JPH06151851A - Structure of thin film transistor - Google Patents

Structure of thin film transistor

Info

Publication number
JPH06151851A
JPH06151851A JP31625892A JP31625892A JPH06151851A JP H06151851 A JPH06151851 A JP H06151851A JP 31625892 A JP31625892 A JP 31625892A JP 31625892 A JP31625892 A JP 31625892A JP H06151851 A JPH06151851 A JP H06151851A
Authority
JP
Japan
Prior art keywords
thin film
gate electrode
film transistor
transistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31625892A
Other languages
Japanese (ja)
Inventor
Masatoshi Utaka
正俊 右高
Shigeichi Yamamoto
茂市 山本
Michitaka Noda
理崇 野田
Junji Nakamura
潤二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31625892A priority Critical patent/JPH06151851A/en
Publication of JPH06151851A publication Critical patent/JPH06151851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To achieve a high field effect mobility and low power consumption by so structuring a thin film transistor that both faces of a main semiconductor layer has at least one gate electrode, and by applying voltage to one of these gates to control the carrier concentration of the area near the other semiconductor surface. CONSTITUTION:When a transistor is in the off-state, positive or negative voltage is applied to one gate electrode 2, and the concentration of electrons or holes in the semiconductor layer in proximity to the other gate electrode 9 is thereby controlled, the leakage current being reduced. When the transistor is in the on-state, contrarily, positive or negative voltage is applied to the source 6 and drain 7 electrodes and auxiliary gate electrodes 3 opposite thereto with a semiconductor film and insulating film in-between, and the carrier concentration is thereby increased in the contact area between the source 6 and drain 7 electrodes and the semiconductor. This reduces the contact resistance and improves the field effect mobility. These two effects result in a thin film transistor with a less power consumption and high field effect mobility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は消費電力が少なく,かつ
高電界効果移動度を持った薄膜トランジスタの構造に関
するものである.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film transistor having low power consumption and high field effect mobility.

【0002】[0002]

【従来の技術】TFTはアクティブマトリックス方式の
液晶ディスプレイの駆動用スイッチング素子として主に
用いられており,通常はガラス基板上に形成されてい
る.そのためシリコン基板を用いたプロセスのように3
00度をこえる処理ができない.シリコン薄膜の堆積に
ついては単結晶シリコンや多結晶シリコンよりも堆積温
度が低いアモルファスシリコンが用いられている.しか
しアモルファスシリコンは堆積時よりn型の導電性を示
し,オフ状態においてもソース電極とゲート電極の間に
ある程度の電流が流れ,これが消費電力の増加の原因と
なっていた.
2. Description of the Related Art A TFT is mainly used as a driving switching element of an active matrix type liquid crystal display, and is usually formed on a glass substrate. Therefore, like the process using a silicon substrate,
It cannot process over 00 degrees. Amorphous silicon, which has a lower deposition temperature than single-crystal silicon or polycrystalline silicon, is used for the deposition of silicon thin films. However, amorphous silicon exhibits n-type conductivity from the time of deposition, and a certain amount of current flows between the source electrode and the gate electrode even in the off state, which causes increase in power consumption.

【0003】アモルファスシリコンは,単結晶シリコン
や多結晶シリコンと比較して電界効果移動度が低く,反
応速度が遅くなるという欠点がある.この問題が大画面
化,高精細化,高開口率化といった液晶ディスプレイに
対する最近の要求の実現を阻害していた.
Amorphous silicon has the drawback that it has a lower field effect mobility and a slower reaction rate than single crystal silicon or polycrystalline silicon. This problem has hindered the realization of recent demands for liquid crystal displays such as large screens, high definition, and high aperture ratio.

