JP3331306B2 - Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder - Google Patents

Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder

Info

Publication number
JP3331306B2
JP3331306B2 JP22157497A JP22157497A JP3331306B2 JP 3331306 B2 JP3331306 B2 JP 3331306B2 JP 22157497 A JP22157497 A JP 22157497A JP 22157497 A JP22157497 A JP 22157497A JP 3331306 B2 JP3331306 B2 JP 3331306B2
Authority
JP
Japan
Prior art keywords
powder
permanent magnet
iron
rare earth
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22157497A
Other languages
Japanese (ja)
Other versions
JPH1161205A (en
Inventor
卓 伊藤
忠雄 野村
武久 美濃輪
健 大橋
好夫 俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22157497A priority Critical patent/JP3331306B2/en
Publication of JPH1161205A publication Critical patent/JPH1161205A/en
Application granted granted Critical
Publication of JP3331306B2 publication Critical patent/JP3331306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子・電気機器産
業分野で有用な、希土類元素・鉄・ボロン系永久磁石合
金粉末の製造方法と、その方法で製造される永久磁石合
金粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth element / iron / boron permanent magnet alloy powder useful in the field of electronic and electrical equipment, and a permanent magnet alloy powder produced by the method. is there.

【0002】[0002]

【従来の技術】R(RはYを含む希土類元素の1種以
上)、Fe、Co、Bからなる永久磁石、特にRとしてNdを
主成分とする希土類磁石は、その磁気特性の高さから電
子・電気機器産業の分野において、広く利用されてい
る。そのR、Fe、Co、Bからなる永久磁石の製造方法と
して、還元拡散法(R&D 法)または共還元法と呼ばれる
方法がある。これは、 原料として、Rの酸化物粉末、Fe、Co、Bの酸化物
またはこれらの金属または合金粉末(例えばフェロボロ
ン)、さらに還元剤となるCaまたはCa合金の粉末を、所
要組成に応じて混合する。 この混合物を 850〜1200℃で加熱還元することによ
って金属合金を生成させる。 生成物を水洗してCaO 及び未反応のCaをCa(OH)2
形で取り除く。 得られた粉末を真空乾燥して、合金粉末を得る。 というものである。この合金製造法において、還元拡散
反応を行う温度で液体となっている還元剤となるCaまた
はCa合金を除いて、原料として使用する粉末は、粒径が
大きいほど、得られる合金粉末の粒径も大きくなる。そ
の結果、焼結磁石を作製する際に行う粉砕工程の効率が
落ちる。また原料粉末の混合物が不均一となり、磁気特
性を低下させる原因となる粗大なFe、Coその他の強磁性
合金の析出も起こりやすくなる。一方、原料粉末の粒径
が小さいと、均質な原料粉末の混合物が得られ、反応で
作製される合金粉末の粒径も小さくなると同時に均質に
なり、その結果、磁気特性も上がることが期待できる。
しかし実際に乾式で混合を行う場合、原料粉末の粒径が
小さくなると粉末に含まれる水分が多くなり、原料の秤
量誤差が問題になり、同時に液体架橋、静電引力、ファ
ンデルワールス力等により原料粉末の凝集が起こるよう
になる。凝集が起こると、結果的に大きな粒子を使った
場合と同じになる。従って、従来の還元拡散法では、得
られる合金粉末の粒径をあまり小さくできず、また一部
に粗大なFe、Coその他の強磁性合金が析出する。この析
出を防ぐために、予め過剰にRを入れておくこともある
が、これはコスト的に余り好ましくない。最近の高性能
永久磁石探索において、数多くの研究がなされてきた
が、Nd2Fe14 Bの飽和磁化 1.6Tを超える化合物は発見
されていない。しかし最近メルトスパン法やメカニカル
アロイング法により作製された、Nd2Fe14 B/Fe、Nd2F
e14B/Fe3 B、Sm2Fe173 /Fe等のナノスケールの
ソフト相と、ハード相の複合材料において、二つの相が
磁気的に交換結合し、あたかも単一のハード相であるか
のような減磁曲線が得られており、注目されている。こ
れらは、減磁曲線において、磁化が外部磁界の変化に対
し可逆的にスプリングバックする特異な挙動を示すた
め、交換スプリング磁石と呼ばれている。これは、逆磁
界によりソフト相の内部が磁化反転しても、ハード相と
の交換結合により、逆磁界を取り除くと元に戻るからで
ある。
2. Description of the Related Art Permanent magnets composed of R (R is one or more rare earth elements including Y), Fe, Co, and B, particularly rare earth magnets mainly composed of Nd as R, have high magnetic properties. It is widely used in the field of electronic and electrical equipment industries. As a method of manufacturing a permanent magnet made of R, Fe, Co, and B, there is a method called a reduction diffusion method (R & D method) or a co-reduction method. This is because, as raw materials, R oxide powder, Fe, Co, B oxide or a metal or alloy powder thereof (eg, ferroboron), and a Ca or Ca alloy powder as a reducing agent are added according to the required composition. Mix. A metal alloy is formed by reducing the mixture by heating at 850 to 1200 ° C. The product is washed with water to remove CaO and unreacted Ca in the form of Ca (OH) 2 . The obtained powder is vacuum dried to obtain an alloy powder. That is. In this alloy production method, except for Ca or Ca alloy which is a reducing agent which is liquid at the temperature at which the reduction diffusion reaction is performed, the powder used as a raw material has a larger particle size, and a larger particle size Also increases. As a result, the efficiency of the pulverizing step performed when producing a sintered magnet is reduced. In addition, the mixture of the raw material powders becomes non-uniform, and coarse Fe, Co, and other ferromagnetic alloys that cause deterioration of magnetic properties are likely to be precipitated. On the other hand, when the particle size of the raw material powder is small, a homogeneous mixture of the raw material powder can be obtained, and the particle size of the alloy powder produced by the reaction becomes small and uniform at the same time, and as a result, it can be expected that the magnetic properties also increase .
However, when actually mixing by dry method, when the particle size of the raw material powder becomes small, the water contained in the powder increases, and the weighing error of the raw material becomes a problem, and at the same time, liquid crosslinking, electrostatic attraction, van der Waals force, etc. Aggregation of the raw material powder occurs. When agglomeration occurs, the result is the same as with larger particles. Therefore, according to the conventional reduction diffusion method, the particle size of the obtained alloy powder cannot be reduced so much, and coarse Fe, Co and other ferromagnetic alloys are partially deposited. In order to prevent this precipitation, an excessive amount of R may be added in advance, but this is not preferred in terms of cost. Numerous studies have been made in the search for high-performance permanent magnets in recent years, but no compound having a saturation magnetization of Nd 2 Fe 14 B exceeding 1.6 T has been found. However, Nd 2 Fe 14 B / Fe, Nd 2 F recently produced by melt-span method or mechanical alloying method
e 14 B / Fe 3 B, and the soft phase of the nano-scale, such as Sm 2 Fe 17 N 3 / Fe , in the composite material of the hard phase, two phases magnetically exchange-coupled to, though a single hard phase A demagnetization curve as if it had been obtained has attracted attention. These are called exchange spring magnets because the magnetization shows a unique behavior in which the magnetization reversibly springs back to a change in the external magnetic field in the demagnetization curve. This is because, even if the inside of the soft phase is reversed by the reverse magnetic field, it returns to the original state when the reverse magnetic field is removed by exchange coupling with the hard phase.

