JPH0617481B2 - Alloy powder for rare earth magnets and method for producing the same - Google Patents

Alloy powder for rare earth magnets and method for producing the same

Info

Publication number
JPH0617481B2
JPH0617481B2 JP60162610A JP16261085A JPH0617481B2 JP H0617481 B2 JPH0617481 B2 JP H0617481B2 JP 60162610 A JP60162610 A JP 60162610A JP 16261085 A JP16261085 A JP 16261085A JP H0617481 B2 JPH0617481 B2 JP H0617481B2
Authority
JP
Japan
Prior art keywords
atomic
rare earth
alloy
amount
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60162610A
Other languages
Japanese (ja)
Other versions
JPS6223902A (en
Inventor
哲 広沢
裕 松浦
日登志 山本
節夫 藤村
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60162610A priority Critical patent/JPH0617481B2/en
Publication of JPS6223902A publication Critical patent/JPS6223902A/en
Publication of JPH0617481B2 publication Critical patent/JPH0617481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はFe,B,Rを主成分とするFe−B−R系を
ベースとする高性能永久磁石用合金粉末の製造方法に関
し,特に(BH)max 40MGOe以上,Br12.6kG以上の高性能
を有するFe−B−R系永久磁石用合金粉末及びその製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a high-performance permanent magnet alloy powder based on an Fe—B—R system containing Fe, B, and R as main components, and more particularly, (BH) max 40 MGOe or more, Br 12.6 kG or more high performance alloy powder for permanent magnets of the Fe-BR system, and a method for producing the same.

(従来の技術) 本願発明者は先に高価なSmとCoを含まないか又は必
須としない新しい永久磁石材料としてFe−B−R系永
久磁石材料を提案した(FeBR系特開昭59−46008
号,FeBRM系特開昭59−89401号)。またRとして
Smを必須とせず少量のCoによりこれらのFe−B−
R系のキュリー温度を上昇させることも提案した(Fe
CoBR系特開昭59−64733号,FeCoBRM系特開
昭59−132104号)。
(Prior Art) The inventor of the present application has previously proposed a Fe—BR type permanent magnet material as a new permanent magnet material that does not contain or does not require expensive Sm and Co (FeBR type JP-A-59-46008).
No., FeBRM system JP-A-59-89401). Further, Sm is not essential as R, and a small amount of Co does not allow these Fe-B-
It was also proposed to raise the Curie temperature of the R system (Fe
CoBR system JP-A-59-64733, FeCoBRM system JP-A-59-132104).

以下「Fe−B−R系」の語は一般に広義に用い,基本
的にFe−B−R正方晶系を主体とする系(部分的置
換,添加物元素を含むもの)を総称するものとする。
Hereinafter, the term "Fe-B-R system" is generally used in a broad sense, and basically refers to a system mainly composed of a Fe-B-R tetragonal system (partially substituted, including additive elements). To do.

従来,Fe−B−R系永久磁石用合金粉末は所要組成の
鋳塊を機械的粉砕及び微粉砕を行なって得られることが
知られているが,本系磁石用合金は非常に粉砕し難く,
粗粉砕粉は偏平状になりやすく,粉砕機の負荷が高く摩
耗しやすい上,次工程の微粉砕工程で必要な35メッシュ
スルー粉末を量産的に得るのが困難であり,また,粗粉
砕粉末の歩留及び粉砕能率が悪い等の問題があった。
It is known that Fe-BR system alloy powders for permanent magnets have been obtained by mechanically pulverizing and finely pulverizing an ingot of a required composition, but this system alloy for magnets is very difficult to pulverize. ,
The coarsely crushed powder is likely to be flattened, the load of the crusher is high and easily worn, and it is difficult to mass-produce the 35-mesh through powder required in the next fine crushing step. However, there were problems such as poor yield and crushing efficiency.

そのため,本発明者は従来の永久磁石用合金粉末の製造
法の欠点を除去するため,Fe−B−R系鋳塊のH
蔵性を利用して,前記鋳塊をH粉砕法にて粉末化する
ことを提案した(特開昭60−63304号)。
Therefore, in order to eliminate the drawbacks of the conventional manufacturing method of alloy powder for permanent magnets, the present inventor utilizes the H 2 occlusion property of the Fe—BR type ingot to make the ingot into an H 2 crushing method. It has been proposed to pulverize it (Japanese Patent Laid-Open No. 63-63304).

[発明が解決しようとする問題点] 然しながら,前記高性能磁石用合金粉末を得るための前
記組成の鋳塊を鋳型内に鋳込,固化する際,組成,冷却
速度等により,H吸蔵による粉砕に困難を来たすこと
が多々あることを知見した。精査の結果本発明者は,固
化の際鋳塊内に5vol%ないし25vol%析出する軟磁性相が
機械的に粘性の高い体心立方型Fe相であり,この相自
体は常温常圧で水素を吸収しない為,H吸蔵による粉
砕が困難又は不可能であることを知見した。
[Problems to be Solved by the Invention] However, when the ingot of the above composition for obtaining the alloy powder for high-performance magnets is cast into a mold and solidified, due to the composition, the cooling rate, etc., H 2 occlusion may occur. We have found that crushing often causes difficulties. As a result of close examination, the present inventor has found that the soft magnetic phase that precipitates in the ingot during solidification at 5 vol% to 25 vol% is a body-centered cubic Fe phase with high mechanical viscosity, and this phase itself is hydrogen at room temperature and normal pressure. It was found that pulverization by H 2 storage is difficult or impossible because it does not absorb.

従って本発明者の目的は,前記Fe−B−R系鋳塊のH
吸蔵による粉砕を改善し,より高性能の永久磁石の製
造を可能とすること,とりわけ,そのための合金粉末を
提供することを,目的とする。
Therefore, the purpose of the present inventor is to obtain H of the Fe--BR system ingot.
(2) It is an object of the present invention to improve the crushing due to occlusion and enable the production of higher-performance permanent magnets, and in particular to provide an alloy powder therefor.

