JP3664519B2 - Method for producing active cathode - Google Patents

Method for producing active cathode Download PDF

Info

Publication number
JP3664519B2
JP3664519B2 JP13016895A JP13016895A JP3664519B2 JP 3664519 B2 JP3664519 B2 JP 3664519B2 JP 13016895 A JP13016895 A JP 13016895A JP 13016895 A JP13016895 A JP 13016895A JP 3664519 B2 JP3664519 B2 JP 3664519B2
Authority
JP
Japan
Prior art keywords
nickel
cathode
active cathode
solution
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13016895A
Other languages
Japanese (ja)
Other versions
JPH08325774A (en
Inventor
剛陸 岸
修 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP13016895A priority Critical patent/JP3664519B2/en
Priority to EP96108512A priority patent/EP0745700A1/en
Publication of JPH08325774A publication Critical patent/JPH08325774A/en
Application granted granted Critical
Publication of JP3664519B2 publication Critical patent/JP3664519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Description

【0001】
【産業上の利用分野】
本発明は、水溶液電気分解用の低水素過電圧陰極に関し、とくにアルカリ金属ハロゲン化物水溶液、アルカリ金属水酸化物水溶液を低水素過電圧で電気分解することができる陰極の製造法に関する。
【0002】
【従来の技術】
隔膜法、イオン交換膜法等でアルカリ金属ハロゲン化物水溶液を電気分解したり、あるいはアルカリ金属水酸化物水溶液を電気分解する水溶液の電気分解においては、陰極では水素が発生する。従来、陰極には軟鉄を主体とする材料が使用されていた。しかし、軟鉄は水素過電圧が高いという欠点があり、水素過電圧の低い種々の電極が活性陰極として提案されている。活性陰極とは従来使用されてきた軟鉄を主体とする材料の過電圧より低い水素過電圧を示す陰極を意味している。活性陰極には、ニッケル、コバルト、白金族元素の単体又は混合物の金属又は酸化物が電極触媒物質として使用されている。また陰極基体へのこれらの電極触媒物質の形成方法としては、電気めっき法、無電解めっき法、分散電気めっき法、溶射法、浸漬法等が提案されている。
【0003】
活性陰極には、水素過電圧が低く、電解槽の運転停止時やイオン交換膜等の交換のために電解槽から取り出した際に劣化しないことが要求され、また、イオン交換膜法電解槽でイオン交換膜に密着して使用した場合にも電極触媒物質によってイオン交換膜の汚染が起こらず、しかも製造コストが安価なことが要求されている。
【0004】
これまでに提案されている活性陰極には、ラネーニッケルをニッケルとアルミニウムの複合めっきにより形成した活性陰極(特公昭60−15712号、特公昭60−15713号、特公昭61−36590号、特公昭61−36591号)やラネーニッケルと水素吸蔵合金を複合めっきした活性陰極(特公昭61−12032号)が知られている。これらの電極は、水素過電圧が低いという特性を有しているものの、複合めっきした陰極基体を電解室枠に溶接する場合、陰極材料にアルミニウムが存在することにより強固な溶接ができないという欠点があった。また、アルミニウム分をアルカリ処理で溶出させて除去した後に陰極基体を電解室枠に溶接する場合、電極触媒が空気中で酸化されて劣化し、低い過電圧が得られないという欠点があった。
【0005】
【発明が解決しようとする課題】
本発明は、従来のアルミニウムを含む複合めっきによって形成した活性陰極にみられるような溶接上の問題点、あるいは空気中での酸化による電極触媒の劣化を防止した活性陰極を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明は、活性陰極の製造方法において、導電性基体上にニッケルアルミニウム合金を含む被膜を形成した後に、アルカリによってアルミニウムを溶出した後に、酸化剤溶液に浸漬して活性陰極を安定化する活性陰極の製造方法である。