【0003】[0003]

【発明が解決しようとする課題】還元拡散法で永久磁石
合金を作製する際に、磁気特性を下げる原因となる粗大
なFe、Coその他の強磁性合金の析出を防ぐために、 拡散反応時に、高い温度で反応させたり、反応時間
を長くしたりして、拡散反応を促進する。 予め過剰にRを入れておく。 等の方法がとられているが、の方法は合金粉末の結晶
成長を促し、得られる合金粉末の粒径を大きくしてしま
う。またの方法は原料として使用する高価なRの量を
増やすため、コスト的にあまり好ましくない。また同時
に合金粉末中に非磁性のRリッチ相も析出させる。
When a permanent magnet alloy is produced by a reduction diffusion method, a high concentration of Fe, Co and other ferromagnetic alloys, which cause a decrease in magnetic properties, is prevented during the diffusion reaction. The diffusion reaction is promoted by reacting at a temperature or increasing the reaction time. Add R in advance in excess. However, this method promotes crystal growth of the alloy powder and increases the particle size of the obtained alloy powder. The other method is not preferable in terms of cost because it increases the amount of expensive R used as a raw material. At the same time, a nonmagnetic R-rich phase is also precipitated in the alloy powder.

【0004】したがって、一般に還元拡散法で作製した
永久磁石合金粉末は、粒成長した粒径の大きな主相R
2(Fe,Co)14B化合物相を持ち、他にRのリッチな相も含
んでいる。粒径の大きな主相R2(Fe,Co)14B化合物相
は、焼結磁石を作製する際必要となる、粉砕工程の効率
を落とす。一方、Rのリッチ相は、非磁性なのでその存
在により主相R2(Fe,Co)14B化合物相の存在比を減らす
ことになり、残留磁化Brを落とす原因となる。一方、
現在の交換スプリング磁石は、その製造法からいずれも
等方性でハード相の磁化容易軸がバラバラの方向を向い
ている。従って、焼結磁石のような異方的で磁気特性の
高いものは得られていない。
Therefore, in general, a permanent magnet alloy powder produced by the reduction diffusion method has a main phase R having a large grain size, which has been grown.
It has a 2 (Fe, Co) 14 B compound phase and also contains an R-rich phase. The main phase R 2 (Fe, Co) 14 B compound phase having a large particle size reduces the efficiency of the pulverization step required for producing a sintered magnet. On the other hand, since the R-rich phase is non-magnetic, its existence reduces the abundance ratio of the main phase R 2 (Fe, Co) 14 B compound phase, which causes a drop in the residual magnetization Br . on the other hand,
The current exchange spring magnets are all isotropic due to their manufacturing method, and the easy axes of magnetization of the hard phases are oriented in different directions. Therefore, an anisotropic magnet having high magnetic properties such as a sintered magnet has not been obtained.

【0005】[0005]

【課題を解決するための手段】上記のとおり、使用する
原料粉末は、粒径が小さいものが好ましい。しかし乾式
で混合する場合、原料粉末中に含まれる水分のため、秤
量誤差が生じる。また、静電引力、ファンデルワールス
力等の引力や液体架橋により、粉末の凝集が起こる。し
たがって、原料粉末を乾式で混合しても十分には混合で
きず、均質な混合物粉末は得られない。そこで本発明者
らは、粒径の小さな原料粉末が均一に混合した原料を得
る様々な方法を考察、検討した結果、予めR、Fe、C
oの各イオンと、B粉末または/およびB(OH)4 -
オンとを含む混合水溶液から、同時沈殿または共沈殿に
より、R、Fe、Co、Bの混合水酸化物あるいは複合
水酸化物を作製し、次いでこの水酸化物を加熱して、
R、Fe、Co、Bの混合酸化物あるいは複合酸化物を
得る方法が適していることを見いだし、本発明を完成し
た。すなわち本発明の要旨は、R(RはYを含む希土類
元素の1種以上)のイオンと、Feのイオンと、Coの
イオンと、さらにはB粉末または/およびB(OH)4 -
イオンとを含む混合水溶液から、同時沈殿または共沈殿
により、R、Fe、Co、Bの混合水酸化物あるいは複
合水酸化物を作製し、次いでこれらを加熱して、R、F
e、Co、Bの混合酸化物あるいは複合酸化物とし、さ
らにこれら酸化物にCaまたはCa合金の粉末を混合し
て、800〜1200℃で加熱して還元し、得られた還
元生成物を冷却、水洗、さらに乾燥することを特徴とす
る希土類元素・鉄・ボロン系永久磁石合金粉末の製造方
法にあり、R、Fe、Co、Bの混合酸化物あるいは複
合酸化物の平均粒径が10μm未満であることが望まし
い。また、組成が、Rが6〜15at%、Feが70〜
93at%、Coが0.1〜40at%、Bが1〜10
at%であって、希土類元素・鉄・ボロン系永久磁石合
金粉末の粒子内に、Fe、Co、Fe合金、Co合金の
いずれか一つ以上を濃く含有するFeまたは/およびC
oまたは/およびFeとCoの合金のリッチ相が、1μ
m以下の微粒子となって微細に分散して存在する希土類
元素・鉄・ボロン系永久磁石合金粉末であり、R2(F
e,Co)14B化合物相中に上記リッチ相が1μm以下
の微粒子となって微細に分散析出した混合組織となって
いること、R2(Fe,Co)14B化合物と、上記リッ
チ相との間に、磁気的交換相互作用が存在するいわゆる
交換スプリング磁石となっていることが望ましい。
As described above, the raw material powder used preferably has a small particle size. However, in the case of dry mixing, a weighing error occurs due to moisture contained in the raw material powder. In addition, powder agglomeration occurs due to attraction such as electrostatic attraction, Van der Waals's force, and liquid crosslinking. Therefore, even if the raw material powders are dry-mixed, they cannot be mixed sufficiently, and a homogeneous mixture powder cannot be obtained. Therefore, the present inventors have studied and studied various methods for obtaining a raw material in which raw material powders having a small particle size are uniformly mixed. As a result, R, Fe, C
a mixed hydroxide or composite hydroxide of R, Fe, Co, B from a mixed aqueous solution containing each ion of o and B powder or / and B (OH) 4 - ion by simultaneous precipitation or coprecipitation. And then heating this hydroxide,
The present inventors have found that a method for obtaining a mixed oxide or a composite oxide of R, Fe, Co, and B is suitable, and have completed the present invention. Specifically, the subject matter of the present invention, R (R is one or more rare earth elements including Y) and the ions and Fe ions, and Co ions, more B powder and / or B (OH) 4 -
A mixed hydroxide or a composite hydroxide of R, Fe, Co, B is prepared from a mixed aqueous solution containing ions by simultaneous precipitation or coprecipitation, and then heated to obtain R, F
e, a mixed oxide or a composite oxide of Co, B, and a powder of Ca or a Ca alloy mixed with these oxides, reduced by heating at 800 to 1200 ° C., and cooling the obtained reduction product. , Washing with water, and further drying, wherein the average particle size of the mixed oxide or composite oxide of R, Fe, Co, and B is less than 10 μm. It is desirable that Further, when the composition is such that R is 6 to 15 at% and Fe is 70 to
93 at%, Co is 0.1 to 40 at%, B is 1 to 10
Fe or / and C containing at least one of Fe, Co, Fe alloy, and Co alloy in the particles of the rare earth element / iron / boron-based permanent magnet alloy powder.
o or / and the rich phase of the alloy of Fe and Co
equal to or less than the particle m is a rare earth element-iron-boron-based permanent magnet alloy powder present in finely dispersed, R 2 (F
e, Co) 14 B compound phase in which the rich phase becomes fine particles of 1 μm or less to form a mixed structure that is finely dispersed and precipitated. The R 2 (Fe, Co) 14 B compound and the rich phase It is desirable to use a so-called exchange spring magnet in which a magnetic exchange interaction exists.