【0004】300度を越える高温処理ができないた
め,ソース,ドレイン電極と半導体層の間に不純物を高
濃度に拡散した低抵抗層の設定が困難である.そのため
アモルファスシリコンとソース,ドレイン電極の良好な
オーミック接触がとれないといった問題がある.この大
きなコンタクト抵抗は電界効果移動度を低下させている
要因の一つであった.
Since a high temperature treatment exceeding 300 ° C. cannot be performed, it is difficult to set a low resistance layer in which impurities are diffused in a high concentration between the source and drain electrodes and the semiconductor layer. Therefore, there is a problem that good ohmic contact cannot be established between the amorphous silicon and the source and drain electrodes. This large contact resistance was one of the factors that reduced the field effect mobility.

【0005】[0005]

【発明が解決しようとする課題】解決しようとする問題
点は,トランジスタがオフ状態時における漏れ電流が原
因となっている高い消費電力.さらに高いソース及びド
レイン電極のコンタクト抵抗による電界効果移動度の低
下である.
The problem to be solved is high power consumption due to leakage current when the transistor is in the off state. Furthermore, the field effect mobility decreases due to the higher contact resistance of the source and drain electrodes.

【0006】[0006]

【課題を解決するための手段】本発明はトランジスタが
オフ状態の時のみソース,ドレイン間付近の半導体のキ
ャリア濃度を,新たに設定したゲート電極により低減す
ることによって,半導体の抵抗値を高め,漏れ電流を低
減した.一方トランジスタがオン状態の時には反対にキ
ャリア濃度を高くすることによって,チャネルの抵抗値
を下げ,高い電界効果移動度を実現することができた.
ソース,ドレイン電極のコンタクト抵抗の低減はソー
ス,ドレイン電極が存在する面と反対側の半導体層の面
に新たに設定した補助ゲート電極に,正または負の電圧
を印加することによってソース,ドレイン電極の近傍に
キャリアを集め,低抵抗半導体層を設定したのと同様の
効果を実現した.
According to the present invention, the resistance value of the semiconductor is increased by reducing the carrier concentration of the semiconductor near the source and drain only by the newly set gate electrode only when the transistor is in the off state. The leakage current has been reduced. On the other hand, when the transistor is in the ON state, conversely, by increasing the carrier concentration, the resistance value of the channel was lowered and high field effect mobility could be realized.
The contact resistance of the source and drain electrodes is reduced by applying a positive or negative voltage to the auxiliary gate electrode newly set on the surface of the semiconductor layer opposite to the surface where the source and drain electrodes are present. Carriers were collected in the vicinity of and the same effect as setting the low-resistance semiconductor layer was realized.

【0007】[0007]

【実施例】図1は,本発明の薄膜トランジスタの実施例
の断面図である.
EXAMPLE FIG. 1 is a sectional view of an example of a thin film transistor of the present invention.

【図1】[Figure 1]

【0008】ゲート電極2に電圧を印加することによっ
て,もう一方のゲート電極9の直下の半導体薄膜5とゲ
ート絶縁膜8との界面のキャリア濃度を制御することが
できる.ゲート電極9に電圧が印加されていない時,即
ちトランジスタがオフ状態の時はキャリア濃度を低下さ
せ,半導体の抵抗値を増加させ、漏れ電流を減らすこと
が可能となる.このことにより消費電力を低下させるこ
とができる.
By applying a voltage to the gate electrode 2, the carrier concentration at the interface between the semiconductor thin film 5 and the gate insulating film 8 immediately below the other gate electrode 9 can be controlled. When no voltage is applied to the gate electrode 9, that is, when the transistor is in the off state, it is possible to reduce the carrier concentration, increase the resistance value of the semiconductor, and reduce the leakage current. This can reduce the power consumption.

【0009】ゲート電極9に電圧が印加されている時,
即ちトランジスタがオン状態の時,ゲート電極9の直下
の半導体薄膜5とゲート絶縁膜8との界面のキャリア濃
度を高くして,電界効果移動度の良好なチャネルを形成
することが可能となる.
When a voltage is applied to the gate electrode 9,
That is, when the transistor is in the ON state, the carrier concentration at the interface between the semiconductor thin film 5 directly below the gate electrode 9 and the gate insulating film 8 can be increased to form a channel with good field effect mobility.

【0010】ソース電極6とドレイン電極7と半導体薄
膜5を挟んだ位置にある補助電極3に電圧を印加するこ
とによって,これらの電極と半導体層5の界面のキャリ
ア濃度を増加させ,電極と半導体層の間に低抵抗の半導
体層を設定した場合と同じ効果により,コンタクト抵抗
が小さくなり電界効果移動度が向上する.
By applying a voltage to the auxiliary electrode 3 located at the position between the source electrode 6 and the drain electrode 7 and the semiconductor thin film 5, the carrier concentration at the interface between these electrodes and the semiconductor layer 5 is increased, and the electrode and semiconductor Due to the same effect as when a low resistance semiconductor layer is set between the layers, the contact resistance is reduced and the field effect mobility is improved.

【0011】[0011]

【発明の効果】以上説明したように本発明の薄膜トラン
ジスタはオフ状態における漏れ電流の低減を実現するた
め及び,ソース,ドレイン電極のコンタクト抵抗の低減
を実現するためにその構造に改良を加えたものである.
以上より薄膜トランジスタに於いて,低消費電力及び高
電界効果移動度を実現することができた.
As described above, the thin film transistor of the present invention has its structure improved in order to reduce the leakage current in the OFF state and to reduce the contact resistance of the source and drain electrodes. Is.
From the above, it was possible to realize low power consumption and high field effect mobility in thin film transistors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面図である.FIG. 1 is a sectional view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 ゲート電極 3 補助電極 4 ゲート絶縁膜 5 半導体薄膜 6 ソース電極 7 ドレイン電極 8 ゲート絶縁膜 9 ゲート電極 1 Insulating Substrate 2 Gate Electrode 3 Auxiliary Electrode 4 Gate Insulating Film 5 Semiconductor Thin Film 6 Source Electrode 7 Drain Electrode 8 Gate Insulating Film 9 Gate Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 潤二 名古屋市緑区相川2丁目43番地ベラビスタ 相川203号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Junji Nakamura 2-43 Aikawa, Midori-ku, Nagoya Bella Vista No. 203 Aikawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ソース及び,ドレイン電極の他に,主体
半導体薄膜層の上下に相対するように一つずつの電極及
び絶縁膜からなるゲート電極を持つ薄膜トランジスタに
ついて,トランジスタが一方のゲート電極でオフ状態及
び,オン状態となった時に,もう一つのゲート電極に電
圧を印加して使うようになっていることを特徴とした薄
膜トランジスタの構造.
1. A thin film transistor having, in addition to a source and drain electrode, a gate electrode composed of an insulating film and an electrode so as to face each other above and below the main semiconductor thin film layer, the transistor is off at one gate electrode. Structure of thin film transistor characterized by applying a voltage to another gate electrode when it is turned on and turned on.
【請求項2】 請求項1の薄膜トランジスタにおいて,
ソース電極及び,ドレイン電極が形成されている面と反
対側の主体半導体薄膜面上に,絶縁膜及び電極からなる
補助電極を設け,この電極に電圧を印加するようになっ
ていることを特徴とする薄膜トランジスタの構造.
2. The thin film transistor according to claim 1, wherein
An auxiliary electrode composed of an insulating film and an electrode is provided on the surface of the main semiconductor thin film opposite to the surface on which the source electrode and the drain electrode are formed, and a voltage is applied to this electrode. Of thin film transistor.
【請求項3】 請求項2において,請求項1で述べたも
う一つのゲート電極を付加したことを特徴とする薄膜ト
ランジスタの構造.
3. The structure of a thin film transistor according to claim 2, wherein the other gate electrode described in claim 1 is added.
JP31625892A 1992-10-29 1992-10-29 Structure of thin film transistor Pending JPH06151851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31625892A JPH06151851A (en) 1992-10-29 1992-10-29 Structure of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31625892A JPH06151851A (en) 1992-10-29 1992-10-29 Structure of thin film transistor