【0007】
また、酸化剤溶液が過酸化物、過炭酸塩、過ほう酸塩から選ばれる少なくとも1種を含む溶液である前記の活性陰極の製造方法である。
【0008】
すなわち、本発明は、ニッケルアルミニウム合金を含む被膜をめっきによって形成の後に、アルミニウム分をアルカリによって溶解除去し、次いで酸化剤溶液に浸漬して活性の高い電極表面を薄く緻密な安定化膜で覆うことにより、保存時あるいは電極枠体への取り付け加工時の電極の安定化をはかるものである。
【0009】
金属基体上にニッケルアルミニウム合金を含む被膜をめっきによって形成し、アルカリでアルミニウム分の溶出処理を行ったものは、電極としての活性が高く、乾燥状態では空気中の酸素と速やかに反応し活性が劣化する。そこで、電極表面に薄く緻密な安定化膜を形成することによって、電極性能を実質的に低下することなく電極の劣化が防止可能であることを見いだしたものである。
電極表面上への保護膜の形成は、水酸化ニッケルが好ましく、ニッケルアルミニウム複合合金からアルカリでアルミニウムを溶出した後に、酸化剤溶液に浸漬するものである。
【0010】
本発明の活性陰極は、ニッケルとアルミニウムからなる被膜を基体上に形成した後に、アルカリによってアルミニウムを溶出した広大な面積を有すニッケルを主体としたラネーニッケルと称される電極触媒を形成したものである。従来、触媒等に使用するラネーニッケルを安定化する方法としては酸素を数%含有する窒素又は炭酸ガス中に7日間程度の期間放置し、徐々に表面に酸化ニッケルを形成して表面を覆う乾式による安定化方法が知られていた。この方法は安定化処理に時間を要し、生産性等の面で好ましくなく工業的な生産には適さないものであった。
これに対して、本発明はラネーニッケルの表面を水酸化ニッケルで覆うことにより安定化させるものである。従来、ラネーニッケルを有する活性陰極が通電停止時の逆電流などにより酸化して劣化した場合、活性陰極の表面には水酸化ニッケルが生成することは知られていたが、ラネーニッケルの表面を水酸化ニッケルの薄膜で覆うことによりラネーニッケルを安定化させることは知られていなかった。
【0011】
本発明の活性陰極の基体には、ステスンレス鋼、ニッケル、鉄鋼にニッケルやコバルトをメッキしたもの等が使用できる。また、基体の構造としては、平板状、エキスパンデッドメタル状、穿孔板状、網状、棒状等を使用することができる。 本発明の活性陰極の酸化剤溶液による処理は、電極基体上にニッケルアルミニウム合金を含む被膜をめっきによって形成した後に、アルカリ中においてアルミニウムを溶出除去した活性陰極を酸化剤溶液に浸漬し安定化するものである。酸化剤溶液には、過酸化水素水、あるいはアルカリ金属過酸化物等の過酸化物、アルカリ金属過炭酸塩、アルカリ金属過ほう酸塩などをアルカリ性水に溶解したものがよい。塩を水に溶解した場合にアルカリ性を示す特性のものはアルカリ性水を使用する必要はなく、水を使用すればよい。また、アルカリ性水としては、アルカリ金属水酸化物、アルカリ金属炭酸塩あるいはアルカリ金属ほう酸塩の水溶液を使用することができ、その水溶液のpHは、8以上、より好ましくは9以上13以下である。
【0012】
本発明で使用する酸化剤溶液の酸化剤濃度は、有効酸素濃度として0.5〜10g/l、好ましくは1〜5g/lである。有効酸素濃度とは、ヨウ素滴定で求めた酸素の量をg/lで表現したものをいう。有効酸素濃度が0.5g/lより小さい場合には安定化処理に時間を要し、安定化が不十分になることが生じ好ましくない。
本発明で使用する酸化剤溶液のpHは7以上14未満、好ましくは10〜13である。酸化剤溶液のpHが7より低いとラネーニッケル表面に生成する水酸化ニッケルの一部が溶解し安定化作用が減少するので好ましくない。
【0013】
また、本発明で使用する酸化剤溶液の量は、処理する陰極材の投影面積1平方メートル当たり10〜300リットルがよい。酸化剤溶液の量が10リットルより少ない場合は、多数枚同時に処理する場合、陰極がお互いに接触し易くうまく処理槽にセットできにくくなるので好ましくない。
【0014】
また、本発明における陰極の酸化剤溶液による処理は、処理液の温度10〜30℃、5〜30分間とすることが好ましい。処理温度が10℃未満あるいは、処理時間が5分間未満の場合は、安定化処理が不完全になり好ましくない。一方、処理温度が30℃より高い場合、あるいは処理時間が30分より長い場合は、被膜の形成がすすみ、陰極としての活性が低下するという問題があり好ましくない。
【0015】
【実施例】
以下に実施例を示し、本発明を説明する。
実施例1及び比較例1
ニッケル製エキスパンデッドメタル(20mm×20mm)を水酸化ナトリウム水溶液で脱脂後、水洗しさらに濃塩酸を等量の水で希釈した液でエッチングした。水洗後、以下の組成の粒径25μmのニッケル−アルミニウム合金粒子を含有したニッケルを含有する電極触媒層を形成した。

