吸
着分離剤Aに比べて10%近くの増加が認められた。製
品酸素取出量の増加はすなわち酸素発生動力原単位の低
下を意味しており、従来法の吸着分離剤Aよりも本発明
の吸着分離剤Bは約10%の酸素発生動力原単位の削減
が達成できる。また、本発明の吸着分離剤Bの吸着特性
を生かすPSAシステムの改良、例えば吸着圧力や吸着
時間等の操作条件を最適化することにより、さらなる酸
素発生動力原単位の低減が期待できる。
Further, the dynamic characteristics were measured according to the dynamic evaluation method. As a result, the amount of product oxygen gas taken out at 93 vol% oxygen concentration was higher in the adsorption separator B of the present invention than in the adsorption separator A of the conventional method. An increase of nearly 10% was observed. An increase in the amount of product oxygen taken out means a decrease in the oxygen generation power consumption unit, and the adsorption separation agent B of the present invention can reduce the oxygen generation power consumption unit by about 10% compared to the conventional adsorption separation agent A. Can be achieved. Further, by further improving the PSA system that makes use of the adsorption characteristics of the adsorption / separation agent B of the present invention, for example, optimizing operating conditions such as adsorption pressure and adsorption time, further reduction of the oxygen generation power consumption rate can be expected.

【0017】以上、本発明による吸着分離剤は、従来の
吸着分離剤に比べて吸脱着処理動力原単位を低減する上
で著しい効果のあることが分る。
From the above, it can be seen that the adsorption / separation agent according to the present invention has a remarkable effect in reducing the power consumption unit of adsorption / desorption treatment as compared with the conventional adsorption / separation agent.

【0018】実施例および比較例における各測定方法は
以下の通りである。
The measuring methods in the examples and comparative examples are as follows.

【0019】<静的吸着容量測定方法>静的吸着容量の
測定は、容量法で行った。前処理条件としては、0.0
01mmHg以下の圧力下、350℃で2時間活性化を
行った。窒素ガスを導入後、吸着温度及び吸着圧力をそ
れぞれ−10℃,700mmHgに保ち、十分平衡に達
した後に吸着容量(Ncc/g)を測定した。
<Static adsorption capacity measuring method> The static adsorption capacity was measured by the capacitance method. The pretreatment condition is 0.0
The activation was performed at 350 ° C. for 2 hours under a pressure of 01 mmHg or less. After introducing nitrogen gas, the adsorption temperature and the adsorption pressure were maintained at −10 ° C. and 700 mmHg, respectively, and after sufficient equilibrium was reached, the adsorption capacity (Ncc / g) was measured.

【0020】<動的評価方法>第1図に示した動的評価
装置を用いて製品酸素ガスの取出量とその酸素濃度を以
下の操作手順にしたがって求めた。操作温度は25℃と
した。
<Dynamic Evaluation Method> Using the dynamic evaluation apparatus shown in FIG. 1, the amount of product oxygen gas taken out and its oxygen concentration were determined according to the following operating procedure. The operating temperature was 25 ° C.

【0021】吸着塔(7)にゼオライト吸着分離剤を約
1300g充填する。吸着工程時には、ブロワー(1)
で0.2kgf/cm2Gに圧縮した空気を電磁弁
(2,4,5)を開にして吸着塔内を流通させる。その
時の流量は流量計(9)で調整した。再生工程時には電
磁弁(2,4,5)は閉じ、電磁弁(3)を開にして真
空ポンプ(12)で減圧した。この時の到達圧力180
mmHgは一定にした。復圧工程時には電磁弁(3)は
閉じ、電磁弁(4)を開にして蓄圧塔(8)内の製品酸
素ガスで吸着塔内を復圧する。各工程の時間は1分間と
し、電磁弁の作動はシーケンサーにより制御した。製品
酸素ガスの酸素濃度は、その値が定常になった後、酸素
濃度計(10)で読取り、積算流量計(11)の値から
正確な製品酸素ガスの取出量を算出した。圧力は圧力計
(8)で読取った。
The adsorption tower (7) is filled with about 1300 g of the zeolite adsorption separating agent. Blower (1) during adsorption process
The air compressed to 0.2 kgf / cm 2 G is circulated in the adsorption tower by opening the solenoid valves (2, 4, 5). The flow rate at that time was adjusted by a flow meter (9). During the regeneration process, the solenoid valves (2, 4, 5) were closed, the solenoid valve (3) was opened, and the pressure was reduced by the vacuum pump (12). Ultimate pressure at this time 180
mmHg was kept constant. During the pressure recovery step, the solenoid valve (3) is closed, the solenoid valve (4) is opened, and the product oxygen gas in the pressure accumulator (8) is used to restore the pressure in the adsorption tower. The time of each step was 1 minute, and the operation of the solenoid valve was controlled by a sequencer. The oxygen concentration of the product oxygen gas was read by the oxygen concentration meter (10) after the value became steady, and the accurate amount of product oxygen gas taken out was calculated from the value of the integrated flow meter (11). The pressure was read with a pressure gauge (8).