【0006】[0006]

【発明の実施の形態】本発明によれば、 粒径の小さな原料粉末の均一な混合物が得られる。 その結果、磁気特性の高い粒径の小さな永久磁石合
金粉末が得られる。また同時に、原料粉末が上記のよ
うに粒径の小さな原料粉末の混合物になることにより、 金属合金の粉末粒子内に、Fe、Co、Fe合金、Co合金
のいずれか一つ以上が90wt%以上含まれる、Feのリッチ
相または/およびCoのリッチ相が、1μm以下の微粒子
となって微細に分散して存在していることにより、保磁
力の高い硬質磁性相と、上記Feリッチまたは/およびCo
リッチな軟質磁性相が交換結合し、硬質磁性相の持つ保
磁力を維持しながら、高い飽和磁化を持つ希土類元素・
鉄・ボロン系永久磁石合金粉末を実現できるというもの
である。上記の希土類元素・鉄・ボロン系永久磁石合金
としては、例えばR2(Fe,Co)14B化合物が挙げられ、化
合物相中に上記リッチ相が微細に分散析出した混合組織
となっている。この永久磁石合金と上記リッチ相との間
には、磁気的交換相互作用が存在して、磁気特性の高い
交換スプリング磁石となっている。以下に、これをさら
に詳述する。
According to the present invention, a uniform mixture of raw material powders having a small particle size can be obtained. As a result, a small permanent magnet alloy powder having a high magnetic property and a small particle size can be obtained. At the same time, the raw material powder becomes a mixture of the raw material powders having a small particle size as described above, so that at least one of Fe, Co, Fe alloy, and Co alloy is 90 wt% or more in the metal alloy powder particles. Since the contained Fe-rich phase and / or Co-rich phase are finely dispersed as fine particles of 1 μm or less, the hard magnetic phase having a high coercive force and the Fe-rich or / and / or Co
Rare earth elements with high saturation magnetization while maintaining the coercive force of the hard magnetic phase by exchange coupling of the rich soft magnetic phase
It is possible to realize iron-boron permanent magnet alloy powder. An example of the rare earth element / iron / boron permanent magnet alloy is an R 2 (Fe, Co) 14 B compound, which has a mixed structure in which the rich phase is finely dispersed and precipitated in the compound phase. A magnetic exchange interaction exists between the permanent magnet alloy and the rich phase, thereby forming an exchange spring magnet having high magnetic properties. This will be described in more detail below.

【0007】本発明では、原料混合の際に粉末を乾式で
混合するのではなく、混合水溶液、例えばRのイオンを
含む水溶液と、Fe、Coのイオンを含む水溶液と、さらに
B粉末または/およびB(OH)4 -イオンを含む水溶液とを
用いる。原料がイオンとして水溶液に含まれていれば、
イオンは水溶液全体に均一に分散している。また、B粉
末を用いる場合も、分散媒として水溶液を使用すれば、
粉末同士の電気的反発力により、乾式で粉末を混合する
際のような凝集はなく、水溶液全体に均一に分散する。
また、滴定等の分析により、そのイオン濃度を正確に調
べることが出来るため、粉末を使用するよりも精度が上
がる。
In the present invention, instead of mixing powders in a dry manner at the time of mixing raw materials, a mixed aqueous solution, for example, an aqueous solution containing R ions, an aqueous solution containing Fe and Co ions, and a B powder and / or B (OH) 4 - use of an aqueous solution containing ions. If the raw material is contained in the aqueous solution as ions,
The ions are uniformly dispersed throughout the aqueous solution. Also, when using B powder, if an aqueous solution is used as a dispersion medium,
Due to the electric repulsion between the powders, there is no aggregation as in the case of mixing powders in a dry manner, and the powders are uniformly dispersed throughout the aqueous solution.
In addition, the ion concentration can be accurately determined by analysis such as titration, so that the accuracy is higher than when powder is used.

【0008】原料としてR、Fe、Coの硝酸水溶液を使用
する。水溶液としては他に塩酸等の水溶液が挙げられる
が、希硝酸は、R、Fe、Coの金属、酸化物及びその合金
をイオンとして溶かし、しかも後の工程で原料以外の物
質を熱処理によって取り除くことができるので適してい
る。R(NO3)3水溶液、Fe(NO3)3の水溶液、Co(NO3)2の水
溶液を混合する。その混合水溶液中に、B粉末または/
およびB2O3粉末を混合する。B2O3粉末は水に溶け、水溶
液中でB(OH)4 -イオンとなる。
As a raw material, an aqueous solution of nitric acid of R, Fe and Co is used. Other aqueous solutions include aqueous solutions such as hydrochloric acid.Dilute nitric acid dissolves R, Fe, Co metals, oxides and their alloys as ions, and removes substances other than raw materials by heat treatment in a later step. It is suitable because it can be. An aqueous solution of R (NO 3 ) 3, an aqueous solution of Fe (NO 3 ) 3, and an aqueous solution of Co (NO 3 ) 2 are mixed. In the mixed aqueous solution, B powder or /
And B 2 O 3 powder are mixed. The B 2 O 3 powder dissolves in water and becomes B (OH) 4 ions in the aqueous solution.

【0009】上記の混合は、最終的に得られる希土類元
素・鉄・ボロン系永久磁石合金粉末の組成が、R(Rは
Yを含む希土類元素の1種以上)が6〜15at%、Feが70
〜93at%、Coが 0.1〜40at%、Bが1〜10at%となるよ
うにする。この組成範囲では、Rの量を増やしても、粉
末粒子内にFe、Co、Fe合金、Coの合金のいずれか一つ以
上が90wt%以上含まれるFeリッチ相または/およびCoリ
ッチ相(以下、Feリッチ相または/およびCoリッチ相と
いう)が、1μm以下の微粒子となって微細に分散して
存在する組織を持つ粒子が存在し、またRがリッチな相
が新たに生成し、その存在比が増えていく。
In the above mixture, the composition of the finally obtained rare earth element / iron / boron permanent magnet alloy powder is such that R (R is at least one of rare earth elements including Y) is 6 to 15 at% and Fe is 70
To 93 at%, Co to 0.1 to 40 at%, and B to 1 to 10 at%. In this composition range, even if the amount of R is increased, at least one of Fe, Co, an Fe alloy, and an alloy of Co is contained in the powder particles in an Fe-rich phase and / or a Co-rich phase (90% by weight or more). , Fe-rich phase and / or Co-rich phase) are present in the form of fine particles of 1 μm or less in the form of finely dispersed particles having a microstructure. The ratio increases.