Figure 0003664519
ニッケルめっきによって被膜を形成した電極基体を水洗後、温度を70〜80℃に保持した20重量%の水酸化ナトリウム水溶液中に2時間浸漬し、アルミニウム分を除去した。このようにして得られた20個の試料について、12個は表1に記載する条件で過酸化水素による安定化処理をした。
【0016】
安定化処理後の陰極は、イオン交換膜電解槽に取り付けて通電した場合の水素過電圧によって評価を行った。水素過電圧測定用電解槽は、陽極に食塩電解用不溶性電極(ペルメレック電極社製)、イオン交換膜にナフィオン954(デュポン社製)を使用し、温度80℃、濃度200g/lの食塩水を陽極液とし、32重量%水酸化ナトリウム水溶液を陰極液として、電流密度30A/dm2 の条件において、水銀−酸化水銀電極を参照電極に用いて、カレントインタラプター法で測定した。また、水素過電圧測定後の試料を水洗し、水酸化ナトリウム分を除去してから、室温で12時間空気中に放置後、再度水素過電圧を測定した。放置前後の水素過電圧の値を表1に示す。比較例として、酸化剤による処理によって安定化をしていない試料の水素過電圧を試料番号13として表1に示す。
【0017】
【表1】
Figure 0003664519
【0018】
過酸化水素濃度は有効酸素濃度として表した。また、浸漬液量は総て50リットル/平方メートル(投影面積)とした。
【0019】
実施例2
実施例1で作製した試料の残りを過酸化水素以外の酸化剤水溶液に浸漬した。酸化剤の有効酸素濃度は3g/lで一定とし、また、浸漬液量は総て50リットル/平方メートル(投影面積)とした。酸化剤に浸漬した試料を水洗し、酸化剤を除去してから、実施例1と同様にして水素過電圧を測定して評価を行った。次いで、試料の活性陰極を取り出した後に、室温で12時間空気中に放置後、再度水素過電圧を測定した。放置前後の水素過電圧の値を表2に示す。
【0020】
【表2】
Figure 0003664519
【0021】
【発明の効果】
本発明により従来取り扱いが困難とされていたラネーニッケル系の陰極を空気中で問題なく取り扱えるようになった。酸化剤溶液の使用による湿式の処理方法であるので活性陰極の酸化処理による安定化を短時間に行うことが可能である。また、活性陰極中のアルミニウムを予めアルカリ処理で溶出したので電極枠への溶接が可能となり、さらに電解開始時に活性陰極からアルミニウムで溶出して水酸化ナトリウムを汚染するという問題も回避することができる。[0001]
[Industrial application fields]
The present invention relates to a low hydrogen overvoltage cathode for aqueous solution electrolysis, and more particularly to a method for producing a cathode capable of electrolyzing an aqueous alkali metal halide solution and an aqueous alkali metal hydroxide solution with low hydrogen overvoltage.
[0002]
[Prior art]
In electrolysis of an aqueous solution of an alkali metal halide or electrolysis of an aqueous solution of an alkali metal hydroxide by a diaphragm method, an ion exchange membrane method or the like, hydrogen is generated at the cathode. Conventionally, a material mainly composed of soft iron has been used for the cathode. However, soft iron has a drawback of high hydrogen overvoltage, and various electrodes with low hydrogen overvoltage have been proposed as active cathodes. The active cathode means a cathode exhibiting a hydrogen overvoltage lower than that of a material mainly composed of soft iron that has been conventionally used. For the active cathode, a metal or oxide of simple substance or mixture of nickel, cobalt and platinum group elements is used as an electrocatalyst material. In addition, as a method for forming these electrocatalyst materials on the cathode substrate, an electroplating method, an electroless plating method, a dispersion electroplating method, a thermal spraying method, a dipping method, and the like have been proposed.
[0003]
The active cathode is required to have a low hydrogen overvoltage and not deteriorate when the electrolytic cell is shut down or removed from the electrolytic cell for replacement of the ion exchange membrane, etc. Even when used in close contact with the exchange membrane, it is required that the electrode catalyst material does not contaminate the ion exchange membrane and that the production cost is low.
[0004]
The active cathodes proposed so far include active cathodes formed by Raney nickel composite plating of nickel and aluminum (Japanese Patent Publication Nos. 60-15712, 60-15713, 61-36590, 61-61). -36591) and an active cathode (Japanese Patent Publication No. 61-12032) in which Raney nickel and a hydrogen storage alloy are composite-plated are known. Although these electrodes have a characteristic that the hydrogen overvoltage is low, there is a drawback that when the composite-plated cathode base is welded to the electrolytic chamber frame, strong welding cannot be performed due to the presence of aluminum in the cathode material. It was. Further, when the cathode base is welded to the electrolytic chamber frame after the aluminum component is eluted and removed by alkali treatment, the electrode catalyst is oxidized and deteriorated in the air, so that a low overvoltage cannot be obtained.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to provide an active cathode which prevents welding problems such as those found in active cathodes formed by composite plating containing conventional aluminum or deterioration of the electrocatalyst due to oxidation in air. To do.
[0006]
[Means for Solving the Problems]
The present invention relates to an active cathode manufacturing method in which, after forming a coating containing a nickel aluminum alloy on a conductive substrate, aluminum is eluted with an alkali and then immersed in an oxidant solution to stabilize the active cathode. It is a manufacturing method.
[0007]