(発明による問題点の解決手段) 本発明によれば,Fe−B−R系永久磁石の磁石特性の
一段の改善向上を計って種々研究の結果,R(RはNd
又はPrの少くとも1種を80%以上,残部はNd,Pr
を除く,Yを含む希土類元素のうち少なくとも1種)12
原子%〜19原子%,B 5.5原子%〜8.5原子%,Fe72.
5原子%〜82.5原子%を主成分とし,且つ(0.4×R量+
B量)≦13.2原子%を満足し,かつ,実質上Fe軟磁性
相を含まずH吸蔵崩壊させて成る希土類・ボロン・鉄
系正方晶合金粉末を用いた場合,(BH)max 40MGOe以上の
高性能磁石が得られることを知見した。
(Means for Solving Problems Due to the Invention) According to the present invention, as a result of various studies by further improving the magnet characteristics of the Fe—B—R permanent magnet, R (R is Nd
Or, at least one of Pr is 80% or more, the balance is Nd, Pr.
Except at least one of rare earth elements including Y) 12
Atomic% to 19 atomic%, B 5.5 atomic% to 8.5 atomic%, Fe72.
Main component is 5 atom% to 82.5 atom% and (0.4 x R amount +
(B amount) ≤ 13.2 atomic% and (BH) max 40MGOe or more when using rare earth / boron / iron-based tetragonal alloy powder that does not substantially contain Fe soft magnetic phase and is H 2 occluded and collapsed It was found that the high performance magnet of

即ち本発明によれば,高性能特性の得られる特定組成の
Fe−B−R系合金塊(特に鋳塊)を特定温度範囲内で
溶体化処理することにより,前記鋳塊内の軟磁性相をB
リッチ金属相及びRリッチ金属相との反応により強磁性
のRFe14B相を生成させることができ,H吸蔵
粉砕を困難化する軟磁性相を前記鋳塊内より消去せしめ
てH吸蔵粉砕による粉末化を容易にし,この合金粉末
を用いることにより(BH)max 40MGOe以上,Br12.6kG以
上の磁石特性を有する高性能永久磁石が得られ,始めて
最高50MGOeを越える磁石特性を実現する事ができた。
That is, according to the present invention, the soft magnetic phase in the ingot is obtained by subjecting the Fe-BR alloy ingot (particularly ingot) having a specific composition capable of obtaining high performance characteristics to solution treatment within a specific temperature range. To B
By reacting with the rich metal phase and the R rich metal phase, a ferromagnetic R 2 Fe 14 B phase can be generated, and the soft magnetic phase that makes H 2 occlusion and pulverization difficult is erased from the inside of the ingot, and H 2 Easily pulverized by occlusion crushing, and by using this alloy powder, a high-performance permanent magnet with magnet characteristics of (BH) max 40MGOe or more and Br12.6kG or more can be obtained, and for the first time, magnet characteristics exceeding 50MGOe can be realized. I was able to do something.

Feの一部を合金組成の30原子以下のCoにより置換す
ることによりキュリー温度が増大でき,またFeの一部
を合金組成の2原子%以下の添加金属(Ti,V,C
r,Zr,Hf,Nb,Ta,Mo,W,Al,Siの
内1種以上)で置換することにより保磁力の増大及び角
形性の改善が可能である。
The Curie temperature can be increased by substituting a part of Fe with Co having an alloy composition of 30 atoms or less, and a part of Fe containing 2 atom% or less of the alloy composition of an added metal (Ti, V, C).
Substitution with r, Zr, Hf, Nb, Ta, Mo, W, Al or Si) can increase coercive force and improve squareness.

本発明は,上記合金粉末の製造方法をも提供する。即
ち,前記組成を有する溶成合金を (i)700℃〜1160℃に溶体化処理する工程, (ii)該合金を金属面が露出するように破断する工程, (iii)破断物を密閉容器に収容し,該容器内にHガス
を供給して,該合金をH吸蔵崩壊させる工程, (iv)崩壊合金粉をさらに微粉砕する工程から成ることを
特徴とする希土類・ボロン・鉄系永久磁石用合金粉末の
製造方法が提供される。
The present invention also provides a method for producing the above alloy powder. That is, (i) a step of solution treatment of a molten alloy having the above composition at 700 ° C to 1160 ° C, (ii) a step of breaking the alloy so that a metal surface is exposed, (iii) a closed container for a broken object And a H 2 gas is supplied into the container to occlude and disintegrate the alloy into H 2 and (iv) a step of further pulverizing the disintegrated alloy powder into fine particles, a rare earth element, boron, iron. A method for producing an alloy powder for a permanent magnet is provided.

容器内にHガスを充填する前に好ましくは不活性ガス
にて容器内の空気を置換し,容器内のHガスは好まし
くは200Torr〜50kgf/cm2とする。
Before filling the H 2 gas into the container, the air in the container is preferably replaced with an inert gas, and the H 2 gas in the container is preferably 200 Torr to 50 kgf / cm 2 .

また,Hガス吸蔵崩壊(以下「H粉砕」とも称す)
の後には脱水素処理を行う。
Also, H 2 gas occlusion collapse (hereinafter also referred to as “H 2 pulverization”)
After that, dehydrogenation treatment is performed.

(発明の効果) このようにして得られる合金粉末は,実質的にFe軟磁
性相を含まずRFe14Bを基本とする正方晶の強磁性
相とRリッチ金属相,Bリッチ金属相から主として成る
相とから本質上構成され,また粉砕が容易なため粉砕に
よる粉末粒子の粒界及び内部域の状態が大きく障害を受
けることなく所定粒度の磁石製造のための出発合金粉末
が得られる。Fe軟磁性相が溶体化処理により消失する
ので,H粉砕が容易となるのみならず,磁性発現に寄
与する相の体積比が増大し,その結果さらに高い磁気特
性が得られるものと考えられる。
(Effects of the Invention) The alloy powder thus obtained does not substantially contain an Fe soft magnetic phase, and is a tetragonal ferromagnetic phase based on R 2 Fe 14 B, an R-rich metal phase, and a B-rich metal phase. It is essentially composed of a phase mainly consisting of, and because it is easily pulverized, the starting alloy powder for producing a magnet of a given particle size can be obtained without significantly disturbing the state of the grain boundary and internal region of the powder particle by pulverization. . Since the Fe soft magnetic phase disappears by the solution treatment, it is considered that not only H 2 pulverization becomes easy, but also the volume ratio of the phase contributing to the magnetic development increases, and as a result, higher magnetic properties can be obtained. .

なお本発明の合金粉末は,主として永久磁石用である
が,必ずしもそれに限定されない。
The alloy powder of the present invention is mainly for permanent magnets, but is not necessarily limited thereto.

既述のとおり,本発明によれば磁石特性の観点からはエ
ネルギー積40MGOe以上,好ましくは45MGOe以上,最高50
MGOe以上のFeBR系永久磁石が得られる。製造方法の
観点からは,粉砕工程が容易となり粉砕による粒子への
悪影響を最低限に止めることが可能である。なおH
砕はFe−B−R系正方晶結晶にHが吸蔵されること
により生ずると考えられる。
As described above, according to the present invention, the energy product is 40 MGOe or more, preferably 45 MGOe or more, and the maximum is 50 from the viewpoint of magnet characteristics.
A FeBR permanent magnet of MGOe or higher is obtained. From the viewpoint of the manufacturing method, the crushing process becomes easy and it is possible to minimize the adverse effect of crushing on the particles. It is considered that the H 2 pulverization is caused by H 2 being occluded in the Fe—BR type tetragonal crystal.