【0022】実施例1 市販のナトリウムA型ゼオライト(ゼオラムA4、東ソ
ー株式会社製)の粉末(約100メッシュ以下)100
重量部、カオリン粘土系結合剤25重量部、有機系成形
助剤(カルボキシメチルセルロースナトリウム塩)3重
量部を混合し、更に水を加えて混練し、通常の押出し成
形機を使用して、内径1.5mmのダイスを通過させて
押出し成形し、長さ約5〜15mmの成形体を得た。こ
の成形体を通風乾燥器中110℃の温度で、成形体の水
分含有率が25重量%以下になるまで乾燥した。次に露
点−59℃の空気を流しながら600℃の炉中で2時間
焼成した。冷却後、この焼成体500gを水和し、1.
6mol/lの水酸化ナトリウム水溶液2.5リットル
に入れ、40℃で1時間熟成を行い、更に80℃に3時
間保ってバインダーの結晶化を行い、バインダーレスゼ
オライト成形体にした。この成形体300gを内径60
mm,長さ200mmのカラムに充填し、1Nの塩化カ
ルシウム水溶液を80℃に加温してカラム下部より上部
へ4.2cc/分の流速で流通した。流通時間は12時
間であった。塩化カルシウム水溶液流通終了後、カラム
内の塩化カルシウム水溶液を液抜きし、蒸留水で洗浄し
た。その後、成形体の水分含有率が25重量%以下にな
るまで乾燥した。乾燥を終えた成形体のカルシウムイオ
ン交換率を原子吸光光度法によって、測定した結果、A
型ゼオライト結晶に含まれるアルミニウム原子との比率
(2×Ca/Al)は0.94であった。この様にして
調製したサンプルを以下A型ゼオライトでは「サンプル
−1」とよぶ。
Example 1 Commercially available sodium A-type zeolite (Zeorum A4, manufactured by Tosoh Corporation) powder (about 100 mesh or less) 100
Parts by weight, 25 parts by weight of a kaolin clay-based binder, and 3 parts by weight of an organic molding aid (sodium carboxymethyl cellulose salt) are mixed, and water is further added to the mixture to knead. It was passed through a 0.5 mm die and extrusion molded to obtain a molded body having a length of about 5 to 15 mm. The molded body was dried in a ventilation dryer at a temperature of 110 ° C. until the moisture content of the molded body became 25% by weight or less. Next, it was baked for 2 hours in a furnace at 600 ° C while flowing air having a dew point of -59 ° C. After cooling, 500 g of this fired product was hydrated to
The mixture was placed in 2.5 liters of a 6 mol / l sodium hydroxide aqueous solution, aged at 40 ° C. for 1 hour, and further kept at 80 ° C. for 3 hours to crystallize the binder to obtain a binderless zeolite compact. 300 g of this molded body has an inner diameter of 60
A column having a size of mm and a length of 200 mm was packed, a 1N calcium chloride aqueous solution was heated to 80 ° C., and was flown from the lower part of the column to the upper part at a flow rate of 4.2 cc / min. The distribution time was 12 hours. After the circulation of the aqueous calcium chloride solution was completed, the aqueous calcium chloride solution in the column was drained and washed with distilled water. Then, the molded body was dried until the water content was 25% by weight or less. As a result of measuring the calcium ion exchange rate of the dried molded body by the atomic absorption photometry,
The ratio with the aluminum atoms contained in the type zeolite crystals (2 × Ca / Al) was 0.94. The sample prepared in this manner is hereinafter referred to as "Sample-1" for A-type zeolite.

【0023】「サンプル−1」を吸着分離剤として製品
化するための活性化を以下の手順で行った。「サンプル
−1」約850ccを内径40mm,長さ670mmの
管状炉に充填し、400℃の温度で20分間焼成し活性
化した。このようにして調製した吸着分離剤の窒素吸着
容量を静的吸着容量測定方法に基づいて測定した結果、
31.5Ncc/gであった。また、動的性能を動的評
価方法に基づいて測定した結果、64.7Nl/kg・
hであった。
Activation for commercializing "Sample-1" as an adsorptive separation agent was carried out by the following procedure. About 850 cc of "Sample-1" was charged into a tubular furnace having an inner diameter of 40 mm and a length of 670 mm, and fired at a temperature of 400 ° C for 20 minutes to be activated. As a result of measuring the nitrogen adsorption capacity of the adsorption separating agent prepared in this way based on the static adsorption capacity measuring method,
It was 31.5 Ncc / g. Moreover, as a result of measuring the dynamic performance based on the dynamic evaluation method, 64.7 Nl / kg.
It was h.