【0010】得られた混合水溶液中のR、Fe、Coイオン
を水酸化物として沈殿させるために、NH3 水を加える。
添加量は、混合後の溶液のpHが 7.5〜10となるようにす
る。混合後のpHが 7.5より低いと、R、Fe、Coのイオン
が水酸化物として完全に沈殿せず、一部水溶液中に残
る。一方、pHが10を超えると水溶液中のNH3 はCoイオン
と錯イオンを作り、Coの水酸化物が再溶解する。NH3
を加えると、溶解度の小さいR、Fe、Coの水酸化物が、
同時沈殿または共沈殿により沈殿する。この際に、平均
粒径が 0.1〜10μmのR、Fe、Coの各水酸化物が微細に
入り交じった混合水酸化物あるいは複合水酸化物が生成
する。得られた沈殿及び上澄みの水溶液を、そのまま50
℃〜95℃で乾燥させ、水分及び過剰のNH3 を気化させ
て、R、Fe、Coの混合水酸化物あるいは複合水酸化物を
得る。このとき同時に、水溶液中に分散していたB粉末
あるいは溶解していたB(OH)3 が水酸化物中に分散した
形で得られる。また反応の副産物としてNH4NO3が析出す
る。
To precipitate the R, Fe, and Co ions in the obtained mixed aqueous solution as hydroxide, NH 3 water is added.
The amount added is such that the pH of the solution after mixing is 7.5 to 10. If the pH after mixing is lower than 7.5, ions of R, Fe, and Co do not completely precipitate as hydroxides, and partially remain in the aqueous solution. On the other hand, if the pH exceeds 10, NH 3 in the aqueous solution forms complex ions with Co ions, and the Co hydroxide is redissolved. When NH 3 water is added, hydroxides of R, Fe, and Co, which have low solubility,
Precipitate by co-precipitation or co-precipitation. At this time, a mixed hydroxide or a composite hydroxide in which R, Fe, and Co hydroxides having an average particle diameter of 0.1 to 10 μm are finely mixed with each other is generated. The obtained aqueous solution of the precipitate and the supernatant is
Drying is performed at a temperature of from about 95 ° C. to about 95 ° C. to evaporate water and excess NH 3 to obtain a mixed hydroxide or a composite hydroxide of R, Fe, and Co. At this time, B powder or B (OH) 3 dissolved in the aqueous solution is obtained in the form of being dispersed in the hydroxide. NH 4 NO 3 precipitates as a by-product of the reaction.

【0011】乾燥させて得られた混合物を大気中、大気
圧下で 250℃〜800 ℃で焼成する。この焼成により混合
物中に残っていた水分及びNH3 が完全に取り除かれ、同
時に乾燥させた際に析出する副産物のNH4NO3も N2O及び
H2O として分解し取り除かれる。また混合物中のR、F
e、Co、Bの水酸化物は、水を失ってそれぞれの酸化物
となり、平均粒径が10μm未満である小さな粒子が均一
に混合した混合酸化物あるいは複合酸化物を得る。
The mixture obtained by drying is calcined at 250 ° C. to 800 ° C. in the atmosphere at atmospheric pressure. By this calcination, water and NH 3 remaining in the mixture were completely removed, and at the same time, NH 4 NO 3 as a by-product precipitated when dried was also N 2 O and
Decomposed and removed as H 2 O. R, F in the mixture
The hydroxides of e, Co, and B lose water to become their respective oxides, thereby obtaining a mixed oxide or a composite oxide in which small particles having an average particle size of less than 10 μm are uniformly mixed.

【0012】原料粉末と還元剤となるCaまたはCa合金の
粉末を乾式で混合する。混合するCaまたはCa合金の粉末
の量は、使用した原料粉末を還元するのに必要な化学量
論的必要量の 2.0〜4.0 倍とする。CaまたはCa合金は還
元剤としての役割を果たすだけでなく、還元で得られた
R、Fe、Co、Bが反応して合金を生成する際の媒介とし
ての役割も果たすので、上記化学量論的必要量の 2.0倍
未満ではその役割が十分に果たせず、合金の生成反応が
不十分となる。また上記化学量論的必要量の 4.0倍を超
えるCaまたはCa合金を使用すると、還元反応後にR、F
e、Co、Bが拡散して合金を生成する際、媒介の量が多
すぎて、目的とする粉末粒子内にFeリッチ相または/お
よびCoリッチ相が1μm以下の微粒子となって、微細に
分散して存在する組織を持つ金属合金が得られない。ま
た同時にCaまたはCa合金の使用量が増え、工程のコスト
を上昇させる。原料粉末と還元剤の混合物を、500 〜40
00kgf/cm2 の圧力でプレス成形によって、成形する。成
形体をAr等の不活性ガス流雰囲気中で 800℃〜1200℃の
温度で 0.5時間〜10時間、還元・拡散反応させる。この
反応を 800℃未満で行うと、還元が十分に行われず、好
ましくない。一方、 1200 ℃を超える温度で行うと、結
晶粒成長を起こし、粒子内にFeリッチ相または/および
Coリッチ相が1μm以下の微粒子となって微細に分散し
て存在している組織を持つ合金が得られない。得られた
反応生成物を、水中に投入して生成物中に残っていたCa
及び還元反応により生成したCaO をCa(OH)2 として取り
除く。このとき反応生成物は自然崩壊するので機械的粉
砕を必要としない。Ca(OH)2 は水に対する溶解度が低い
ので、完全に取り除くために、上澄み液を取り除き、注
水、攪拌の一連の作業を繰り返す。このように十分に洗
浄した粉末を濾過等で分離し、それをアルコール等の低
沸点の有機溶剤で洗浄し、その後乾燥して高性能永久磁
石合金粉末を得る。
A raw material powder and a powder of Ca or a Ca alloy serving as a reducing agent are dry-mixed. The amount of the Ca or Ca alloy powder to be mixed is 2.0 to 4.0 times the stoichiometric amount required to reduce the used raw material powder. The Ca or Ca alloy not only plays a role as a reducing agent, but also plays a role as a mediator when R, Fe, Co, and B obtained by reduction react to form an alloy. If the required amount is less than 2.0 times, the role is not sufficiently fulfilled, and the formation reaction of the alloy becomes insufficient. When Ca or a Ca alloy exceeding 4.0 times the above stoichiometric requirement is used, R, F
When e, Co, and B diffuse to form an alloy, the amount of mediation is too large, and the Fe-rich phase and / or the Co-rich phase become fine particles of 1 μm or less in the target powder particles, and are finely divided. A metal alloy having a dispersed structure cannot be obtained. At the same time, the amount of Ca or Ca alloy used increases, which raises the cost of the process. Mix the mixture of raw material powder and reducing agent with 500 to 40
It is molded by press molding at a pressure of 00 kgf / cm 2 . The compact is subjected to a reduction / diffusion reaction in an atmosphere of an inert gas such as Ar at a temperature of 800 to 1200 ° C. for 0.5 to 10 hours. If this reaction is carried out at a temperature lower than 800 ° C., the reduction is not sufficiently performed, which is not preferable. On the other hand, when the temperature is higher than 1200 ° C., crystal grains grow, and the Fe-rich phase or / and / or
An alloy having a structure in which the Co-rich phase becomes fine particles of 1 μm or less and is finely dispersed cannot be obtained. The obtained reaction product was poured into water and Ca remained in the product.
And CaO generated by the reduction reaction is removed as Ca (OH) 2 . At this time, the reaction product naturally disintegrates, so that no mechanical pulverization is required. Since Ca (OH) 2 has low solubility in water, a series of operations of removing the supernatant, pouring water and stirring is repeated to completely remove Ca (OH) 2 . The powder thus sufficiently washed is separated by filtration or the like, washed with a low-boiling organic solvent such as alcohol, and then dried to obtain a high-performance permanent magnet alloy powder.