(好適な実施の態様) 本発明の合金粉末は,それ自体磁気異方性を示す(磁界
により一様に配向が可能,高い異方性磁化を備え,c軸
が容易磁化軸と一致する)。その結果磁気異方性の焼結
永久磁石が得られるが等方性磁石も製造可能である。本
発明のFe−B−R系合金のFe−B−R正方晶構造に
ついては,既にEP公開No.101552,No.106948等に開示
され,さらにジボール他(Givord,D;Li,H.S.; Moreau,
J.M., Solid.State.Commun., 50(1984)P497-499“Magne
tic Properties and Crystal Structure of NdFe
14B”),或いは佐川他(M.Sagawa,S.Fujimura, H.Yamam
oto, Y.Matsuura and K.Hiraga, IEEE Trans. Magn.MAG
-20 No.5(1984)pp.1584−1589 “PERMANENT MAGNET MATERIALS BASED ON THE RARE EAR
TH-IRON-BORON TETRAGONAL COMPOUNDS”)に開示の通り
である。
(Preferred Embodiment) The alloy powder of the present invention itself exhibits magnetic anisotropy (it can be uniformly oriented by a magnetic field, has high anisotropic magnetization, and c-axis coincides with easy-axis). . As a result, a sintered permanent magnet having magnetic anisotropy is obtained, but an isotropic magnet can also be manufactured. Regarding the Fe-BR tetragonal structure of the Fe-BR alloy of the present invention, EP Publication No. 101552, No. 106948, etc., as well as Gibor, et al. (Givord, D; Li, HS; Moreau,
JM, Solid.State.Commun., 50 (1984) P497-499 “Magne
tic Properties and Crystal Structure of Nd 2 Fe
14 B ”), or Sagawa et al. (M. Sagawa, S. Fujimura, H. Yamam
oto, Y. Matsuura and K. Hiraga, IEEE Trans. Magn. MAG
-20 No.5 (1984) pp.1584-1589 “PERMANENT MAGNET MATERIALS BASED ON THE RARE EAR
TH-IRON-BORON TETRAGONAL COMPOUNDS ”).

前記組成を有する合金(特に鋳塊)を700℃〜1160℃
(後者はRFe14B相の融点)にて溶体化処理して,
鋳塊内の軟磁性相たるFe相をBリッチ金属相,Ndリ
ッチ金属相の非磁性相と反応させて,強磁性相のR
14B相を生成せしめて,鋳塊内の軟磁性相を消失せし
める。金属面が露出するように破断したのち,破断塊を
密閉容器に収容し,該容器内の空気を不活性ガスにて置
換した後,該容器内に200Torr〜50kgf/cm2のHガス
を供給し,H吸蔵により自然崩壊させ得られた自然崩
壊合金粉を脱水素処理したのち,さらに微粉砕する。
Alloys with the above composition (especially ingots) 700 ℃ ~ 1160 ℃
(The latter is a solution treatment with the melting point of the R 2 Fe 14 B phase),
The Fe phase, which is a soft magnetic phase in the ingot, is reacted with the non-magnetic phases of the B-rich metal phase and the Nd-rich metal phase, and the ferromagnetic phase R 2 F
e 14 B phase is generated to eliminate the soft magnetic phase in the ingot. After breaking so that the metal surface is exposed, the broken mass is housed in a closed container, the air in the container is replaced with an inert gas, and then 200 Torr to 50 kgf / cm 2 H 2 gas is put into the container. The naturally-disintegrated alloy powder that is supplied and spontaneously disintegrated by H 2 occlusion is dehydrogenated, and then further pulverized.

本発明におけるFe・B・R系合金は溶成冷却された結
晶質のものであり典型的には鋳塊として得られる。この
合金はR(但し,RはNdとPrの少くとも1種を80%
以上,残部はNd,Prを除く,Yを含む希土類元素の
少なくとも1種)12原子%〜19原子%,B 5.5原子%〜
8.5原子%,Feは72.5原子%〜82.5原子%からなり,
且つ(0.4×R量+B量)≦13.2原子%を満足するもの
であり,或いはFeの1部を30原子%以下のCoで置換
することもできる。
The Fe / BR alloy according to the present invention is a solution-cooled crystalline alloy and is typically obtained as an ingot. This alloy contains R (provided that R is at least 80% of at least one of Nd and Pr).
As described above, the balance is at least one kind of rare earth element including Y except Nd and Pr) 12 atom% to 19 atom%, B 5.5 atom% to
8.5 atomic%, Fe is composed of 72.5 atomic% -82.5 atomic%,
In addition, (0.4 × R amount + B amount) ≦ 13.2 atomic% is satisfied, or a part of Fe can be replaced with Co of 30 atomic% or less.

又,磁石合金の保磁力改善のため,添加元素として,F
eの1部を2原子%以下のTi,V,Cr,Zr,H
f,Nb,Ta,Mo,W,Al,Siのうち少くとも
1種で置換含有することもできる。
Moreover, in order to improve the coercive force of the magnet alloy, as an additional element, F
Part of e is 2 atomic% or less of Ti, V, Cr, Zr, H
At least one of f, Nb, Ta, Mo, W, Al and Si may be substituted and contained.

Nd,Prの他のRとしてはDy,Ho,Tbの1以上
が好ましく,これら三元素(1以上)を0.05〜5原子%
(好ましくは0.1〜2原子%)含むものは温度特性が改
善される(保磁力が増大)。
As R other than Nd and Pr, one or more of Dy, Ho and Tb are preferable, and these three elements (1 or more) are contained in an amount of 0.05 to 5 atom%.
Those containing (preferably 0.1 to 2 atomic%) have improved temperature characteristics (increased coercive force).

既述以外の他のRは,混合物として存在することは可能
であるが,Sm,Laは好ましくないので可及的少なく
することが必要である。但し,ジジム等の混合希土類金
属を用いることは許容されうる。なお工業的に入手可能
なRとして不可避の不純物の存在は許容せざるを得な
い。本発明ではそのようなRの使用にても十分高い特性
を示している。
It is possible for R other than those mentioned above to exist as a mixture, but since Sm and La are not preferable, it is necessary to reduce them as much as possible. However, it is acceptable to use mixed rare earth metals such as didymium. It should be noted that the presence of impurities that are unavoidable as R commercially available is unavoidable. The present invention shows sufficiently high characteristics even when such R is used.

以下,この発明による磁石用合金の製造方法について詳
述する。
Hereinafter, the method for producing the magnet alloy according to the present invention will be described in detail.

本発明の永久磁石合金の鋳塊は例えば,実施例に示すよ
うに出発原料として,電解鉄,フエロボロン合金,希土
類金属を(あるいは更に電解Coを加えて)高周波等に
より溶解し,溶湯中のO量を極力減少(2000ppm以
下)する様調整し,前記組成及び組成相を有する鋳塊に
鋳造する。
The ingot of the permanent magnet alloy of the present invention is, for example, as a starting material, electrolytic iron, a ferroboron alloy, a rare earth metal (or electrolytic Co is further added) are melted by high frequency, etc. The amount of 2 is adjusted to be as small as possible (2000 ppm or less), and cast into an ingot having the above composition and composition phase.