Publications (1)

Publication Number Publication Date
JPH06151851A true JPH06151851A (en) 1994-05-31

Family

ID=18075099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31625892A Pending JPH06151851A (en) 1992-10-29 1992-10-29 Structure of thin film transistor

Country Status (1)

Country Link
JP (1) JPH06151851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953596A (en) * 1996-12-19 1999-09-14 Micron Technology, Inc. Methods of forming thin film transistors
KR100970186B1 (en) * 2002-05-21 2010-07-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic field effect transistor
CN104241284A (en) * 2013-06-06 2014-12-24 旺宏电子股份有限公司 Dual-mode transistor devices and methods for operating same
WO2014208476A1 (en) * 2013-06-27 2014-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2020109816A3 (en) * 2018-11-30 2020-07-23 University Of Surrey Multiple-gate transistor
US11996485B2 (en) 2018-11-30 2024-05-28 University Of Surrey Multiple-gate transistor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953596A (en) * 1996-12-19 1999-09-14 Micron Technology, Inc. Methods of forming thin film transistors
US6166398A (en) * 1996-12-19 2000-12-26 Micron Technology, Inc. Thin film transistors
US6200839B1 (en) 1996-12-19 2001-03-13 Micron Technology, Inc. Methods of forming thin film transistors
KR100970186B1 (en) * 2002-05-21 2010-07-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic field effect transistor
US8183559B2 (en) 2002-05-21 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
CN104241284A (en) * 2013-06-06 2014-12-24 旺宏电子股份有限公司 Dual-mode transistor devices and methods for operating same
WO2014208476A1 (en) * 2013-06-27 2014-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015046576A (en) * 2013-06-27 2015-03-12 株式会社半導体エネルギー研究所 Semiconductor device
TWI661558B (en) * 2013-06-27 2019-06-01 日商半導體能源研究所股份有限公司 Semiconductor device
US11581439B2 (en) 2013-06-27 2023-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2020109816A3 (en) * 2018-11-30 2020-07-23 University Of Surrey Multiple-gate transistor
US11996485B2 (en) 2018-11-30 2024-05-28 University Of Surrey Multiple-gate transistor

Similar Documents

Publication Publication Date Title
US4862234A (en) Thin-film transistor
JPH0752776B2 (en) Thin film transistor and manufacturing method thereof
JPH0338755B2 (en)
JPH10150110A (en) Semiconductor device
KR100325498B1 (en) Thin Film Transistor for Liquid Crystal Display
WO2019037631A1 (en) Array substrate and manufacturing method therefor
US8653531B2 (en) Thin film transistor and display device
JPH04360583A (en) Thin film transistor
JPH06151851A (en) Structure of thin film transistor
US4679062A (en) Thin film transistor
JPS6273660A (en) Thin-film transistor device and manufacture thereof
WO2022120746A1 (en) Array substrate and manufacturing method therefor, and display panel
JPH07263698A (en) Thin film transistor and its manufacture
JP2647100B2 (en) Thin film transistor
JPH01302768A (en) Inverse stagger type si-thin film transistor
JP3041947B2 (en) Liquid crystal display
JPH11154752A (en) Thin film transistor, liquid crystal display device using the same and manufacture of tft array substrate
JPH0385529A (en) Thin-film semiconductor display device
CN112542516B (en) Active switch, manufacturing method thereof and display panel
JPH0784285A (en) Liquid crystal display device
JPH04180237A (en) Thin film transistor and production method
KR950009797B1 (en) Fid poly silicon tft with bottom gate
JPH01128573A (en) Thin film transistor
JP2855155B2 (en) Thin film transistor
KR200161009Y1 (en) Poly-si tft lcd panel