【0013】[0013]

【実施例】次に、本発明の実施例を挙げて具体的に説明
するが、本発明はこれらに限定されるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例1) [表1]に示すとおりの濃度の成分を添加量として示す
量を混合し、水溶液を作製した。上記の混合水溶液に、 [OH-]=1.311mol/リットルのNH3水26
17.1ミリリットル を注ぎ、十分に攪拌してNd、Pr、Dy、Tb、F
e、Coの混合水酸化物あるいは複合水酸化物を沈殿さ
せた。得られた沈殿及び上澄み水溶液をオーブンで加熱
し、48時間乾燥させた。乾燥して得られた混合物の質
量は383.024gであった。乾燥した混合物を大気
中、大気圧下で750℃で2時間焼成した。焼成して得
られた混合酸化物あるいは複合酸化物の質量は、10
3.416gであった。この混合物を、Ar雰囲気中で
Vブレンダーで、 平均粒径1mmのCa粉末 170.377g 20メッシュのCaH2粉末 44.719g と混合した。これらのCaまたはCa合金は、原料の混
合酸化物あるいは複合酸化物を還元するのに必要な化学
量論的必要量の3.0倍に相当する。この原料粉末と還
元剤の混合物を、1000kgf/cm2の圧力でプレ
ス成形によって成形した。この成形体をスチール製容器
に入れ、1リットル/分でArを流しながら900℃ま
で加熱し、その温度で2時間保持して、還元・拡散反応
を行った。その後、自然降温し冷却した。得られた反応
生成物を、10リットルの水中に投入した。反応生成物
は、激しくH2を発生しながら自然崩壊し、約2時間で
完全に崩壊した。上澄み液を取り除き、注水、攪拌の一
連の作業を3回繰り返した。このように十分に洗浄した
粉末を濾過により分離し、その粉末をアルコール中に投
入して洗浄し、その後濾過により分離し、真空乾燥して
質量71.673gの永久磁石粉末を得た。得られた粉
末は、Nd7.5at%、Pr0.9at%、Dy0.
4at%、Tb0.2at%、Fe80.1at%、C
o4.0at%、B5.9at%、残り不純物の、平均
粒径4.2μmの合金粉末であり、粒子の外側にNd、
Pr、Dy、Tbがリッチな相があり、また粒子の内側
に希土類元素・鉄・ボロン合金内に平均粒径0.13μ
mの微細なFeリッチ相または/およびCoリッチ相が
点在している組織があるのを確認した。表2に、この粉
末の磁気特性を記す。
(Example 1) An aqueous solution was prepared by mixing components having the concentrations shown in Table 1 as amounts to be added. [OH ] = 1.311 mol / liter of NH 3 water 26
Pour 17.1 ml and mix well with Nd, Pr, Dy, Tb, F
e, a mixed hydroxide or a composite hydroxide of Co was precipitated. The resulting precipitate and supernatant aqueous solution were heated in an oven and dried for 48 hours. The mass of the mixture obtained by drying was 383.024 g. The dried mixture was calcined in air at 750 ° C. under atmospheric pressure for 2 hours. The mass of the mixed oxide or composite oxide obtained by calcination is 10
It was 3.416 g. This mixture was mixed with 170.377 g of Ca powder having an average particle diameter of 1 mm and 44.719 g of CaH 2 powder having 20 meshes in a V blender in an Ar atmosphere. These Ca or Ca alloys correspond to 3.0 times the stoichiometric amount required to reduce the mixed oxide or composite oxide of the raw material. The mixture of the raw material powder and the reducing agent was molded by press molding at a pressure of 1000 kgf / cm 2 . The compact was placed in a steel container, heated to 900 ° C. while flowing Ar at 1 liter / minute, and kept at that temperature for 2 hours to perform a reduction / diffusion reaction. Thereafter, the temperature was naturally lowered and cooled. The obtained reaction product was put into 10 liters of water. The reaction product collapsed spontaneously with vigorous evolution of H 2 , and collapsed completely in about 2 hours. The supernatant was removed, and a series of operations of water injection and stirring was repeated three times. The powder thus sufficiently washed was separated by filtration, the powder was poured into alcohol for washing, then separated by filtration, and dried in vacuum to obtain a permanent magnet powder having a mass of 71.673 g. The resulting powder had Nd 7.5 at%, Pr 0.9 at%, Dy 0.
4 at%, Tb 0.2 at%, Fe 80.1 at%, C
o 4.0 at%, B 5.9 at%, the remaining impurities are alloy powder having an average particle size of 4.2 μm, and Nd,
There is a phase rich in Pr, Dy, and Tb, and an average particle size of 0.13 μm in the rare earth element, iron and boron alloy inside the particles
It was confirmed that there was a structure in which m-fine Fe-rich phases and / or Co-rich phases were scattered. Table 2 shows the magnetic properties of this powder.

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例2) [表3]に示すとおりの濃度の成分を添加量として示す
量を混合し、水溶液を作製した。
Example 2 An aqueous solution was prepared by mixing components having the concentrations shown in Table 3 as addition amounts.

【0018】[0018]

【表3】 [Table 3]

【0019】上記の混合水溶液に、 [OH-]=1.311mol/リットルのNH3水26
24.3ミリリットル を注ぎ、十分に攪拌してNd、Pr、Dy、Tb、F
e、Coの混合水酸化物あるいは複合水酸化物を沈殿さ
せた。得られた沈殿及び上澄み水溶液をオーブンで加熱
し、48時間乾燥させた。乾燥して得られた混合物の質
量は343.360gであった。乾燥した混合物を大気
中、大気圧下で750℃で2時間焼成した。焼成して得
られた混合酸化物あるいは複合酸化物の質量は、10
3.008gであった。この混合物を、Ar雰囲気中で
Vブレンダーで、 平均粒径1mmのCa粉末 169.889g 20メッシュのCaH2粉末 44.590g と混合した。これらのCaまたはCa合金は、原料の混
合酸化物あるいは複合酸化物を還元するのに必要な化学
量論的必要量の3.0倍に相当する。この原料粉末と還
元剤の混合物を、1000kgf/cm2の圧力でプレ
ス成形によって成形した。この成形体をスチール製容器
に入れ、1リットル/分でArを流しながら900℃ま
で加熱し、その温度で2時間保持して、還元・拡散反応
を行った。その後、自然降温し冷却した。得られた反応
生成物を、10リットルの水中に投入した。反応生成物
は、激しくH2を発生しながら自然崩壊し、約2時間で
完全に崩壊した。上澄み液を取り除き、注水、攪拌の一
連の作業を3回繰り返した。このように十分に洗浄した
粉末を濾過により分離し、その粉末をアルコール中に投
入して洗浄し、その後濾過により分離し、真空乾燥して
質量72.508gの永久磁石粉末を得た。得られた粉
末は、Nd8.3at%、Pr1.0at%、Dy0.
4at%、Tb0.2at%、Fe80.1at%、C
o4.0at%、B5.0at%、残り不純物の、平均
粒径4.6μmの合金粉末であり、粒子の外側にNd、
Pr、Dy、Tbがリッチな相があり、また粒子の内側
に希土類元素・鉄・ボロン合金内に平均粒径0.12μ
mの微細なFeリッチ相または/およびCoリッチ相が
点在している組織があるのを確認した。表2に、この粉
末の磁気特性を併記する。
[0019] mixing the above aqueous solution, [OH -] = 1.311mol / liter NH 3 in water 26
Pour 24.3 ml and mix well with Nd, Pr, Dy, Tb, F
e, a mixed hydroxide or a composite hydroxide of Co was precipitated. The resulting precipitate and supernatant aqueous solution were heated in an oven and dried for 48 hours. The mass of the mixture obtained by drying was 343.360 g. The dried mixture was calcined in air at 750 ° C. under atmospheric pressure for 2 hours. The mass of the mixed oxide or composite oxide obtained by calcination is 10
3.008 g. This mixture was mixed with 169.889 g of Ca powder having an average particle diameter of 1 mm and 44.590 g of CaH 2 powder having 20 meshes in a V blender in an Ar atmosphere. These Ca or Ca alloys correspond to 3.0 times the stoichiometric amount required to reduce the mixed oxide or composite oxide of the raw material. The mixture of the raw material powder and the reducing agent was molded by press molding at a pressure of 1000 kgf / cm 2 . The compact was placed in a steel container, heated to 900 ° C. while flowing Ar at 1 liter / minute, and kept at that temperature for 2 hours to perform a reduction / diffusion reaction. Thereafter, the temperature was naturally lowered and cooled. The obtained reaction product was put into 10 liters of water. The reaction product collapsed spontaneously with vigorous evolution of H 2 , and collapsed completely in about 2 hours. The supernatant was removed, and a series of operations of water injection and stirring was repeated three times. The powder thus sufficiently washed was separated by filtration, and the powder was poured into alcohol for washing. Thereafter, the powder was separated by filtration and vacuum-dried to obtain a permanent magnet powder having a mass of 72.508 g. The obtained powder had Nd of 8.3 at%, Pr of 1.0 at%, Dy of at.
4 at%, Tb 0.2 at%, Fe 80.1 at%, C
o 4.0 at%, B 5.0 at%, the remaining impurities are alloy powder having an average particle diameter of 4.6 μm, and Nd,
There is a phase rich in Pr, Dy, and Tb, and an average particle size of 0.12 μm in the rare earth element, iron and boron alloy inside the particles
It was confirmed that there was a structure in which m-fine Fe-rich phases and / or Co-rich phases were scattered. Table 2 also shows the magnetic properties of this powder.

【0020】(実施例3) [表4]に示すとおりの濃度の成分を添加量として示す
量を混合し、水溶液を作製した。
Example 3 Components having the concentrations shown in Table 4 were added in amounts shown as added amounts to prepare an aqueous solution.

【0021】[0021]

【表4】 [Table 4]

【0022】上記の混合水溶液に、 [OH-]=1.311mol/リットルのNH3水30
32.0ミリリットル を注ぎ、十分に攪拌してNd、Pr、Dy、Tb、F
e、Coの混合水酸化物あるいは複合水酸化物を沈殿さ
せた。得られた沈殿及び上澄み水溶液をオーブンで加熱
し、48時間乾燥させた。乾燥して得られた混合物の質
量は 416.548gであった。乾燥した混合物を大
気中、大気圧下で750℃で2時間焼成した。焼成して
得られた混合酸化物あるいは複合酸化物の質量は、9
0.169gであった。この混合物を、Ar雰囲気中で
Vブレンダーで、 平均粒径1mmのCa粉末 122.765g 20メッシュのCaH2粉末 32.223g と混合した。これらのCaまたはCa合金は、原料の混
合酸化物あるいは複合酸化物を還元するのに必要な化学
量論的必要量の2.0倍に相当する。この原料粉末と還
元剤の混合物を、1000kgf/cm2の圧力でプレ
ス成形によって成形した。この成形体をスチール製容器
に入れ、1リットル/分でArを流しながら1000℃
まで加熱し、その温度で2時間保持して、還元・拡散反
応を行った。その後、自然降温し冷却した。得られた反
応生成物を、10リットルの水中に投入した。反応生成
物は、激しくH2を発生しながら自然崩壊し、約2時間
で完全に崩壊した。上澄み液を取り除き、注水、攪拌の
一連の作業を3回繰り返した。このように十分に洗浄し
た粉末を濾過により分離し、その粉末をアルコール中に
投入して洗浄し、その後濾過により分離し、真空乾燥し
て質量87.463gの永久磁石粉末を得た。得られた
粉末は、Nd11.6at%、Pr1.4at%、Dy
0.6at%、Tb0.2at%、Fe76.3at
%、Co3.8at%、B5.0at%、残り不純物
の、平均粒径4.8μmの合金粉末であり、粒子の外側
にNd、Pr、Dy、Tbがリッチな相があり、また粒
子の内側に希土類元素・鉄・ボロン合金内に平均粒径
0.13μmの微細なFeリッチ相または/およびCo
リッチ相が点在している組織があるのを確認した。表2
に、この粉末の磁気特性を併記する。
[0022] mixing the above aqueous solution, [OH -] = 1.311mol / liter NH 3 in water 30
Pour 32.0 ml and stir well to mix Nd, Pr, Dy, Tb, F
e, a mixed hydroxide or a composite hydroxide of Co was precipitated. The resulting precipitate and supernatant aqueous solution were heated in an oven and dried for 48 hours. The mass of the mixture obtained by drying was 416.548 g. The dried mixture was calcined in air at 750 ° C. under atmospheric pressure for 2 hours. The mass of the mixed oxide or composite oxide obtained by firing is 9
0.169 g. This mixture was mixed with 122.765 g of Ca powder having an average particle size of 1 mm and 32.223 g of CaH 2 powder having 20 meshes in a V blender in an Ar atmosphere. These Ca or Ca alloys correspond to 2.0 times the stoichiometric requirement for reducing the mixed oxide or composite oxide of the raw material. The mixture of the raw material powder and the reducing agent was molded by press molding at a pressure of 1000 kgf / cm 2 . This molded body is placed in a steel container, and 1000 ° C. while flowing Ar at 1 liter / minute.
, And kept at that temperature for 2 hours to perform a reduction / diffusion reaction. Thereafter, the temperature was naturally lowered and cooled. The obtained reaction product was put into 10 liters of water. The reaction product collapsed spontaneously with vigorous evolution of H 2 , and collapsed completely in about 2 hours. The supernatant was removed, and a series of operations of water injection and stirring was repeated three times. The powder thus sufficiently washed was separated by filtration, and the powder was poured into alcohol for washing. Thereafter, the powder was separated by filtration and vacuum-dried to obtain a permanent magnet powder having a mass of 87.463 g. The obtained powder had Nd of 11.6 at%, Pr of 1.4 at%, Dy
0.6 at%, Tb 0.2 at%, Fe 76.3 at
%, Co 3.8 at%, B 5.0 at%, and the remaining impurities are alloy powders having an average particle size of 4.8 μm. There is a phase rich in Nd, Pr, Dy, and Tb outside the particles, and inside the particles. A fine Fe-rich phase with an average particle size of 0.13 μm or / and Co in a rare earth element / iron / boron alloy
It was confirmed that there was an organization in which rich phases were scattered. Table 2
The magnetic properties of this powder are also described below.

【0023】(比較例1) 実施例1と同じ組成になり、また最終的に作製する合金
粉末が同じ質量になるように、[表5]に示す粉末をA
r雰囲気中でVブレンダーで混合した。
(Comparative Example 1) The powders shown in Table 5 were used in the same manner as in Example 1 so that the alloy powder to be finally produced had the same mass.
The mixture was mixed with a V blender in an atmosphere of r.

【0024】[0024]

【表5】 [Table 5]

【0025】さらに、この混合物をAr雰囲気中でVブ
レンダーで実施例1と同量の 平均粒径1mmのCa粉末 170.377g 20メッシュのCaH2粉末 44.719g と混合した。この原料粉末を実施例1と同様の条件で還
元、洗浄、乾燥して質量72.412gの合金粉末を得
た。この粉末の平均粒径は5.2μmであった。この粒
子は実施例1のように外側にNd、Pr、Dy、Tbが
リッチな相は有していたが、内側に微細なFeリッチ相
または/およびCoリッチ相が点在している組織は見ら
れなかった。表2にこの合金粉末の磁気特性の測定結果
を併記する。
Further, this mixture was mixed with 170.377 g of Ca powder having an average particle diameter of 1 mm and 44.719 g of CaH 2 powder having 20 meshes in the same amount as in Example 1 in a V blender in an Ar atmosphere. This raw material powder was reduced, washed and dried under the same conditions as in Example 1 to obtain an alloy powder having a mass of 72.412 g. The average particle size of this powder was 5.2 μm. Although these particles had a phase rich in Nd, Pr, Dy, and Tb on the outside as in Example 1, the structure in which fine Fe-rich phases and / or Co-rich phases were scattered inside was I couldn't see it. Table 2 also shows the measurement results of the magnetic properties of this alloy powder.

【0026】(比較例2) 実施例2と同じ組成になり、また最終的に作製する合金
粉末が同じ質量になるように、[表6]に示す粉末をA
r雰囲気中でVブレンダーで混合した。
(Comparative Example 2) The powders shown in [Table 6] were used in the same manner as in Example 2 so that the alloy powder to be finally produced had the same mass.
The mixture was mixed with a V blender in an atmosphere of r.

【0027】[0027]

【表6】 [Table 6]

【0028】さらに、この混合物をAr雰囲気中でVブ
レンダーで実施例2と同量の 平均粒径1mmのCa粉末 169.889g 20メッシュのCaH2粉末 44.590g と混合した。この原料粉末を実施例2と同様の条件で還
元、洗浄、乾燥して質量73.255gの合金粉末を得
た。この粉末の平均粒径は5.3μmであった。この粒
子には実施例2のような外側にNd、Pr、Dy、Tb
がリッチな相があるような組織、内側に微細なFeリッ
チ相または/およびCoリッチ相が点在している組織は
いずれも見られなかった。表2にこの合金粉末の磁気特
性の測定結果を併記する。
Further, this mixture was mixed with 169.889 g of Ca powder having an average particle diameter of 1 mm and 44.590 g of 20 mesh CaH 2 powder in the same manner as in Example 2 in a V blender in an Ar atmosphere. This raw material powder was reduced, washed and dried under the same conditions as in Example 2 to obtain an alloy powder having a mass of 73.255 g. The average particle size of this powder was 5.3 μm. These particles have Nd, Pr, Dy, Tb on the outside as in Example 2.
, A structure in which fine Fe-rich phase and / or Co-rich phase were scattered inside was not observed. Table 2 also shows the measurement results of the magnetic properties of this alloy powder.

【0029】(比較例3) 実施例3と同じ組成になり、また最終的に作製する合金
粉末が同じ質量になるように、[表7]に示す粉末をA
r雰囲気中でVブレンダーで混合した。
(Comparative Example 3) The powders shown in [Table 7] were changed to A so that they had the same composition as in Example 3 and the alloy powder finally produced had the same mass.
The mixture was mixed with a V blender in an atmosphere of r.

【0030】[0030]

【表7】 [Table 7]

【0031】さらに、この混合物をAr雰囲気中でVブ
レンダーで実施例3と同量の 平均粒径1mmのCa粉末 122.765g 20メッシュのCaH2粉末 32.223g と混合した。この原料粉末を実施例3と同様の条件で還
元、洗浄、乾燥して質量82.933gの合金粉末を得
た。この粉末の平均粒径は5.5μmであった。この粒
子には実施例3のような外側にNd、Pr、Dy、Tb
がリッチな相があるような組織、内側に微細なFeリッ
チ相または/およびCoリッチ相が点在している組織は
いずれも見られなかった。また粒子には、希土類元素・
鉄・ボロン合金の粒子の他に、FeまたはFeリッチな
合金粒子も見られた。表2にこの合金粉末の磁気特性の
測定結果を併記する。
Further, the mixture was mixed with 122.765 g of Ca powder having an average particle diameter of 1 mm and 32.223 g of CaH 2 powder having 20 meshes in the same amount as in Example 3 in a V blender in an Ar atmosphere. This raw material powder was reduced, washed and dried under the same conditions as in Example 3 to obtain an alloy powder having a mass of 82.933 g. The average particle size of this powder was 5.5 μm. These particles have Nd, Pr, Dy, Tb on the outside as in Example 3.
, A structure in which fine Fe-rich phase and / or Co-rich phase were scattered inside was not observed. The particles contain rare earth elements
In addition to the iron-boron alloy particles, Fe or Fe-rich alloy particles were also found. Table 2 also shows the measurement results of the magnetic properties of this alloy powder.