然しながら,前記鋳塊内にはその組成,冷却速度によ
り,多い場合は20vol%程度の軟磁性相のα−Fe相の析
出がおこり,H吸収による粉砕化を困難又は不可能に
するため,前記鋳塊を700℃〜1160℃に所定時間(凡そ3
0分〜70Hr)の溶体化処理を行って前記鋳塊内に析出し
たα−Fe相をRリッチ相,及びBリッチ相の非磁性相
と反応させて,RFe14B相を生成して,前記のα−
Fe相を消失させる(実質的に1vol%以下〜全無)。
However, depending on the composition and cooling rate in the ingot, the α-Fe phase of the soft magnetic phase of about 20 vol% is precipitated in the case of a large amount, which makes pulverization by H 2 absorption difficult or impossible. The ingot is heated to 700 ℃ ~ 1160 ℃ for a predetermined time (about 3
Solution treatment for 0 min to 70 hr) to react the α-Fe phase precipitated in the ingot with the R-rich phase and the non-magnetic phase of the B-rich phase to form the R 2 Fe 14 B phase. , Α-
The Fe phase disappears (substantially 1 vol% or less to none).

その結果合金は,RFe14B正方晶(強磁性相)が大
部分を占め僅か(約0.3vol%以上)の非磁性粒界相(本
質上Rリッチ金属相から成り,部分的にBリッチ金属
相,希土類金属酸化物相が含まれる)を含む相構成をと
る。
As a result, the alloy is mainly composed of R 2 Fe 14 B tetragonal crystal (ferromagnetic phase) and a small amount (about 0.3 vol% or more) of non-magnetic grain boundary phase (essentially R-rich metal phase, and partially B (Including a rich metal phase and a rare earth metal oxide phase).

その後,この鋳塊が,その表面が酸化膜で覆われるとH
吸蔵反応が進行し難いため,金属面が露出するよう
に,例えば,所定大きさのブロックに破断してからH
吸蔵には,例えば第1図に示す密閉容器を使用する。す
なわち,所定大きさに破断した破断塊(3)を原料ケース
(2)内に挿入し,Hガスの供給管(4)及び排気管(5)を
付設し蓋を締めて密閉できる容器(1)内の所定位置に,
上記原料ケース(2)を装入し,密閉したのち,Arなど
の不活性ガスを供給しながら排気し,容器(1)内の空気
を十分に置換後,好ましくは200Torr〜50kgf/cm2の圧
力のHガスを供給して,破断塊(3)にHを吸蔵させ
る。このH吸蔵反応は,発熱反応であるため,容器
(1)の外周には冷却水を供給する冷却配管(6)が周設して
あり,容器(1)内の昇温を防止しながら,所定圧力のH
ガスを一定時間供給することにより,Hガスが吸収
され,破断塊(3)は自然崩壊して粉化する。さらに,粉
化した合金の冷却の後,真空中で脱Hガス処理する。
前記処理の合金粉末は粒内に微細亀裂が内存するので,
ボール・ミル等で短時間に微粉砕され,約0.5〜80μm
(好ましくは1〜10μm)所要粒度の合金粉末を得るこ
とができる。生成合金は非晶質又は液体急冷後熱処理し
て得られる極微細結晶性のものとは異なり,一般的結晶
質合金に属する。生成合金の平均結晶粒径は,約0.5μ
m以上,好ましくは1μm以上であるが焼結体の平均結
晶粒径が1〜90μm特に2〜10μmとなるように選択す
ることが保磁力を高くするために必要である。
After that, when the surface of the ingot is covered with an oxide film, H
2 It is difficult for the occlusion reaction to proceed, so that the metal surface is exposed, for example, after breaking into a block of a predetermined size, H 2
For storage, for example, the closed container shown in FIG. 1 is used. That is, the crushed lump (3) ruptured to a predetermined size is used as a raw material case.
(2) Insert the H 2 gas supply pipe (4) and exhaust pipe (5) into the container (1), which can be closed by closing the lid.
After charging the above-mentioned raw material case (2) and hermetically sealing it, and then exhausting it while supplying an inert gas such as Ar, the air in the container (1) is sufficiently replaced, and preferably 200 Torr to 50 kgf / cm 2 By supplying H 2 gas at a pressure, H 2 is occluded in the fracture mass (3). Since this H 2 storage reaction is an exothermic reaction,
A cooling pipe (6) for supplying cooling water is provided around the outer periphery of (1) to prevent the temperature inside the container (1) from rising,
By supplying 2 gases for a certain period of time, H 2 gas is absorbed, and the fracture mass (3) spontaneously disintegrates and powders. Furthermore, after cooling the powdered alloy, H 2 gas treatment is performed in vacuum.
Since the alloy powder of the above treatment has fine cracks in the grains,
Finely pulverized in a short time with a ball mill, etc., and about 0.5-80 μm
It is possible to obtain an alloy powder having a required particle size (preferably 1 to 10 μm). The produced alloy belongs to a general crystalline alloy, unlike the ultrafine crystalline one obtained by heat treatment after amorphous or liquid quenching. The average grain size of the produced alloy is about 0.5μ
In order to increase the coercive force, it is necessary to select the average crystal grain size of the sintered body to be 1 to 90 μm, particularly 2 to 10 μm.

この発明において,密閉容器内の空気の置換は,予め不
活性ガスで空気を置換し,その後Hガスで不活性ガス
を置換してもよい。
In the present invention, the air in the closed container may be replaced with an inert gas in advance and then with an H 2 gas to replace the inert gas.

また,鋳塊の破断大きさは,小さい程,H粉砕の圧力
を小さくでき,また,Hガス圧力は,減圧下でも破断
した鋳塊はH吸蔵し粉化されるが,圧力は大気圧より
高くなるほど粉化されやすくなる。しかし,200Torr未
満では粉化性が悪くなる。また,50kgf/cm2を越えると
H2吸収による粉化の点では好ましいが,装置や作業の
安全性からは好ましくないため,200Torr〜50kgf/cm2
とすることが好ましい。量産性からは,2kgf/cm2〜1
0kgf/cm2がより好ましい。
Further, the smaller the fracture size of the ingot, the smaller the H 2 crushing pressure can be made, and the H 2 gas pressure is such that the fractured ingot is occluded by H 2 and powdered even under reduced pressure, but the pressure is The higher the atmospheric pressure, the easier the powder becomes. However, if it is less than 200 Torr, the pulverization property deteriorates. Also, if it exceeds 50 kgf / cm 2 , it is preferable from the viewpoint of pulverization due to H 2 absorption, but it is not preferable from the viewpoint of safety of equipment and work, so 200 Torr to 50 kgf / cm 2
It is preferable that 2 kgf / cm 2 to 1 for mass production
0 kgf / cm 2 is more preferable.

この発明において,H吸蔵による粉化の処理時間は,
前記密閉容器の大きさ,破断塊の大きさ,Hガス圧力
により変動するが,通例5分以上が必要である。
In this invention, the processing time for pulverization by H 2 occlusion is
Although it varies depending on the size of the closed container, the size of the broken mass, and the H 2 gas pressure, it usually takes 5 minutes or more.

本発明の特徴たる特定組成の鋳塊を溶体化処理する条件
を700℃〜1160℃(RFe14B相の融点)に限定した
理由は700℃以下では液層の生成が全くおこらず,拡散
は固体拡散のみで,拡散速度が低下して,鋳塊内の軟磁
性相とBリッチ金属相及びRリッチ金属相との反応によ
る強磁性のRFe14B相生成に長時間を要して好まし
くなく,1160℃を越えると部分的にRFe14B相が消
失を始めてFe相が生成する傾向が生ずるため,溶体化
処理の効果が減殺されるので好ましくない。
The reason for limiting the conditions for solution treatment of the ingot having the specific composition characteristic of the present invention to 700 ° C. to 1160 ° C. (melting point of the R 2 Fe 14 B phase) is that no liquid layer is generated below 700 ° C. Diffusion is only solid diffusion, and the diffusion rate decreases, and it takes a long time to generate the ferromagnetic R 2 Fe 14 B phase due to the reaction between the soft magnetic phase in the ingot and the B-rich metal phase and the R-rich metal phase. If the temperature exceeds 1160 ° C., the R 2 Fe 14 B phase partially begins to disappear and the Fe phase tends to be generated, which is not preferable because the solution treatment effect is diminished.

この発明の永久磁石用鋳塊の主成分たる希土類元素Rは
Nd又はPrの1種又は2種を80%以上,残部はNd,
Prを除く,Yを含む希土類元素の少くとも1種からな
り,Nd又はPrの1種又は2種が80%未満では得られ
た焼結磁石のBrの低下又はiHcの低下により,40MG
Oe以上の高エネルギー積が得られなくなるので好ましく
ない。
The rare earth element R which is the main component of the ingot for permanent magnet of the present invention is 80% or more of one or two kinds of Nd or Pr, and the balance is Nd,
If at least 1 kind of rare earth element including Y except Pr is used and 1 or 2 kinds of Nd or Pr is less than 80%, the Br of the sintered magnet or the iHc of the obtained magnet is lowered to 40MG.
It is not preferable because a high energy product higher than Oe cannot be obtained.

Rは12.0原子%未満では,溶体化処理によっても合金中
にFe相が残存するようになり,鋳塊のH粉砕が困難
となり,又焼結磁石体の保磁力が急激に低下して好まし
くなく,又19原子%を越えると残留磁束密度(Br)が
低下するので,所要のすぐれた特性が得られないので,
Rは12.0原子%〜19原子%とする。
If R is less than 12.0 at%, Fe phase will remain in the alloy even after solution treatment, H 2 pulverization of the ingot becomes difficult, and the coercive force of the sintered magnet body is sharply reduced. If it exceeds 19 atom%, the residual magnetic flux density (Br) will decrease, and the required excellent characteristics cannot be obtained.
R is 12.0 atom% to 19 atom%.

又,Bは5.5原子%未満では焼結磁石体の保磁力及び角
形性の低下を招来し,又8.5原子%を越えるとBrが低
下して,すぐれた磁石特性が得られないので,Bは5.5
原子%〜8.5原子%とする。
If B is less than 5.5 atom%, the coercive force and squareness of the sintered magnet body will be deteriorated, and if it exceeds 8.5 atom%, Br will be deteriorated and excellent magnet characteristics cannot be obtained. 5.5
Atom% to 8.5 atom%

又,(0.4×R量+B量)≦13.2原子%に限定した理由
はその値が13.2原子%を越えると焼結磁石中に非磁性相
が多く(10vol%以上、さらに、20vol%以上)現れるため
Brが低下し,高エネルギー積が与えられなくなるので
好ましくない。なお,非磁性相の存在は,本発明では高
い磁気特性(特に保持力)の発現に必要であると考えら
れるが,少くとも極く僅か(例えば0.3vol%以上)の存
在が確認されている。
Also, the reason for limiting to (0.4 x R amount + B amount) ≤ 13.2 atomic% is that when the value exceeds 13.2 atomic%, many non-magnetic phases appear in the sintered magnet (10 vol% or more, further 20 vol% or more). Therefore, Br decreases, and a high energy product cannot be given, which is not preferable. The presence of the non-magnetic phase is considered to be necessary for the development of high magnetic properties (particularly coercive force) in the present invention, but the presence of at least a very small amount (for example, 0.3 vol% or more) has been confirmed. .

又,Feの1部を30原子%未満(対合金全体)のCoで
置換することにより,焼結磁石体のキュリー点Tcの上
昇と共に温度特性の改善に有効である。Coは少量でも
有効(例えば0.1〜1原子%)でありCo量にほゞ対応
してキュリー点は上昇する。Co5原子%以上でBrの
温度係数は0.1%/℃以下となり,Co23原子%以下で
は他の磁気特性に悪影響を与えずにキュリー点を上昇さ
せる。Co5〜10原子%ではCoの増加に伴いiHcが
低下する傾向にあるがCo10〜20原子%ではiHcの増
大もある。Coにより角形性の改善も生ずる。
Further, by substituting a part of Fe with Co of less than 30 atomic% (to the whole alloy), it is effective in raising the Curie point Tc of the sintered magnet body and improving the temperature characteristics. Co is effective even in a small amount (for example, 0.1 to 1 atomic%), and the Curie point rises almost corresponding to the amount of Co. The temperature coefficient of Br is 0.1% / ° C. or less when Co is 5 atomic% or more, and the Curie point is increased without adversely affecting other magnetic properties when Co is 23 atomic% or less. At 5 to 10 atom% of Co, iHc tends to decrease with the increase of Co, but at 10 to 20 atom% of Co, iHc also increases. Co also improves squareness.

又,本発明においてはFeの1部を保磁力向上のため,
2原子%以下のTi,V,Cr,Zr,Hf,Nb,T
a,Mo,W,Al,Siの少くとも1種と置換するこ
とがきるが,一般にこれらの添加元素はBrの低下傾向
を示し置換量が2原子%を越えると,Brの低下が顕著
になるので好ましくない。添加元素の好ましい量は0.5
〜1原子%程度である。
Further, in the present invention, a part of Fe is used to improve coercive force.
2 atomic% or less of Ti, V, Cr, Zr, Hf, Nb, T
It is possible to substitute at least one of a, Mo, W, Al, and Si, but generally, these additive elements tend to decrease Br, and when the amount of substitution exceeds 2 atomic%, the decrease in Br becomes remarkable. Therefore, it is not preferable. The preferred amount of additive element is 0.5
It is about 1 atom%.

エネルギー積45MGOe以上とするためには,RとしてはN
d,Pr95原子%以上のもの(或いは好ましくはさらに
数原子%以下のDy,Ho,Tbの1以上)とし,R12
〜15原子%,B5.5〜8.0原子%,Fe77〜82.5原子%の
組成が好ましい。(なおSm,Laは不純物としての含
有限度以下とすることが好ましい。)ここに,Feの一
部を,Coで23原子%以下,或いは前記添加元素を約1
原子%以下置換(いずれか又は両方)できる。
To obtain an energy product of 45 MGOe or more, R is N
d, Pr 95 atomic% or more (or preferably several atomic% or less Dy, Ho, Tb 1 or more), R12
A composition of -15 atomic%, B5.5-8.0 atomic% and Fe77-82.5 atomic% is preferable. (It is preferable that the content of Sm and La be less than or equal to the content limit as impurities.) Here, a part of Fe is 23 atomic% or less with Co, or the additive element is about 1% or less.
Substitution can be at most atomic% (either or both)

なお,他の不純物Cu,C,O,S,Ca,Mg等につ
いては可及的に少ないことが好ましい。
It is preferable that the other impurities Cu, C, O, S, Ca, Mg, etc. be as small as possible.

以下に実施例を説明する。Examples will be described below.

実施例1 出発原料として純度99.9%の電解鉄,B19.4%を含有し
残部はFe及びC等の不純物からなるフエロボロン合
金,純度99.7%以上のNdを高周波溶解し,その後水冷
銅鋳型に鋳造し,冷却速度2000℃/minにて12.8Nd−6.
5B−80.7Fe(原子%)なる組成の鋳塊1kgを得た。
Example 1 Electrolytic iron having a purity of 99.9% as a starting material, a ferroboron alloy containing B19.4% with the balance being impurities such as Fe and C, Nd having a purity of 99.7% or more was melted by high frequency, and then cast in a water-cooled copper mold. At a cooling rate of 2000 ° C / min, 12.8 Nd-6.
1 kg of an ingot having a composition of 5B-80.7Fe (atomic%) was obtained.

前記鋳塊内に析出の軟磁性相のα−Fe相は20vol%であ
った。
The α-Fe phase of the soft magnetic phase precipitated in the ingot was 20 vol%.

前記鋳塊を1050℃に24Hrの溶体化処理を行って,鋳塊内
の軟磁性相のα−Fe相を消失させた後この鋳塊を50mm
以下に破断したのち,破断塊900gを,前記した第1図
の密閉容器内に挿入し,Arガスを10分間流入させて,
空気と置換し,2.5kgf/cm2のHガス圧力で10時間処
理した。
The ingot was subjected to solution treatment at 1050 ° C. for 24 hours to remove the α-Fe phase of the soft magnetic phase in the ingot, and then the ingot was cut to 50 mm.
After rupturing below, 900 g of the crushed mass was inserted into the above-mentioned closed container of FIG. 1 and Ar gas was allowed to flow in for 10 minutes,
The atmosphere was replaced with air, and the mixture was treated at a H 2 gas pressure of 2.5 kgf / cm 2 for 10 hours.

破断塊はH吸蔵により自然崩壊し,冷却した粗粒粉
を,真空中で3時間脱水素処理し,35メッシュスルーま
でに粗粉砕した。ついで,粗粉砕粉より採取した300g
をボールミルで湿式にて3時間の微粉砕を行ない,平均
粒度2.7μmの合金粉末を得た。なお,H吸蔵崩壊合
金粉末のα−Fe相は1vol%以下であった。
The fractured mass spontaneously disintegrated by H 2 occlusion, and the cooled coarse powder was subjected to dehydrogenation treatment in vacuum for 3 hours and coarsely pulverized to 35 mesh through. Then, 300g collected from coarsely crushed powder
Was finely pulverized for 3 hours in a ball mill to obtain alloy powder having an average particle size of 2.7 μm. The α-Fe phase of the H 2 occluding and disintegrating alloy powder was 1 vol% or less.

この合金粉末を用いて,磁界10kOe中で配向し,1.5t/cm
2にて加圧成形し,その後,1060℃,1時間,60Torrの
Ar中で焼結後放冷し,Ar中にて800℃×1Hr続いて6
30℃×1Hrの時効処理を行って永久磁石を作製した。こ
の際用いたAr中の不純物は酸素100ppm以下とした。
Using this alloy powder, oriented in a magnetic field of 10 kOe, 1.5 t / cm
Press-molded at 2 , then sintered at 1060 ℃ for 1 hour in 60 Torr of Ar and allowed to cool, then 800 ℃ × 1Hr in Ar, then 6
An aging treatment of 30 ° C. × 1 Hr was performed to produce a permanent magnet. Impurities in Ar used at this time were 100 ppm or less of oxygen.

永久磁石の磁気特性は, Br=14.5kG,iHc=8.8kOe,(BH)max=50.6MGOe,
bHc=8.4kOeであった。
The magnetic characteristics of the permanent magnet are: Br = 14.5kG, iHc = 8.8kOe, (BH) max = 50.6MGOe,
bHc = 8.4 kOe.

比較のため,同一組成の鋳塊を溶体化処理しないで,こ
の鋳塊を50mm以下に破断したのち,実施例1と同一重量
の破断塊を前記第1図の密閉容器内に装入して,実施例
1の同一条件にてHガスを送入して,H粉砕を行っ
たが,前記破断塊はH吸蔵による自然崩壊は生ぜず,
粉砕することはできなかった。この鋳塊を用いてH
粉砕法を用いずに,機械的粉砕(ボールミル)を行っ
て得た合金粉末を用いて,その他実施例1と同様な条件
にて永久磁石を作成した結果は次の通りであった。
For comparison, an ingot of the same composition was not subjected to solution treatment, this ingot was broken to 50 mm or less, and then a broken ingot of the same weight as in Example 1 was placed in the closed container shown in FIG. H 2 gas was fed under the same conditions as in Example 1 to carry out H 2 crushing, but the fractured mass did not spontaneously collapse due to H 2 occlusion,
It was not possible to mill H 2 . H using this ingot
The following was the result of producing a permanent magnet under the same conditions as in Example 1 except that the alloy powder obtained by performing mechanical pulverization (ball mill) was used without using the 2 pulverization method.

Br=14.2kG,iHc=6.2kOe,(BH)max=28.5MGOe,
bHc=5.3kOe。
Br = 14.2kG, iHc = 6.2kOe, (BH) max = 28.5MGOe,
bHc = 5.3 kOe.

実施例2 出発原料として実施例1と同一の電解鉄,フエロボロン
合金,Nd金属と純度99.7%以上のDy金属を高周波溶
解し,その後水冷鋳型に鋳造し,12.75Nd−0.25Dy
−6.5B−80.5Fe(原子%)なる組成の鋳塊1kgを得
た。
Example 2 As starting materials, the same electrolytic iron, ferroboron alloy, Nd metal, and Dy metal having a purity of 99.7% or more as in Example 1 were high-frequency melted, and then cast in a water-cooled mold to obtain 12.75Nd-0.25Dy.
1 kg of an ingot having a composition of -6.5B-80.5Fe (atomic%) was obtained.

前記鋳塊内に析出の軟磁性相のα−Fe相は15vol%であ
った。
The α-Fe phase of the soft magnetic phase precipitated in the ingot was 15 vol%.

前記鋳塊を1050℃にて24Hrの溶体化処理を行って,鋳塊
内の軟磁性相のα−Fe相を消失させた後,前記鋳塊を
50mm以下に破断し,次いで実施例1と同一の密閉容器内
にて同一条件にてH粉砕後,平均粒度2.8μmに微粉
砕した。その後実施例1と同一の成型条件,焼結条件,
時効処理条件にて永久磁石を作製した。
The ingot is subjected to solution treatment at 1050 ° C. for 24 hours to remove the α-Fe phase of the soft magnetic phase in the ingot, and then the ingot is
After breaking to 50 mm or less, H 2 was ground in the same closed container as in Example 1 under the same conditions, and then finely ground to an average particle size of 2.8 μm. After that, the same molding conditions and sintering conditions as in Example 1,
A permanent magnet was produced under the aging treatment conditions.

得られた永久磁石の磁気特性は, Br=13.9kG,iHc=11.0kOe,(BH)max=45.3MGOe,
bHc=10.3kOeであった。
The magnetic properties of the obtained permanent magnet are Br = 13.9kG, iHc = 11.0kOe, (BH) max = 45.3MGOe,
bHc = 10.3 kOe.

比較のために,同一組成の鋳塊を溶体化処理しないで,
この鋳塊を50mm以下に破断したのち,実施例1の第1図
と同一の密閉容器内に破断塊を装入して,実施例1と同
一条件にてHガスを送入して,H粉砕を行ったが,
前記破断塊はH吸蔵による自然崩壊は生ぜず,H
砕することはできなかった。
For comparison, ingots of the same composition were not solution treated,
After breaking this ingot to 50 mm or less, the broken ingot was placed in the same closed container as in FIG. 1 of Example 1, and H 2 gas was fed under the same conditions as in Example 1, It was subjected to H 2 pulverization,
The crushed mass did not spontaneously disintegrate due to H 2 occlusion, and could not be pulverized into H 2 .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のH粉砕方法に用いる装置の一例を示
す。
FIG. 1 shows an example of an apparatus used in the H 2 pulverizing method of the present invention.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 (72)発明者 藤村 節夫 大阪府三島郡本町江川2丁目15―17 住友 特殊金属株式会社山崎製作所内 (72)発明者 佐川 眞人 大阪府三島郡本町江川2丁目15―17 住友 特殊金属株式会社山崎製作所内Continuation of front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 1/06 (72) Inventor Setsuo Fujimura 2-15-17 Egawa, Honmachi, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki (72) Inventor Masato Sagawa 2-15-17 Egawa, Honmachi, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Manufacturing Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】R(但し、RはNdとPrの1種又は2種
を80%以上、残部はNd、Prを除く、Yを含む希土類
元素の少くとも1種)12原子%〜19.0原子%、B5.5原
子%〜8.5原子%、Fe72.5原子%〜82.5原子%を主成
分とし、且つ(0.4×R量+B量)≦13.2原子%を満足
しH2吸蔵崩壊させて成る実質上Fe軟磁性相を含まな
いことを特徴とする希土類・ボロン・鉄系正方晶合金粉
末。
1. R (provided that R is 80% or more of one or two of Nd and Pr, and the balance is at least one rare earth element including Y excluding Nd and Pr) 12 atom% to 19.0 atoms %, B5.5 at% to 8.5 at%, Fe72.5 at% to 82.5 at% as the main components, and (0.4 × R amount + B amount) ≦ 13.2 at% is satisfied and H 2 is occluded and collapsed. A rare earth / boron / iron-based tetragonal alloy powder characterized by not containing an upper Fe soft magnetic phase.
【請求項2】R(但し、RはNdとPrの1種又は2種
を80%以上、残部はNd、Prを除く、Yを含む希土類
元素の少くとも1種)12原子%〜19.0原子%、B5.5原
子%〜8.5原子%、Fe72.5原子%〜82.5原子%(但し
Feの一部を合金組成の30原子%以上のCo(Co0%
を除く)で置換する)を主成分とし、且つ(0.4×R量
+B量)≦13.2原子%を満足しH2吸蔵崩壊させて成る
実質上Fe軟磁性相を含まないことを特徴とする希土類
・ボロン・鉄系正方晶合金粉末。
2. R (provided that R is 80% or more of one or two of Nd and Pr, and the balance is at least one rare earth element including Y excluding Nd and Pr) 12 atom% to 19.0 atoms %, B 5.5 at.% To 8.5 at.%, Fe 72.5 at.% To 82.5 at.% (However, a part of Fe is 30 at.% Or more of the alloy composition of Co (Co 0%
A main component replaces) at excluded), and (rare earth, characterized in that does not include the 0.4 × R amount + B amount) satisfies ≦ 13.2 atomic percent consisting by H 2 occlusion decay substantially Fe soft magnetic phases・ Boron-iron tetragonal alloy powder.
【請求項3】R(但し、RはNdとPrの1種又は2種
を80%以上、残部はNd、Prを除く、Yを含む希土類
元素の少くとも1種)12原子%〜19.0原子%、B5.5原
子%〜8.5原子%、Fe72.5原子%〜82.5原子%(但し
Feの一部を合金組成の2原子%以上(0%を除く)の
Ti、V、Cr、Zr、Hf、Nb、Ta、Mo、W、
Al、Siの内1種以上から成る添加金属で置換する)
を主成分とし、且つ(0.4×R量+B量)≦13.2原子%
を満足しH2吸蔵崩壊させて成る実質上Fe軟磁性相を
含まないことを特徴とする希土類・ボロン・鉄系正方晶
合金粉末。
3. R (provided that R is 80% or more of one or two of Nd and Pr, and the balance is at least one rare earth element including Y excluding Nd and Pr) 12 atom% to 19.0 atoms %, B 5.5 atomic% to 8.5 atomic%, Fe 72.5 atomic% to 82.5 atomic% (however, a part of Fe is 2 atomic% or more of the alloy composition (excluding 0%) of Ti, V, Cr, Zr, Hf, Nb, Ta, Mo, W,
Substitute with an additive metal composed of at least one of Al and Si)
And (0.4 x R amount + B amount) ≤ 13.2 atom%
And a tetragonal alloy powder containing a rare earth / boron / iron system which is substantially free of an Fe soft magnetic phase obtained by occluding and disintegrating H 2 .
【請求項4】R(但し、RはNdとPrの1種又は2種
を80%以上、残部はNd、Prを除く、Yを含む希土類
元素の少くとも1種)12原子%〜19.0原子%、B5.5原
子%〜8.5原子%、Fe72.5原子%〜82.5原子%(但し
Feの一部を合金組成の30原子%以下のCo及び合金組
成の2原子%以下のTi、V、Cr、Zr、Hf、N
b、Ta、Mo、W、Al、Siの内1種以上から成る
添加金属(Co及び添加金属0%を除く)で置換する)
を主成分とし、且つ(0.4×R量+B量)≦13.2原子%
を満足しH2吸蔵崩壊させて成る実質上Fe軟磁性相を
含まないことを特徴とする希土類・ボロン・鉄系正方晶
合金粉末。
4. R (provided that R is 80% or more of one or two of Nd and Pr, and the balance is at least one rare earth element including Y excluding Nd and Pr) 12 atom% to 19.0 atoms %, B 5.5 atomic% to 8.5 atomic%, Fe 72.5 atomic% to 82.5 atomic% (however, a part of Fe is 30 atomic% or less of the alloy composition of Co and 2 atomic% or less of the alloy of Ti, V, Cr, Zr, Hf, N
b, Ta, Mo, W, Al, Si added metal consisting of one or more (replace with Co and 0% added metal) to replace)
And (0.4 x R amount + B amount) ≤ 13.2 atom%
And a tetragonal alloy powder containing a rare earth / boron / iron system which is substantially free of an Fe soft magnetic phase obtained by occluding and disintegrating H 2 .
【請求項5】(i)R(但し、RはNdとPrの1種又は
2種を80%以上、残部はNd、Prを除く、Yを含む希
土類元素の少くとも1種)12原子%〜19.0原子%、B5.
5原子%〜8.5原子%、Fe72.5原子%〜82.5原子%を主
成分とし、且つ(0.4×R量+B量)≦13.2原子%を満
足する合金を700℃〜1160℃に溶体化処理する工程、 (ii)該合金を金属面が露出するように破断する工程、 (iii)破断物を密閉容器に収容し、該容器内にH2ガスを
供給して、該合金をH2吸蔵崩壊させる工程、 (iv)崩壊合金粉をさらに微粉砕する工程から成ることを
特徴とする希土類・ボロン・鉄系永久磁石用合金粉末の
製造方法。
5. (i) R (provided that R is 80% or more of one or two of Nd and Pr, and the balance is at least one of rare earth elements including Y excluding Nd and Pr) 12 atomic% ~ 19.0 atomic%, B5.
An alloy containing 5 atomic% to 8.5 atomic% and Fe72.5 atomic% to 82.5 atomic% as main components and satisfying (0.4 × R amount + B amount) ≦ 13.2 atomic% is subjected to solution treatment at 700 ° C. to 1160 ° C. Step, (ii) Step of breaking the alloy so that the metal surface is exposed, (iii) Housing the broken object in a closed container, and supplying H 2 gas into the container to absorb and collapse the alloy by H 2 And (iv) a step of further finely crushing the collapsed alloy powder, a method for producing an alloy powder for a rare earth / boron / iron-based permanent magnet.
【請求項6】前記Feの一部を合金組成の30原子%以下
のCoにより置換することを特徴とする請求の範囲第5
項記載の製造方法。
6. The method according to claim 5, wherein a part of the Fe is replaced by Co of 30 atomic% or less of the alloy composition.
The manufacturing method according to the item.
【請求項7】前記Feの一部を合金組成の2原子%以下
のTi、V、Cr、Zr、Hf、Nb、Ta、Mo、
W、Al、Siの内1種以上から成る添加金属により置
換することを特徴とする請求の範囲第5項または第6項
記載の製造方法。
7. A part of the Fe is Ti, V, Cr, Zr, Hf, Nb, Ta, Mo which is 2 atomic% or less of the alloy composition.
7. The manufacturing method according to claim 5 or 6, characterized in that the replacement is performed with an additive metal consisting of one or more of W, Al and Si.
JP60162610A 1985-07-23 1985-07-23 Alloy powder for rare earth magnets and method for producing the same Expired - Lifetime JPH0617481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162610A JPH0617481B2 (en) 1985-07-23 1985-07-23 Alloy powder for rare earth magnets and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162610A JPH0617481B2 (en) 1985-07-23 1985-07-23 Alloy powder for rare earth magnets and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6223902A JPS6223902A (en) 1987-01-31
JPH0617481B2 true JPH0617481B2 (en) 1994-03-09

Family

ID=15757870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162610A Expired - Lifetime JPH0617481B2 (en) 1985-07-23 1985-07-23 Alloy powder for rare earth magnets and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0617481B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233402A (en) * 1985-08-07 1987-02-13 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS6242403A (en) * 1985-08-19 1987-02-24 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
KR880013194A (en) * 1987-04-06 1988-11-30 원본미기재 Permanent magnet and its manufacturing method
JPS647235U (en) * 1987-06-26 1989-01-17
JPH0682575B2 (en) * 1987-08-19 1994-10-19 三菱マテリアル株式会社 Rare earth-Fe-B alloy magnet powder
JPS6448406A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Magnet powder for sintering rare earth-iron-boron and manufacture thereof
JPS6448403A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Rare earth-iron-boron magnet powder and manufacture thereof
JP2564492B2 (en) * 1987-10-13 1996-12-18 三菱マテリアル株式会社 Manufacturing method of rare earth-Fe-B cast permanent magnet
JP2623731B2 (en) * 1988-07-29 1997-06-25 三菱マテリアル株式会社 Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH03214606A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH03214605A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
GB9111008D0 (en) * 1991-05-21 1991-07-10 Rig Technology Ltd Improvements in and relating to particle detection and analysis
CN101826386A (en) * 2010-04-28 2010-09-08 天津天和磁材技术有限公司 Components and manufacturing process of rare earth permanent magnet material

Also Published As

Publication number Publication date
JPS6223902A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
KR910001065B1 (en) Permanent magnet
JPH0340082B2 (en)
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
JPH0617481B2 (en) Alloy powder for rare earth magnets and method for producing the same
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPH0424401B2 (en)
JPH064885B2 (en) Production method of alloy powder for rare earth / boron / iron-based permanent magnet
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JPS60159152A (en) Permanent magnet alloy
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPS61207545A (en) Manufacture of permanent magnet material
JPH0467324B2 (en)
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JPH1154351A (en) Manufacture of r-fe-b rare earth permanent magnet and r-fe-b rare earth permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JPH0477066B2 (en)
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JPH0796694B2 (en) Method of manufacturing permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term