Moreover, it is the manufacturing method of the said active cathode whose oxidizing agent solution is a solution containing at least 1 sort (s) chosen from a peroxide, a percarbonate, and a perborate.
[0008]
That is, in the present invention, after forming a coating containing a nickel aluminum alloy by plating, the aluminum content is dissolved and removed by alkali, and then immersed in an oxidant solution to cover the surface of the highly active electrode with a thin and dense stabilization film. Thus, the electrode is stabilized during storage or attachment to the electrode frame.
[0009]
A coating containing a nickel-aluminum alloy formed on a metal substrate and plated with an aluminum component is highly active as an electrode. In a dry state, it reacts quickly with oxygen in the air and is active. to degrade. Thus, it has been found that by forming a thin and dense stabilizing film on the electrode surface, it is possible to prevent the electrode from deteriorating without substantially degrading the electrode performance.
The formation of the protective film on the electrode surface is preferably nickel hydroxide, and the aluminum is eluted from the nickel-aluminum composite alloy with an alkali and then immersed in an oxidant solution.
[0010]
The active cathode of the present invention is formed by forming an electrode catalyst called Raney nickel mainly composed of nickel having a large area in which aluminum is eluted by alkali after forming a coating made of nickel and aluminum on a substrate. is there. Conventionally, as a method for stabilizing Raney nickel used for a catalyst or the like, it is left by standing in a nitrogen or carbon dioxide gas containing several percent of oxygen for a period of about 7 days, and nickel oxide is gradually formed on the surface to cover the surface. A stabilization method was known. This method requires time for the stabilization treatment and is not preferable in terms of productivity and is not suitable for industrial production.
In contrast, the present invention stabilizes the surface of Raney nickel by covering it with nickel hydroxide. Conventionally, it has been known that when an active cathode having Raney nickel is oxidized and deteriorated due to reverse current when the current is stopped, nickel hydroxide is generated on the surface of the active cathode. It was not known to stabilize Raney nickel by covering it with a thin film.
[0011]
For the active cathode substrate of the present invention, stainless steel, nickel, steel plated with nickel or cobalt, or the like can be used. Moreover, as the structure of the substrate, a flat plate shape, an expanded metal shape, a perforated plate shape, a net shape, a rod shape, or the like can be used. In the treatment of the active cathode of the present invention with an oxidant solution, a coating containing a nickel-aluminum alloy is formed on the electrode substrate by plating, and then the active cathode from which aluminum is eluted and removed in an alkali is immersed in the oxidant solution and stabilized. Is. The oxidant solution is preferably a solution obtained by dissolving hydrogen peroxide, peroxide such as alkali metal peroxide, alkali metal percarbonate, alkali metal perborate, etc. in alkaline water. Those having the property of showing alkalinity when the salt is dissolved in water do not need to use alkaline water, and water may be used. Moreover, as alkaline water, the aqueous solution of an alkali metal hydroxide, an alkali metal carbonate, or an alkali metal borate can be used, The pH of the aqueous solution is 8 or more, More preferably, it is 9 or more and 13 or less.
[0012]
The oxidizing agent concentration of the oxidizing agent solution used in the present invention is 0.5 to 10 g / l, preferably 1 to 5 g / l as the effective oxygen concentration. The effective oxygen concentration refers to the amount of oxygen determined by iodometric titration expressed in g / l. When the effective oxygen concentration is less than 0.5 g / l, it takes time for the stabilization treatment, which is not preferable because the stabilization becomes insufficient.
The pH of the oxidizing agent solution used in the present invention is 7 or more and less than 14, preferably 10-13. If the pH of the oxidant solution is lower than 7, a part of nickel hydroxide formed on the Raney nickel surface is dissolved and the stabilizing action is decreased, which is not preferable.
[0013]
The amount of the oxidant solution used in the present invention is preferably 10 to 300 liters per square meter of the projected cathode material to be treated. When the amount of the oxidant solution is less than 10 liters, when a large number of sheets are processed at the same time, the cathodes are likely to come into contact with each other, making it difficult to set them in the processing tank.
[0014]
Moreover, it is preferable that the process by the oxidizing agent solution of the cathode in this invention shall be the temperature of 10-30 degreeC and 5 to 30 minutes of a process liquid. When the treatment temperature is less than 10 ° C. or the treatment time is less than 5 minutes, the stabilization treatment is incomplete, which is not preferable. On the other hand, when the processing temperature is higher than 30 ° C. or when the processing time is longer than 30 minutes, there is a problem that the formation of a coating proceeds and the activity as a cathode is lowered, which is not preferable.
[0015]
【Example】
The following examples illustrate the invention.
Example 1 and Comparative Example 1
Nickel expanded metal (20 mm × 20 mm) was degreased with an aqueous sodium hydroxide solution, washed with water, and etched with a solution obtained by diluting concentrated hydrochloric acid with an equal amount of water. After washing with water, an electrode catalyst layer containing nickel containing nickel-aluminum alloy particles having a particle size of 25 μm having the following composition was formed.
Figure 0003664519
The electrode substrate on which the film was formed by nickel plating was washed with water, and then immersed in a 20 wt% aqueous sodium hydroxide solution maintained at a temperature of 70 to 80 ° C. for 2 hours to remove the aluminum content. Of the 20 samples thus obtained, 12 were subjected to stabilization treatment with hydrogen peroxide under the conditions described in Table 1.
[0016]
The cathode after the stabilization treatment was evaluated by hydrogen overvoltage when it was attached to an ion exchange membrane electrolytic cell and energized. The electrolytic cell for measuring hydrogen overvoltage uses an insoluble electrode for salt electrolysis (manufactured by Permerek Electrode Co., Ltd.) as the anode and Nafion 954 (manufactured by DuPont) as the ion exchange membrane. Using a mercury-mercuric oxide electrode as a reference electrode under the conditions of a current density of 30 A / dm 2 using a 32 wt% aqueous sodium hydroxide solution as a catholyte, measurement was performed by a current interrupter method. The sample after the hydrogen overvoltage measurement was washed with water to remove the sodium hydroxide, left in the air for 12 hours at room temperature, and then the hydrogen overvoltage was measured again. Table 1 shows the values of the hydrogen overvoltage before and after being left. As a comparative example, the hydrogen overvoltage of a sample that has not been stabilized by treatment with an oxidizing agent is shown in Table 1 as sample number 13.
[0017]
[Table 1]
Figure 0003664519
[0018]
Hydrogen peroxide concentration was expressed as effective oxygen concentration. The total amount of immersion liquid was 50 liters / square meter (projected area).
[0019]
Example 2
The remainder of the sample produced in Example 1 was immersed in an aqueous oxidizing agent solution other than hydrogen peroxide. The effective oxygen concentration of the oxidizing agent was fixed at 3 g / l, and the total amount of immersion liquid was 50 liters / square meter (projected area). After the sample immersed in the oxidizing agent was washed with water and the oxidizing agent was removed, the hydrogen overvoltage was measured and evaluated in the same manner as in Example 1. Next, after removing the active cathode of the sample, it was left in the air at room temperature for 12 hours, and then the hydrogen overvoltage was measured again. Table 2 shows the values of the hydrogen overvoltage before and after being left.
[0020]
[Table 2]
Figure 0003664519
[0021]
【The invention's effect】
The present invention makes it possible to handle Raney nickel-based cathodes, which are conventionally difficult to handle, in the air without problems. Since it is a wet processing method using an oxidant solution, it is possible to perform stabilization by oxidizing the active cathode in a short time. Moreover, since the aluminum in the active cathode is eluted in advance by alkali treatment, welding to the electrode frame becomes possible, and further, the problem of elution with aluminum from the active cathode at the start of electrolysis and contamination of sodium hydroxide can be avoided. .