【0032】[0032]

【発明の効果】本発明によれば、硬質磁性相の持つ保磁
力を維持しながら、高い飽和磁化を持つ希土類元素・鉄
・ボロン系永久磁石合金粉末を得ることができる。
According to the present invention, a rare earth element / iron / boron permanent magnet alloy powder having high saturation magnetization can be obtained while maintaining the coercive force of the hard magnetic phase.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 俵 好夫 東京都千代田区大手町2丁目6番1号 信越化学工業株式会社 本社内 審査官 山本 一正 (56)参考文献 特開 平6−158122(JP,A) 特開 平8−188803(JP,A) 特開 平6−330252(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Yoshio Tawara, Inventor 2-6-1 Otemachi, Chiyoda-ku, Tokyo Shin-Etsu Chemical Co., Ltd. In-house Inspector Kazumasa Yamamoto (56) References JP-A-6-158122 ( JP, A) JP-A-8-188803 (JP, A) JP-A-6-330252 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(RはYを含む希土類元素の1種以
上)のイオンと、Feのイオンと、Coのイオンと、さ
らにはB粉末または/およびB(OH)4 -イオンとを含
む混合水溶液から、同時沈殿または共沈殿により、R、
Fe、Co、Bの混合水酸化物あるいは複合水酸化物を
作製し、次いでこれらを加熱して、R、Fe、Co、B
の混合酸化物あるいは複合酸化物とし、さらにこれら酸
化物にCaまたはCa合金の粉末を混合して、800〜
1200℃で加熱して還元し、得られた還元生成物を冷
却、水洗、さらに乾燥することを特徴とする希土類元素
・鉄・ボロン系永久磁石合金粉末の製造方法。
1. An ion of R (R is at least one of rare earth elements including Y), an ion of Fe, an ion of Co, and further B powder and / or B (OH) 4 ion. From a mixed aqueous solution, R,
A mixed hydroxide or a composite hydroxide of Fe, Co, and B is prepared, and then heated to obtain R, Fe, Co, B
Mixed oxides or composite oxides, and powders of Ca or Ca alloy mixed with these oxides,
A method for producing a rare earth element / iron / boron-based permanent magnet alloy powder, wherein the powder is reduced by heating at 1200 ° C., and the obtained reduction product is cooled, washed with water, and further dried.
【請求項2】 R、Fe、Co、Bの混合酸化物あるい
は複合酸化物の平均粒径が10μm未満である請求項1
記載の希土類元素・鉄・ボロン系永久磁石合金粉末の製
造方法。
2. The mixed oxide or composite oxide of R, Fe, Co, and B has an average particle size of less than 10 μm.
The method for producing the rare earth element / iron / boron-based permanent magnet alloy powder described in the above.
【請求項3】 組成が、Rが6〜15at%、Feが7
0〜93at%、Coが0.1〜40at%、Bが1〜
10at%であって、希土類元素・鉄・ボロン系永久磁
石合金粉末の粒子内に、Fe、Co、Fe合金、Co合
のいずれか一つ以上を濃く含有するFeまたは/およ
びCoまたは/およびFeとCoの合金のリッチ相が、
1μm以下の微粒子となって微細に分散して存在する希
土類元素・鉄・ボロン系永久磁石合金粉末。
3. The composition according to claim 1 , wherein R is 6 to 15 at% and Fe is 7 at%.
0 to 93 at%, Co is 0.1 to 40 at%, B is 1 to
A 10at%, the rare earth element-iron-boron-based in particle permanent magnet alloy powder, Fe, Co, Fe alloy, Co if
The rich phase of Fe or / and Co or / and an alloy of Fe and Co containing one or more of gold densely is
Become a 1μm or less of particulate rare that exist in finely dispersed
Earth element-iron-boron-based permanent magnet alloy powder.
【請求項4】 2 (Fe,Co) 14 B化合物相を有
し、R 2 (Fe,Co)14B化合物相中に上記リッチ相
が1μm以下の微粒子となって微細に分散析出した混合
組織となっている請求項3に記の希土類元素・鉄・ボ
ロン系永久磁石合金粉末。
4. It has an R 2 (Fe, Co) 14 B compound phase.
And, R 2 (Fe, Co) 14 B compound phase rare earth element-iron-board of the rich phase mounting serial to claim 3 become less fine 1μm has become finely dispersed precipitated mixed tissue during
Ron-based permanent magnet alloy powder.
【請求項5】 R2(Fe,Co)14B化合物と、上記
リッチ相との間に、磁気的交換相互作用が存在するいわ
ゆる交換スプリング磁石となっている請求項4に記
希土類元素・鉄・ボロン系永久磁石合金粉末。
Wherein R 2 (Fe, Co) and 14 B compound, between the rich phase, No placing serial to claim 4 which is a so-called exchange spring magnet magnetic exchange interaction is present
Rare earth element-iron-boron-based permanent magnet alloy powder.
JP22157497A 1997-08-18 1997-08-18 Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder Expired - Fee Related JP3331306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22157497A JP3331306B2 (en) 1997-08-18 1997-08-18 Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22157497A JP3331306B2 (en) 1997-08-18 1997-08-18 Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder

Publications (2)

Publication Number Publication Date
JPH1161205A JPH1161205A (en) 1999-03-05
JP3331306B2 true JP3331306B2 (en) 2002-10-07

Family

ID=16768878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22157497A Expired - Fee Related JP3331306B2 (en) 1997-08-18 1997-08-18 Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder

Country Status (1)

Country Link
JP (1) JP3331306B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354990C (en) * 2005-04-21 2007-12-12 中南大学 Chemic homogeneous coprecipitation method for preparing precursor body of permanent magnetic material of terrae rare cobalt
JP5088277B2 (en) * 2008-09-16 2012-12-05 住友金属鉱山株式会社 Method for producing rare earth-iron-nitrogen alloy powder
JP5936686B2 (en) * 2011-06-21 2016-06-22 ルレデラ・フンダシオン・パラ・エル・デサロリョ・テクノロヒコ・イ・ソシアル Method for producing mixed oxide and permanent magnetic particles
JP2013149664A (en) * 2012-01-17 2013-08-01 Showa Denko Kk Method for manufacturing alloy for rare earth-transition metal-boron-based magnet
JP5874534B2 (en) * 2012-05-23 2016-03-02 日亜化学工業株式会社 Rare earth-iron-nitrogen based magnetic material and method for producing the same
JP6601432B2 (en) * 2017-02-03 2019-11-06 株式会社豊田中央研究所 Manufacturing method of magnetic powder

Also Published As

Publication number Publication date
JPH1161205A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JPH0778269B2 (en) Rare earth / iron / boron tetragonal compound for permanent magnet
JP3057448B2 (en) Rare earth permanent magnet
JP6750543B2 (en) R-T-B system sintered magnet
Jadhav et al. One pot synthesis of hard phase Nd 2 Fe 14 B nanoparticles and Nd 2 Fe 14 B/α-Fe nanocomposite magnetic materials
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
CN110935873B (en) Polycrystalline rare earth transition metal alloy powder and method for producing same
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP3331306B2 (en) Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder
JPH03236202A (en) Sintered permanent magnet
JP2665658B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
JPH085664B2 (en) Rare earth / iron / boron tetragonal compound
JPH1092617A (en) Permanent magnet and its manufacture
JPH06207204A (en) Production of rare earth permanent magnet
JP2684140B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
JP4166478B2 (en) Method for producing rare earth iron nitrogen-based magnetic powder
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP3247839B2 (en) Manufacturing method of rare earth permanent magnet
JP3109637B2 (en) Anisotropic needle-like magnetic powder and bonded magnet using the same
JPH06151133A (en) Manufacture of magnet powder
JP2545603B2 (en) Method for manufacturing anisotropic sintered magnet
JP2004363474A (en) Method for manufacturing particles for permanent magnet
JPH06151135A (en) Manufacture magnet powder
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JPH06112019A (en) Nitride magnetic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees