JPH06176769A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH06176769A
JPH06176769A JP4352541A JP35254192A JPH06176769A JP H06176769 A JPH06176769 A JP H06176769A JP 4352541 A JP4352541 A JP 4352541A JP 35254192 A JP35254192 A JP 35254192A JP H06176769 A JPH06176769 A JP H06176769A
Authority
JP
Japan
Prior art keywords
dimethoxyethane
electrolyte
organic
battery
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4352541A
Other languages
Japanese (ja)
Inventor
Toshiyuki Edamoto
俊之 枝元
Fusaji Kita
房次 喜多
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4352541A priority Critical patent/JPH06176769A/en
Publication of JPH06176769A publication Critical patent/JPH06176769A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an organic electrolyte battery of excellent low temperature heavy load discharging characteristic by preventing large reduction in discharging voltage at the early stage of low temperature heavy load discharging, even when an electrolyte of high degree of dissociation, which has strong interaction with 1,2-dimethoxyethane, is used. CONSTITUTION:A blended solvent of at least three kinds of solvents among 1,2-dimethoxyethane, annular ether such as tetrahydrofuran, and carbonate solvent such as propylene carbonate, is used as an organic solvent of an organic electrolyte. Organic salt consisting of anion having at least one CnF2n+1SO2 (n>=0) radical and alkaline metal or cation of alkaline earth metal, the mol solution heat of which to the 1,2-dimethoxyethane is no less than +40kJ/mol, is dissolved in the blended solvent, as an electrolyte, and by specifying the volume ratio of the 1,2-dimethoxyethane/annular ether as 0.9-10, an organic electrolyte is adjusted, and an organic electrolyte battery is manufactured by using this organic electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液電池に係
り、さらに詳しくはその有機電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery, and more particularly to improvement of the organic electrolyte solution.

【0002】[0002]

【従来の技術】一般に有機電解液(以下、電池を示す場
合を除き、単に電解液という)に多用されている1,2
−ジメトキシエタンは、電解液中のカチオンと強く溶媒
和し、カチオンの移動速度を高める作用がある。
2. Description of the Related Art In general, 1,2 are often used in organic electrolytes (hereinafter simply referred to as electrolytes unless otherwise indicated as batteries).
-Dimethoxyethane strongly solvates cations in the electrolytic solution, and has the action of increasing the migration rate of cations.

【0003】上記電解液中のカチオンは電解質として使
用されているアルカリ金属塩またはアルカリ土類金属塩
の解離によって供給され、一般に解離度の高い塩を電解
質として使用した電解液の方が良好な放電特性をもたら
す。
The cations in the electrolytic solution are supplied by the dissociation of the alkali metal salt or alkaline earth metal salt used as the electrolyte, and in general, the electrolytic solution using a salt having a high dissociation degree as the electrolyte provides better discharge. Bring characteristics.

【0004】しかし、解離度の高い電解質を1,2−ジ
メトキシエタンとプロピレンカーボネートのようなカー
ボネート系溶媒との混合溶媒に溶解させた電解液は、常
温においては良好な電池特性を示すものの、1,2−ジ
メトキシエタンとカチオンとの相互作用が強すぎるため
にカチオンに強く配位し、低温においては電解質が析出
してしまい、特に放電初期に放電電圧が大きく低下する
など、低温時の放電特性を著しく低下させるという問題
があった。
However, an electrolytic solution prepared by dissolving an electrolyte having a high dissociation degree in a mixed solvent of 1,2-dimethoxyethane and a carbonate-based solvent such as propylene carbonate shows good battery characteristics at room temperature. , 2-dimethoxyethane interacts with cations too strongly to be strongly coordinated with cations, resulting in electrolyte precipitation at low temperatures, resulting in a large drop in discharge voltage especially at the beginning of discharge. There was a problem of significantly reducing

【0005】[0005]

【発明が解決しようとする課題】本発明は、1,2−ジ
メトキシエタンとの相互作用が大きい電解質を含む電解
液を使用した電池が、低温重負荷放電において放電初期
に大きな放電電圧の低下を引き起こすという問題点を解
決し、低温重負荷放電特性の優れた有機電解液電池を提
供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, a battery using an electrolytic solution containing an electrolyte having a large interaction with 1,2-dimethoxyethane shows a large drop in discharge voltage at the initial stage of discharge in low temperature heavy load discharge. It is an object of the present invention to solve the problem of causing and to provide an organic electrolyte battery having excellent low temperature heavy load discharge characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、電解液の有機
溶媒として1,2−ジメトキシエタンと環状エーテルと
カーボネート系溶媒との3種以上を含む混合溶媒を用
い、これにCn 2n+1SO2 (n≧0)基を1個以上有
するアニオンとアルカリ金属またはアルカリ土類金属の
カチオンとで形成され、1,2−ジメトキシエタンに対
するモル溶解熱が+40kJ/mol以上の有機塩を電
解質として溶解させ、かつ1,2−ジメトキシエタンと
環状エーテルとの体積比(1,2−ジメトキシエタン/
環状エーテルの体積比)を0.9〜10に特定すること
によって、上記目的を達成したものである。
SUMMARY OF THE INVENTION The present invention, using a mixed solvent containing three or more 1,2-dimethoxyethane and cyclic ethers and carbonate-based solvent as the organic solvent of the electrolyte solution, to which C n F 2n An organic salt formed of an anion having one or more +1 SO 2 (n ≧ 0) groups and a cation of an alkali metal or an alkaline earth metal and having a heat of molar dissolution for 1,2-dimethoxyethane of +40 kJ / mol or more. It is dissolved as an electrolyte, and the volume ratio of 1,2-dimethoxyethane and cyclic ether (1,2-dimethoxyethane /
The above object was achieved by specifying the volume ratio of the cyclic ether) to 0.9 to 10.

【0007】上記の1,2−ジメトキシエタンに対する
モル溶解熱が40kJ/mol以上の有機塩とは、Cn
2n+1SO2 (n≧0)基を1個以上有するアニオンと
アルカリ金属またはアルカリ土類金属のカチオンとで形
成され、前記のように解離度が高く、1,2−ジメトキ
シエタンとの相互作用が大きい電解質をいい、この1,
2−ジメトキシエタンに対するモル溶解熱が+40kJ
/mol以上の有機塩は有機溶媒中での解離度が高く、
電極反応速度が大きいので、電池の放電時の電圧を高く
させるという特性を有する。
The above-mentioned organic salt having a molar heat of solution of 40 kJ / mol or more with respect to 1,2-dimethoxyethane means C n
It is formed of an anion having at least one F 2n + 1 SO 2 (n ≧ 0) group and an cation of an alkali metal or an alkaline earth metal, has a high dissociation degree as described above, and is formed with 1,2-dimethoxyethane. An electrolyte that has a large interaction.
Molar heat of dissolution for 2-dimethoxyethane is +40 kJ
/ Mol or more of organic salt has a high degree of dissociation in an organic solvent,
Since the electrode reaction rate is high, it has the property of increasing the voltage during discharge of the battery.

【0008】この解離度が高く、1,2−ジメトキシエ
タンとの相互作用が大きい電解質は、前記したように
1,2−ジメトキシエタンとカーボネート系溶媒との混
合溶媒系では低温重負荷放電での放電初期に放電電圧を
大きく低下させるが、本発明では、上記1,2−ジメト
キシエタンとカーボネート系溶媒に加えて、テトラヒド
ロフランのような電解質との相互作用が比較的小さく、
かつ低粘度の環状エーテルを用いることによって、電解
質と1,2−ジメトキシエタンとの相互作用を抑制し、
低温重負荷放電での放電初期の放電電圧の低下を防止し
て、低温重負荷放電特性を向上させることに到達し得た
のである。
As described above, the electrolyte having a high degree of dissociation and a large interaction with 1,2-dimethoxyethane is used in a mixed solvent system of 1,2-dimethoxyethane and a carbonate type solvent at low temperature heavy load discharge. Although the discharge voltage is greatly reduced at the initial stage of discharge, in the present invention, in addition to the 1,2-dimethoxyethane and the carbonate-based solvent, the interaction with an electrolyte such as tetrahydrofuran is relatively small,
By using a low-viscosity cyclic ether, the interaction between the electrolyte and 1,2-dimethoxyethane is suppressed,
It was possible to prevent the drop of the discharge voltage in the initial stage of discharge in low temperature heavy load discharge and improve the low temperature heavy load discharge characteristics.

【0009】上記の1,2−ジメトキシエタンに対する
モル溶解熱が+40kJ/mol以上の電解質の具体例
としては、たとえばLiFSO3 (44kJ/mo
l)、Li(CF3 SO2 2 N(69kJ/mo
l)、Li(CF3 SO2 3 C(70kJ/mol)
などのリチウム塩や、同様のナトリウム塩、カリウム
塩、さらには同様のアルカリ土類金属塩などが挙げられ
る。なお、括弧内は1,2−ジメトキシエタンに対する
モル溶解熱を示す。
Specific examples of the electrolyte having a molar heat of dissolution for 1,2-dimethoxyethane of not less than +40 kJ / mol are, for example, LiFSO 3 (44 kJ / mo).
l), Li (CF 3 SO 2 ) 2 N (69 kJ / mo
l), Li (CF 3 SO 2 ) 3 C (70 kJ / mol)
And lithium salts, similar sodium salts, potassium salts, and similar alkaline earth metal salts. In the parentheses, the heat of molar dissolution for 1,2-dimethoxyethane is shown.

【0010】これに対して、1,2−ジメトキシエタン
に対するモル溶解熱が+40kJ/mol未満のものと
しては、LiCF3 SO3 、LiC4 9 SO3 、Li
817SO3 などがある。
On the other hand, if the molar heat of dissolution for 1,2-dimethoxyethane is less than +40 kJ / mol, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li
There are C 8 F 17 SO 3 and the like.

【0011】上記の1,2−ジメトキシエタンに対する
モル溶解熱が+40kJ/mol以上の電解質は、1,
2−ジメトキシエタンに対するモル溶解熱が+40kJ
/mol未満の電解質に比べて、有機溶媒に溶解させた
時に解離度が高く、これを用いた電解液中では電極反応
速度が大きくなり、前記したように電池の閉路電圧特性
を向上させる。
The above electrolyte having a molar heat of solution of +40 kJ / mol or more for 1,2-dimethoxyethane is
Molar heat of dissolution for 2-dimethoxyethane is +40 kJ
The dissociation degree is high when dissolved in an organic solvent as compared with an electrolyte of less than / mol, and the electrode reaction rate increases in the electrolytic solution using the same, thus improving the closed-circuit voltage characteristics of the battery.

【0012】上記の1,2−ジメトキシエタンに対する
モル溶解熱が+40kJ/mol以上の電解質は、Cn
2n+1SO2 (n≧0)基を1個以上有するアニオンと
アルカリ金属またはアルカリ土類金属のカチオンとで形
成されるが、この場合におけるアルカリ金属としては、
たとえばリチウム、ナトリウム、カリウムなどが挙げら
れ、アルカリ土類金属としては、たとえばマグネシウ
ム、カルシウムなどが挙げられる。
The above electrolyte having a molar heat of dissolution for 1,2-dimethoxyethane of not less than +40 kJ / mol has a C n
It is formed by an anion having at least one F 2n + 1 SO 2 (n ≧ 0) group and an alkali metal or alkaline earth metal cation. In this case, the alkali metal is
Examples thereof include lithium, sodium and potassium, and examples of the alkaline earth metal include magnesium and calcium.

【0013】そして、上記Cn 2n+1SO2 (n≧0)
におけるnは大きいほど電池の過放電時の発火、引火に
対する安全性が高くなるが、あまりにもnが大きくなり
すぎると1,2−ジメトキシエタンに対するモル溶解熱
が小さくなるので、nは8以下、特に4以下であること
が好ましい。
The above C n F 2n + 1 SO 2 (n ≧ 0)
The larger the value of n in is, the higher the safety against ignition and ignition at the time of overdischarging of the battery is. However, if n is too large, the heat of molar dissolution in 1,2-dimethoxyethane becomes small, so n is 8 or less, It is particularly preferably 4 or less.

【0014】電解液の調製にあたり、環状エーテルとし
ては、たとえばテトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,3−ジオキソラン、4−メチル−
1,3−ジオキソランなどが挙げられ、なかでもテトラ
ヒドロフランが特に効果が優れている。また、カーボネ
ート系溶媒としては、たとえばプロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ジ
エチルカーボネート、ジメチルカーボネートなどが挙げ
られる。
In preparing the electrolytic solution, examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-
1,3-dioxolane and the like are mentioned, and among them, tetrahydrofuran is particularly effective. Examples of the carbonate-based solvent include propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate and the like.

【0015】これらの溶媒の使用割合は、1,2−ジメ
トキシエタンと環状エーテルはそれらの体積比で規定
し、カーボネート系溶媒は全溶媒中に占める体積%で規
定することが好ましい。
The use ratio of these solvents is preferably defined by the volume ratio of 1,2-dimethoxyethane and cyclic ether, and the carbonate solvent is preferably defined by the volume% of the total solvent.

【0016】つまり、1,2−ジメトキシエタン/環状
エーテルの体積比は0.9〜10であることが必要であ
り、特に1〜5の範囲が好ましい。これは、1,2−ジ
メトキシエタンに対して一定以上の割合で環状エーテル
を加えることによって低温での電解質の析出を防止し、
放電初期の放電電圧の低下を抑制し得るからであり、
1,2−ジメトキシエタン/環状エーテルの体積比が1
0より大きくなると1,2−ジメトキシエタンに対する
環状エーテルの使用量が少なくなって環状エーテルの添
加効果が充分に発揮されなくなり、1,2−ジメトキシ
エタン/環状エーテルの体積比が0.9より小さい場合
は環状エーテルの使用量が多くなりすぎて電池の貯蔵性
が悪くなる。
That is, the volume ratio of 1,2-dimethoxyethane / cyclic ether needs to be 0.9 to 10, and the range of 1 to 5 is particularly preferable. This is to prevent the precipitation of the electrolyte at low temperature by adding a cyclic ether at a certain ratio or more with respect to 1,2-dimethoxyethane,
This is because it is possible to suppress a decrease in the discharge voltage at the beginning of discharge,
The volume ratio of 1,2-dimethoxyethane / cyclic ether is 1
When it is greater than 0, the amount of cyclic ether used relative to 1,2-dimethoxyethane is small and the effect of adding cyclic ether is not sufficiently exhibited, and the volume ratio of 1,2-dimethoxyethane / cyclic ether is less than 0.9. In this case, the amount of cyclic ether used becomes too large and the storage stability of the battery deteriorates.

【0017】そして、カーボネート系溶媒は全溶媒中1
0〜50体積%であることが好ましい。これはカーボネ
ート系溶媒が上記範囲より少ない場合は電解液の誘電率
が低くなり、カーボネート系溶媒が上記範囲より多くな
ると電解液の粘度が上昇してリチウムイオンなどのカチ
オンの移動速度を低下させるからである。
The carbonate-based solvent is 1 in all the solvents.
It is preferably 0 to 50% by volume. This is because when the carbonate-based solvent is less than the above range, the dielectric constant of the electrolytic solution becomes low, and when the carbonate-based solvent is more than the above range, the viscosity of the electrolytic solution increases and the migration rate of cations such as lithium ions decreases. Is.

【0018】また、電解液の調製にあたり、有機溶媒と
しては、上記の1,2−ジメトキシエタンと環状エーテ
ルとカーボネート系溶媒の3成分以外に、たとえばγ−
ブチロラクトン、スルホラン、ジメチルスルホキシド、
N−メチルピロリドン、ジメチルアセトアミド、リン酸
トリメチル、塩化メチレンなどを含んでいてもよい。た
だし、これらは全溶媒中の30体積%以下であることが
好ましい。
In the preparation of the electrolytic solution, the organic solvent may be, for example, γ-, in addition to the above-mentioned three components of 1,2-dimethoxyethane, cyclic ether and carbonate solvent.
Butyrolactone, sulfolane, dimethyl sulfoxide,
It may contain N-methylpyrrolidone, dimethylacetamide, trimethyl phosphate, methylene chloride and the like. However, these are preferably 30% by volume or less of the total solvent.

【0019】そして、前記の1,2−ジメトキシエタン
に対するモル溶解熱が+40kJ/mol以上の電解質
は上記有機溶媒に0.2〜1mol/l溶解させること
が好ましい。すなわち、電解質の濃度が0.2mol/
lより低い場合は充分なカチオン濃度が得られないので
閉路電圧特性が低下し、また電解質の濃度が1mol/
lより高くなると電解液の粘度が高くなり、伝導度が低
下するようになる。
The electrolyte having a molar heat of dissolution for 1,2-dimethoxyethane of +40 kJ / mol or more is preferably dissolved in the organic solvent in an amount of 0.2 to 1 mol / l. That is, the concentration of the electrolyte is 0.2 mol /
When it is lower than 1, the cation concentration is not sufficient, so that the closed-circuit voltage characteristic is deteriorated, and the concentration of the electrolyte is 1 mol / mol.
When it is higher than 1, the viscosity of the electrolytic solution increases and the conductivity decreases.

【0020】つぎに、上記電解液を用いて有機電解液電
池を作製する場合の電池の主要構成部材について説明す
る。
Next, the main constituent members of the battery in the case of producing an organic electrolytic solution battery using the above electrolytic solution will be described.

【0021】負極はアルカリ金属またはアルカリ金属を
含む化合物をステンレス鋼製網などの集電材料と一体化
したものからなるが、このアルカリ金属としては、たと
えばリチウム、ナトリウム、カリウムなどが挙げられ、
アルカリ金属を含む化合物としては、たとえばアルカリ
金属とアルミニウム、鉛、インジウム、カリウム、カド
ミウム、スズ、マグネシウムなどとの合金、さらにはア
ルカリ金属と炭素材料との化合物、低電位のアルカリ金
属と金属酸化物や金属硫化物との化合物などが挙げられ
る。
The negative electrode comprises an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net. Examples of the alkali metal include lithium, sodium and potassium.
As the compound containing an alkali metal, for example, an alloy of an alkali metal with aluminum, lead, indium, potassium, cadmium, tin, magnesium, etc., further, a compound of an alkali metal with a carbon material, a low potential alkali metal with a metal oxide. And compounds with metal sulfides.

【0022】正極には、たとえば二酸化マンガン、五酸
化バナジウム、クロム酸化物、リチウムコバルト酸化
物、リチウムニッケル酸化物などの正極活物質、または
これらの正極活物質に導電助剤やポリテトラフルオロエ
チレンなどの結着剤などを適宜添加した合剤を、ステン
レス鋼製網などの集電材料を芯材として成形体に仕上げ
たものが用いられる。
For the positive electrode, for example, a positive electrode active material such as manganese dioxide, vanadium pentoxide, chromium oxide, lithium cobalt oxide, or lithium nickel oxide, or a conductive auxiliary agent or polytetrafluoroethylene is added to these positive electrode active materials. A mixture obtained by appropriately adding a binder or the like is used as a molded body by using a current collecting material such as a stainless steel net as a core material.

【0023】[0023]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only those examples.

【0024】実施例1 1,2−ジメトキシエタンとテトラヒドロフランとプロ
ピレンカーボネートとの体積比1:1:1の混合溶媒に
Li(CF3 SO2 2 Nを0.6mol/l溶解し
て、電解液を調製した。
Example 1 Li (CF 3 SO 2 ) 2 N (0.6 mol / l) was dissolved in a mixed solvent of 1,2-dimethoxyethane, tetrahydrofuran and propylene carbonate at a volume ratio of 1: 1: 1 to carry out electrolysis. A liquid was prepared.

【0025】なお、Li(CF3 SO2 2 Nの1,2
−ジメトキシエタンに対する溶解熱は69kJ/mol
であった。
It should be noted that 1,2 of Li (CF 3 SO 2 ) 2 N
-The heat of solution for dimethoxyethane is 69 kJ / mol.
Met.

【0026】また、熱処理した二酸化マンガン100重
量部とカーボンブラック10重量部とポリテトラフルオ
ロエチレン2重量部との混合物からなる二酸化マンガン
合剤をステンレス鋼製網を芯材として厚さ0.4mm、
幅30mmのシート状に成形し、ステンレス鋼製の集電
体を取り付けた帯状正極を、250℃で乾燥し、乾燥
後、乾燥雰囲気中で室温まで冷却した。
Further, a manganese dioxide mixture consisting of a mixture of 100 parts by weight of heat-treated manganese dioxide, 10 parts by weight of carbon black and 2 parts by weight of polytetrafluoroethylene is used as a core material of stainless steel and has a thickness of 0.4 mm.
A belt-shaped positive electrode formed into a sheet having a width of 30 mm and having a current collector made of stainless steel attached thereto was dried at 250 ° C., and after drying, it was cooled to room temperature in a dry atmosphere.

【0027】つぎに、上記帯状正極を厚さ25μmの微
孔性ポリプロピレンフィルムからなるセパレータで包
み、これに厚さ0.18mm、幅30mmのシート状リ
チウムをステンレス鋼製網に圧着した帯状負極を重ね、
渦巻状に巻回して渦巻状電極体とした後、外径15mm
の有底円筒状の電池ケース内に充填し、正極および負極
のリード体のスポット溶接を行った後、上記の電解液
1.8mlを電池ケース内に注入した。
Next, the above strip-shaped positive electrode was wrapped with a separator made of a microporous polypropylene film having a thickness of 25 μm, and a strip-shaped negative electrode obtained by crimping a sheet-shaped lithium sheet having a thickness of 0.18 mm and a width of 30 mm onto a stainless steel net was prepared. Overlap
Outer diameter of 15 mm after spirally winding into a spiral electrode body
It was filled in a cylindrical battery case having a bottom and spot welding was performed on the lead bodies of the positive electrode and the negative electrode, and then 1.8 ml of the above-mentioned electrolytic solution was injected into the battery case.

【0028】ついで、常法にしたがって、電池ケースの
開口部を封口し、図1に示す構造の筒形の有機電解液電
池を作製した。
Then, according to a conventional method, the opening of the battery case was sealed to produce a cylindrical organic electrolyte battery having the structure shown in FIG.

【0029】図1に示す電池について説明すると、1は
前記の正極で、2は負極である。ただし、図1では、繁
雑化を避けるため、正極1や負極2の作製にあたって使
用されたステンレス鋼製網や集電体などは図示していな
い。そして、3はセパレータで、4は上記の電解液であ
る。
Explaining the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the stainless steel net, the current collector, and the like used in manufacturing the positive electrode 1 and the negative electrode 2 are not shown. And 3 is a separator and 4 is the above-mentioned electrolytic solution.

【0030】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフルオロエチレンシートからな
る絶縁体6が設置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が配置
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、電解液4などは、この電池ケー
ス5内に収容されている。
5 is a stainless steel battery case,
The battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is installed on the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged on the inner peripheral part of the battery case 5. The spiral electrode body including the negative electrode 2 and the separator 3, the electrolytic solution 4, and the like are contained in the battery case 5.

【0031】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状のポリプロピレン製
の熱変形部材である。
Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided at the center of the sealing plate 8. Reference numeral 9 is a polypropylene-made annular packing, 10 is a flexible thin plate made of titanium, and 11 is an annular heat-deformable member made of polypropylene.

【0032】上記の熱変形部材11は温度によって変化
することにより、可撓性薄板10の破壊圧力を変える作
用をする。
The above-mentioned thermal deformation member 11 changes the breaking pressure of the flexible thin plate 10 by changing with temperature.

【0033】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して、電池の内部圧力が上昇し、その内圧上昇によって
可撓性薄板10が変形したときに、上記切刃12aによ
って可撓性薄板10を破壊し、電池内部のガスを上記ガ
ス排出孔12bから電池外部に排出して、電池の破裂が
防止できるように設計されている。
Reference numeral 12 denotes a nickel-plated terminal plate made of rolled steel. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b so that gas is generated inside the battery, When the flexible thin plate 10 is deformed due to the increase of the internal pressure of the flexible thin plate 10, the cutting blade 12a destroys the flexible thin plate 10 and the gas inside the battery is discharged from the gas discharge hole 12b to the outside of the battery. It is designed to drain and prevent the battery from bursting.

【0034】13は絶縁パッキングで、14はリード体
であり、このリード体14は正極1と封口板8とを電気
的に接続しており、端子板12は封口板8との接触によ
り正極端子として作用する。また、15は負極2と電池
ケース5とを電気的に接続するリード体である。
Reference numeral 13 is an insulating packing, and 14 is a lead body. This lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 comes into contact with the sealing plate 8 to make a positive electrode terminal. Acts as. Reference numeral 15 is a lead body that electrically connects the negative electrode 2 and the battery case 5.

【0035】比較例1 1,2−ジメトキシエタンとプロピレンカーボネートと
の体積比2:1の混合溶媒にLi(CF3 SO2 2
を0.6mol/l溶解して、電解液を調製した。
Comparative Example 1 Li (CF 3 SO 2 ) 2 N was added to a mixed solvent of 1,2-dimethoxyethane and propylene carbonate at a volume ratio of 2: 1.
Was dissolved in an amount of 0.6 mol / l to prepare an electrolytic solution.

【0036】この電解液を用いたほかは、実施例1と同
様にして筒形の有機電解液電池を作製した。
A cylindrical organic electrolyte battery was produced in the same manner as in Example 1 except that this electrolyte was used.

【0037】比較例2 1,2−ジメトキシエタンとテトラヒドロフランとプロ
ピレンカーボネートとの体積比1:1:1の混合溶媒に
LiC4 9 SO3 を0.6mol/l溶解して、電解
液を調製した。なお、LiC4 9 SO3 の1,2−ジ
メトキシエタンに対するモル溶解熱は29kJ/mol
であった。
Comparative Example 2 LiC 4 F 9 SO 3 was dissolved in a mixed solvent of 1,2-dimethoxyethane, tetrahydrofuran, and propylene carbonate in a volume ratio of 1: 1: 1 at 0.6 mol / l to prepare an electrolytic solution. did. The molar heat of dissolution of LiC 4 F 9 SO 3 in 1,2-dimethoxyethane was 29 kJ / mol.
Met.

【0038】この電解液を用いたほかは、実施例1と同
様にして筒形の有機電解液電池を作製した。
A cylindrical organic electrolyte battery was produced in the same manner as in Example 1 except that this electrolyte was used.

【0039】比較例3 1,2−ジメトキシエタンとプロピレンカーボネートと
の体積比2:1の混合溶媒にLiC4 9 SO3 を0.
6mol/l溶解して、電解液を調製した。
Comparative Example 3 LiC 4 F 9 SO 3 was added to a mixed solvent of 1,2-dimethoxyethane and propylene carbonate at a volume ratio of 2: 1 in an amount of 0.
6 mol / l was dissolved to prepare an electrolytic solution.

【0040】この電解液を用いたほかは、実施例1と同
様にして筒形の有機電解液電池を作製した。
A tubular organic electrolyte battery was prepared in the same manner as in Example 1 except that this electrolyte solution was used.

【0041】上記のようにして作製した実施例1および
比較例1〜3の電池の−20℃で1.2A3秒間放電−
7秒間停止のパルス放電を行ったときの放電特性を測定
した。その結果を図2に示す。
The batteries of Example 1 and Comparative Examples 1 to 3 produced as described above were discharged at −20 ° C. for 1.2 A for 3 seconds.
The discharge characteristics were measured when pulse discharge was performed for 7 seconds. The result is shown in FIG.

【0042】図2に示すように、従来電池に相当する比
較例1の電池は放電初期に大きな電圧低下が生じたが、
本発明の実施例1の電池はそのような電圧低下が生じ
ず、かつ作動電圧が高く、低温重負荷特性が優れてい
た。
As shown in FIG. 2, the battery of Comparative Example 1 corresponding to the conventional battery had a large voltage drop at the beginning of discharge,
The battery of Example 1 of the present invention did not cause such a voltage drop, had a high operating voltage, and had excellent low temperature heavy load characteristics.

【0043】すなわち、電解質としてLi(CF3 SO
2 2 Nを用いた場合、従来技術にしたがって1,2−
ジメトキシエタンとプロピレンカーボネートとの混合溶
媒を用いた比較例1の電池では、放電初期に大きな電圧
低下が生じたが、1,2−ジメトキシエタンとテトラヒ
ドロフランとプロピレンカーボネートとの混合溶媒を用
いた実施例1の電池では、放電初期の電圧低下が生じ
ず、かつ作動電圧も高く、低温重負荷放電特性が優れて
いた。
That is, as the electrolyte, Li (CF 3 SO
2 ) When 2 N is used, 1,2-
In the battery of Comparative Example 1 using a mixed solvent of dimethoxyethane and propylene carbonate, a large voltage drop occurred at the initial stage of discharge, but an example using a mixed solvent of 1,2-dimethoxyethane, tetrahydrofuran and propylene carbonate was used. In the battery of No. 1, the voltage drop at the initial stage of discharge did not occur, the operating voltage was high, and the low temperature heavy load discharge characteristics were excellent.

【0044】これに対し、比較例2の電池は、実施例1
の電池の場合と同組成の溶媒を用いているが、電解質に
1,2−ジメトキシエタンに対するモル溶解熱の低いL
iC4 9 SO3 を用いているため、実施例1の電池に
比べて作動電圧が低く、放電特性が劣っていた。
On the other hand, the battery of Comparative Example 2 is the same as that of Example 1.
The same composition as in the case of the battery is used, but L having a low molar heat of solution for 1,2-dimethoxyethane is used as the electrolyte.
Since iC 4 F 9 SO 3 was used, the operating voltage was lower than that of the battery of Example 1 and the discharge characteristics were inferior.

【0045】また、比較例3の電池は、比較例1の電池
の場合と同組成の溶媒を用いているが、電解質に1,2
−ジメトキシエタンに対するモル溶解熱の低いLiC4
9SO3 を用いているので、放電初期の大きな電圧低
下は生じないものの、実施例1の電池に比べて作動電圧
が低く、放電特性が充分とはいえなかった。すなわち、
この種の電池をたとえばカメラ用電源として使用する場
合、1.7V以上の作動電圧が望ましいが、この1.7
Vのところでカットすると、比較例3の電池は実施例1
の電池に比べて約30%放電容量が少ない。
Further, the battery of Comparative Example 3 uses the solvent having the same composition as that of the battery of Comparative Example 1, but 1 and 2 are used as the electrolyte.
LiC 4 having a low molar heat of solution for dimethoxyethane
Since F 9 SO 3 was used, a large voltage drop at the initial stage of discharge did not occur, but the operating voltage was lower than that of the battery of Example 1, and the discharge characteristics were not sufficient. That is,
When this type of battery is used as a power source for a camera, for example, an operating voltage of 1.7 V or higher is desirable.
When cut at V, the battery of Comparative Example 3 is the same as that of Example 1.
The discharge capacity is about 30% less than that of the battery.

【0046】[0046]

【発明の効果】以上説明したように、本発明では、過放
電時の発火、引火に対する安全性が優れているものの、
解離度が高く、1,2−ジメトキシエタンとの相互作用
が大きい電解質を使用するにあたり、電解液の有機溶媒
として1,2−ジメトキシエタンと環状エーテルとカー
ボネート系溶媒との3種以上を含む混合溶媒を用いるこ
とによって、電解質と1,2−ジメトキシエタンとの相
互作用を抑制し、低温重負荷放電時における放電初期の
大きな電圧低下を解消して、低温重負荷放電特性の優れ
た有機電解液電池を提供することができた。
As described above, according to the present invention, although the safety against ignition and ignition during overdischarge is excellent,
When using an electrolyte having a high dissociation degree and having a large interaction with 1,2-dimethoxyethane, a mixture containing at least three kinds of 1,2-dimethoxyethane, a cyclic ether, and a carbonate-based solvent as an organic solvent of the electrolytic solution. By using a solvent, the interaction between the electrolyte and 1,2-dimethoxyethane is suppressed, a large voltage drop at the initial stage of discharge at low temperature heavy load discharge is eliminated, and an organic electrolyte solution having excellent low temperature heavy load discharge characteristics Batteries could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機電解液電池の一実施例を模式的に
示す断面図である。
FIG. 1 is a sectional view schematically showing an example of an organic electrolyte battery of the present invention.

【図2】実施例1の電池および比較例1〜3の電池の−
20℃でのパルス放電特性を示す図である。
FIG. 2 shows the battery of Example 1 and the batteries of Comparative Examples 1-3.
It is a figure which shows the pulse discharge characteristic in 20 degreeC.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極と、正極と、有機溶媒に電解質を溶
解させた有機電解液を構成要素とする有機電解液電池で
あって、上記有機溶媒が1,2−ジメトキシエタンと環
状エーテルとカーボネート系溶媒との3種以上を含む混
合溶媒からなり、上記電解質がCn 2n+1SO2 (n≧
0)基を1個以上有するアニオンとアルカリ金属または
アルカリ土類金属のカチオンとで形成され、1,2−ジ
メトキシエタンに対するモル溶解熱が+40kJ/mo
l以上の有機塩であり、かつ1,2−ジメトキシエタン
/環状エーテルの体積比が0.9〜10であることを特
徴とする有機電解液電池。
1. An organic electrolytic solution battery comprising a negative electrode, a positive electrode, and an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent, the organic solvent being 1,2-dimethoxyethane, a cyclic ether, and a carbonate. It is composed of a mixed solvent containing three or more kinds with a system solvent, and the electrolyte is C n F 2n + 1 SO 2 (n ≧
0) is formed from an anion having one or more groups and an alkali metal or alkaline earth metal cation, and has a heat of molar dissolution with respect to 1,2-dimethoxyethane of +40 kJ / mo.
An organic electrolyte battery which is an organic salt of 1 or more and a volume ratio of 1,2-dimethoxyethane / cyclic ether of 0.9 to 10.
JP4352541A 1992-12-09 1992-12-09 Organic electrolyte battery Withdrawn JPH06176769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4352541A JPH06176769A (en) 1992-12-09 1992-12-09 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4352541A JPH06176769A (en) 1992-12-09 1992-12-09 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH06176769A true JPH06176769A (en) 1994-06-24

Family

ID=18424770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4352541A Withdrawn JPH06176769A (en) 1992-12-09 1992-12-09 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH06176769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
EP0829911A2 (en) * 1996-09-16 1998-03-18 Wilson Greatbatch Ltd. Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
EP0829911A2 (en) * 1996-09-16 1998-03-18 Wilson Greatbatch Ltd. Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells
EP0829911A3 (en) * 1996-09-16 1999-03-17 Wilson Greatbatch Ltd. Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells

Similar Documents

Publication Publication Date Title
JP3055358B2 (en) Non-aqueous electrolyte battery
EP0803924B1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US7749288B2 (en) Method of making non-aqueous electrochemical cell
JP3055536B2 (en) Non-aqueous electrolyte battery
JPH10112335A (en) Organic electrolyte secondary battery
WO1991020104A1 (en) Organic electrolytic battery
JPH09251862A (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPH08241731A (en) Organic electrolytic secondary battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JPH06176769A (en) Organic electrolyte battery
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JPH0765843A (en) Organic electrolyte battery
JP3169248B2 (en) Organic electrolyte battery
JP3095268B2 (en) Organic electrolyte and organic electrolyte battery using the same
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2974739B2 (en) Organic electrolyte battery
JP3236122B2 (en) Organic electrolyte battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JP2005141997A (en) Lithium / iron disulfide primary battery, and manufacturing method
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JP3236121B2 (en) Electrochemical equipment
JP3722825B2 (en) Stacked organic electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307