【0024】実施例2 実施例1において、「サンプル−1」の活性化の焼成時
間を10分間とした以外は、実施例1においてと同じ操
作を行った。この様にして調製した吸着分離剤の窒素吸
着容量を静的吸着容量測定方法に基づいて測定した結
果、31.9Ncc/gであった。また、動的性能を動
的評価方法に基づいて測定した結果、65.5Nl/k
g・hであった。
Example 2 The same operation as in Example 1 was carried out except that the firing time for activation of "Sample-1" was changed to 10 minutes. The nitrogen adsorption capacity of the thus-prepared adsorption separating agent was measured based on the static adsorption capacity measuring method, and as a result, it was 31.9 Ncc / g. In addition, as a result of measuring the dynamic performance based on the dynamic evaluation method, 65.5 Nl / k
It was gh.

【0025】実施例3 ナトリウムA型ゼオライトの代わりにナトリウムX型ゼ
オライト(ゼオラムF9、東ソー株式会社製)を用い、
実施例1と同様に造粒成形し、乾燥し、焼成した。冷却
後、この焼成体500gを水和し、1.6mol/lの
水酸化ナトリウム水溶液2.5リットルに入れ、40℃
で1時間熟成し、さらに90℃に6時間保ってバインダ
ーの結晶化を行い、バインダーレスゼオライト成形体に
した。実施例1と同様にCaイオン交換を行い、X型ゼ
オライト結晶に含まれるアルミニウム原子との比率(2
×Ca/Al)は0.95であった。この様にして調製
したサンプルを以下「サンプル−2」とよぶ。
Example 3 Sodium X type zeolite (Zeorum F9, manufactured by Tosoh Corporation) was used in place of sodium A type zeolite.
It was granulated, dried and fired as in Example 1. After cooling, 500 g of this fired product was hydrated and put in 2.5 liters of a 1.6 mol / l sodium hydroxide aqueous solution at 40 ° C.
The mixture was aged for 1 hour and kept at 90 ° C. for 6 hours to crystallize the binder to obtain a binderless zeolite compact. Ca ion exchange was carried out in the same manner as in Example 1, and the ratio with the aluminum atoms contained in the X-type zeolite crystal (2
XCa / Al) was 0.95. The sample thus prepared is hereinafter referred to as "sample-2".

【0026】「サンプル−2」を吸着分離剤として製品
化するための活性化を以下の手順で行った。「サンプル
−2」約850ccを内径40mm,長さ670mmの
管状炉に充填し、400℃の温度で20分間焼成し活性
化した。この様にして調製した吸着分離剤の窒素吸着容
量を静的吸着容量測定方法に基づいて測定した結果、3
3.5Ncc/gであった。また、動的性能を動的評価
方法に基づいて測定した結果、66.3Nl/kg・h
であった。
Activation for commercializing "Sample-2" as an adsorptive separating agent was carried out by the following procedure. About 850 cc of "Sample-2" was filled in a tubular furnace having an inner diameter of 40 mm and a length of 670 mm, and fired at a temperature of 400 ° C for 20 minutes to be activated. The nitrogen adsorption capacity of the thus-prepared adsorption separation agent was measured based on the static adsorption capacity measurement method, and as a result, 3
It was 3.5 Ncc / g. In addition, as a result of measuring the dynamic performance based on the dynamic evaluation method, 66.3 Nl / kg · h
Met.

【0027】比較例1 実施例1において、「サンプル−1」の活性化の焼成時
間を50分間とした以外は、実施例1と同じ操作を行っ
た。この様にして調製した吸着分離剤の窒素吸着容量を
静的吸着容量測定方法に基づいて測定した結果、28.
5Ncc/gであった。また、動的性能を動的評価方法
に基づいて測定した結果、60.0Nl/kg・hであ
った。
Comparative Example 1 The same operation as in Example 1 was carried out except that the firing time for activation of "Sample-1" was changed to 50 minutes. 28. As a result of measuring the nitrogen adsorption capacity of the adsorption separating agent prepared in this manner based on the static adsorption capacity measuring method, 28.
It was 5 Ncc / g. In addition, the result of measuring the dynamic performance based on the dynamic evaluation method was 60.0 Nl / kg · h.

【0028】比較例2 実施例1において、「サンプル−1」の活性化の焼成時
間を120分間とした以外は、実施例1と同じ操作を行
った。この様にして調製した吸着分離剤の窒素吸着容量
を静的吸着容量測定方法に基づいて測定した結果、2
7.1Ncc/gであった。また、動的性能を動的評価
方法に基づいて測定した結果、56.6Nl/kg・h
であった。
Comparative Example 2 The same operation as in Example 1 was carried out except that the firing time for activation of "Sample-1" was 120 minutes. The nitrogen adsorption capacity of the thus-prepared adsorption separation agent was measured based on the static adsorption capacity measurement method.
It was 7.1 Ncc / g. Moreover, as a result of measuring the dynamic performance based on the dynamic evaluation method, 56.6 Nl / kg · h
Met.

【0029】比較例3 実施例3において、「サンプル−2」の活性化の焼成時
間を60分間とした以外は、実施例3と同じ操作を行っ
た。この様にして調製した吸着分離剤の窒素吸着容量を
静的吸着容量測定方法に基づいて測定した結果、29.
8Ncc/gであった。また、動的性能を動的評価方法
に基づいて測定した結果、61.0Nl/kg・hであ
った。
Comparative Example 3 The same operation as in Example 3 was carried out except that the firing time for activation of "Sample-2" was changed to 60 minutes. 29. As a result of measuring the nitrogen adsorption capacity of the adsorption separating agent thus prepared based on the static adsorption capacity measuring method, 29.
It was 8 Ncc / g. In addition, the result of measuring the dynamic performance based on the dynamic evaluation method was 61.0 Nl / kg · h.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例でえられた吸着分離剤の動
的評価に使用した装置の系統図である。
FIG. 1 is a systematic diagram of an apparatus used for dynamic evaluation of adsorption separation agents obtained in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ブロアー 2〜5:電磁弁 6:圧力計 7:吸着塔 8:蓄圧塔 9:流量計 10:酸素濃度計 11:積算流量計 12:真空ポンプ 1: Blower 2-5: Solenoid valve 6: Pressure gauge 7: Adsorption tower 8: Accumulation tower 9: Flow meter 10: Oxygen concentration meter 11: Integrated flow meter 12: Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ゼオライトを焼成するに際し、30分以下
の滞在時間で焼成することを特徴とするゼオライト吸着
分離剤の製造方法。
1. A method for producing a zeolite adsorption separator, which comprises firing the zeolite for a residence time of 30 minutes or less.
JP33887092A 1992-12-18 1992-12-18 Production of zeolite adsorbing and separating agent Pending JPH06182197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33887092A JPH06182197A (en) 1992-12-18 1992-12-18 Production of zeolite adsorbing and separating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33887092A JPH06182197A (en) 1992-12-18 1992-12-18 Production of zeolite adsorbing and separating agent

Publications (1)

Publication Number Publication Date
JPH06182197A true JPH06182197A (en) 1994-07-05

Family

ID=18322171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33887092A Pending JPH06182197A (en) 1992-12-18 1992-12-18 Production of zeolite adsorbing and separating agent

Country Status (1)

Country Link
JP (1) JPH06182197A (en)

Similar Documents

Publication Publication Date Title
KR100480219B1 (en) Argon/oxygen selective x-zeolite
US4481018A (en) Polyvalent ion exchanged adsorbent for air separation
US4544378A (en) Nitrogen adsorption process
US6284021B1 (en) Composite adsorbent beads for adsorption process
JP2001526172A (en) Crystalline titanium molecular sieve zeolite with small pores and its use in gas separation processes
CN1012799B (en) Process for separating nitrogen from mixtures
KR19990014065A (en) Improved Coagulant Adsorbents for the Non-Cryogenic Separation of Industrial Gases, Methods for Making and Uses thereof
WO2008000380A1 (en) Process and zeolitic materials for the separation of gases
JP3978060B2 (en) Preparation method of molecular sieve adsorbent for selective adsorption of argon
US5562756A (en) Li-exchanged low silica EMT-containing metallosilicates
US3078638A (en) Carbon dioxide removal from vapor mixtures
US6030916A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing nitrogen from a gaseous mixture
JP2002003215A (en) Binderless molded body of high purity low silica x type zeolite and method for separating gas using the same
US6087289A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing oxygen from a gaseous mixture
AU594436B2 (en) Process for preparation of molded zeolite body, adsorbing separating agent and oxygen-separating method
JPH06182197A (en) Production of zeolite adsorbing and separating agent
JP3143920B2 (en) Method for producing zeolite adsorbing and separating agent
JPH062575B2 (en) Clinoptilolite-type zeolite and method for producing the same
EP0490037A1 (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JP3772412B2 (en) Low-abrasion zeolite bead molded body and method for producing the same
JP2639562B2 (en) Zeolite adsorbent for hydrogen PSA and method for producing the same
JPH05155612A (en) Ion-exchange method of zeolite
JPS62278118A (en) Production of formed zeolite
JPH0141380B2 (en)
JPH11309370A (en) Shaped and burned product of low silica x-type zeolite and adsorbent of lithium-exchanged low silica x-type zeolite shaped and fired product