Claims (2)

活性陰極の製造方法において、導電性基体上にニッケルアルミニウム合金を含む被膜を形成した後に、アルカリによってアルミニウムを溶出した後に、酸化剤溶液に浸漬して活性陰極を安定化することを特徴とする活性陰極の製造方法。In an active cathode manufacturing method, after forming a coating containing a nickel-aluminum alloy on a conductive substrate, aluminum is eluted with an alkali and then immersed in an oxidizer solution to stabilize the active cathode Manufacturing method of a cathode. 酸化剤溶液が過酸化物、過炭酸塩、過ほう酸塩から選ばれる少なくとも1種を含む溶液であることを特徴とする請求項1記載の方法。2. The method according to claim 1, wherein the oxidant solution is a solution containing at least one selected from peroxides, percarbonates, and perborates.
JP13016895A 1995-05-29 1995-05-29 Method for producing active cathode Expired - Fee Related JP3664519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13016895A JP3664519B2 (en) 1995-05-29 1995-05-29 Method for producing active cathode
EP96108512A EP0745700A1 (en) 1995-05-29 1996-05-29 Method of making an active cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13016895A JP3664519B2 (en) 1995-05-29 1995-05-29 Method for producing active cathode

Publications (2)

Publication Number Publication Date
JPH08325774A JPH08325774A (en) 1996-12-10
JP3664519B2 true JP3664519B2 (en) 2005-06-29

Family

ID=15027654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13016895A Expired - Fee Related JP3664519B2 (en) 1995-05-29 1995-05-29 Method for producing active cathode

Country Status (2)

Country Link
EP (1) EP0745700A1 (en)
JP (1) JP3664519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034886A1 (en) 2004-07-19 2006-02-16 Uhde Gmbh Process for the preparation of nickel oxide surfaces with increased conductivity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015711B2 (en) * 1977-11-21 1985-04-20 昭和電工株式会社 Electrolysis method of alkaline chloride solution
US4384932A (en) * 1980-08-18 1983-05-24 Olin Corporation Cathode for chlor-alkali cells
US4595468A (en) * 1984-07-19 1986-06-17 Eltech Systems Corporation Cathode for electrolysis cell

Also Published As

Publication number Publication date
EP0745700A1 (en) 1996-12-04
JPH08325774A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US7232509B2 (en) Hydrogen evolving cathode
US7959774B2 (en) Cathode for hydrogen generation
JP4673628B2 (en) Cathode for hydrogen generation
SE447396B (en) ELECTRODES, IN PARTICULAR FOR ELECTROLYSIS OF WATER SOLUTIONS, PROCEDURE FOR MANUFACTURING THE ELECTRODES AND USE OF THEMSELVES
HU195679B (en) Electrode for electrochemical processis first of all for elctrochemical celles for producing halogenes and alkali-hydroxides and process for producing them
CA1158600A (en) Cathode for the production of hydrogen through electrolysis
JPS62501219A (en) Methods of manufacturing electrodes and their use in electrochemical processes
US5746896A (en) Method of producing gas diffusion electrode
JP3612365B2 (en) Active cathode and method for producing the same
US5035789A (en) Electrocatalytic cathodes and methods of preparation
JP7097042B2 (en) Electrode for chlorine generation
US4269670A (en) Electrode for electrochemical processes
US5227030A (en) Electrocatalytic cathodes and methods of preparation
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
JP3664519B2 (en) Method for producing active cathode
EP0131978A1 (en) Process for manufacturing an electrode for electrochemical processes, and cathode for the electrolytic production of hydrogen
JPH06340991A (en) Activated cathode for electrolytic cell and preparation thereof
US3986893A (en) Method for making nickel and cadmium electrodes for batteries
JP3167054B2 (en) Electrolytic cell
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
JP4100079B2 (en) Method for producing low hydrogen overvoltage cathode
JPH0681182A (en) Production of alkali hydroxide
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
JP2024010642A (en) Electrode for generating chlorine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees