JPH06140223A - Manufacture of annular magnet material - Google Patents

Manufacture of annular magnet material

Info

Publication number
JPH06140223A
JPH06140223A JP3359901A JP35990191A JPH06140223A JP H06140223 A JPH06140223 A JP H06140223A JP 3359901 A JP3359901 A JP 3359901A JP 35990191 A JP35990191 A JP 35990191A JP H06140223 A JPH06140223 A JP H06140223A
Authority
JP
Japan
Prior art keywords
ring
shaped
magnet material
metal container
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359901A
Other languages
Japanese (ja)
Other versions
JP2791616B2 (en
Inventor
Akihiko Yanagiya
谷 彰 彦 柳
Kazuhiko Morishita
下 和 彦 森
Tomohiro Nishiyama
山 智 宏 西
Noboru Harada
田 昇 原
Ichiro Takasu
須 一 郎 高
Yoshikazu Tanaka
中 義 和 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP3359901A priority Critical patent/JP2791616B2/en
Publication of JPH06140223A publication Critical patent/JPH06140223A/en
Application granted granted Critical
Publication of JP2791616B2 publication Critical patent/JP2791616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a method capable of manufacturing a permanent magnet material, which is superior in anisotropy uniaxially in the diameter direction, at low cost in the case where the form of an annular magnet is molded using a rare-earth magnet material. CONSTITUTION:Alloy powder 2, which is an RFeB (R shows a rare-earth element) magnet material, is filled and encapsulated in an annular metallic container 1, in which a processing material to be made plastic is sealed and housed in such a way as to be able to perform a ring rolling or a forging and an annular groove 12 is involved, the processing material is pressed and is made to perform a plastic processing in the direction of the ring diameter while its plastic deformation is inhibited in the vertical width direction of a ring in a temperature region lower than a liquidus line of 500 deg.C or higher and a plastic flow is formed in the peripheral direction of the processing material. Thereby, the processing material in the container 1 is substantially made anisotropic uniaxially in the diameter direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モータ、アクチュエー
タ、コンピュータ周辺機器などいわゆるエレクトロニク
ス、メカトロニクスの分野で実用に供される希土類−遷
移金属−半金属系の永久磁石材料をリング形状に成形す
る製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a ring-shaped manufacturing of a rare earth-transition metal-metalloid permanent magnet material which is put to practical use in the fields of so-called electronics and mechatronics such as motors, actuators and computer peripherals. It is about the method.

【0002】[0002]

【従来の技術】一般に永久磁石材料は、その固有の特性
により、各種エレクトロニクス、メカトロニクスの分野
で目的に応じて使用されており、その要求される特性は
益々高性能化しつつある。高性能永久磁石材料として
は、Sm−Co系、R−Fe−B(Rは希土類元素)系
があり、前者は希少なかつ高価な元素からなる一方、資
源的に豊富で工業的に有利な後者の希土類系磁石が近年
注目され、数多くの研究もなされている。後者の磁石材
料としては従来Nd−Fe−B系、Pr−Fe−B系が
代表的なものである。このような希土類系磁石には等方
性磁石と異方性磁石とがあり、異方性磁石を得るために
は成形の段階で塑性加工することが必要である。たとえ
ばNd系永久磁石は粉砕粉あるいは超急冷粉を出発原料
として、1000℃から1200℃付近で焼結したり、
700℃付近で熱間押し出しなどにより塑性加工してい
る。Pr系永久磁石においてはNd系と同様に粉砕粉を
焼結あるいは熱間押し出ししたり、または鋳造塊中の柱
状晶部分のみを切りだして圧延することにより塑性加工
し、異方性磁石として製造されている。
2. Description of the Related Art Generally, a permanent magnet material is used in various fields of electronics and mechatronics depending on its purpose due to its unique characteristics, and the required characteristics are becoming higher in performance. High-performance permanent magnet materials include Sm-Co and R-Fe-B (R is a rare earth element) system, the former consisting of rare and expensive elements, while the latter, which is rich in resources and industrially advantageous. In recent years, the rare earth magnets have been attracting attention and many studies have been made. As the latter magnet material, the conventional Nd-Fe-B system and Pr-Fe-B system are typical. Such rare earth magnets include isotropic magnets and anisotropic magnets, and in order to obtain anisotropic magnets, it is necessary to perform plastic working at the stage of molding. For example, Nd-based permanent magnets are pulverized powder or ultra-quenched powder as a starting material and sintered at around 1000 to 1200 ° C.,
It is plastically worked by hot extrusion at around 700 ° C. In the case of Pr-based permanent magnets, crushed powder is sintered or hot extruded in the same manner as Nd-based magnets, or only columnar crystal parts in a cast ingot are cut out and rolled to be plastically processed to produce an anisotropic magnet. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記希
土類系磁石材料においては圧縮方向に磁化容易軸方向で
あるC軸が揃い異方化するため、従来の技術たとえば粉
砕粉・磁場中プレス焼結という工法ではその磁気的性質
は一軸異方性であるが、径方向に一軸に異方化されたリ
ング状の永久磁石は得られない。また、熱間押し出し法
においても径方向および周方向に加圧塑性加工されるた
め、磁石としての異方性は面内等方性であり、一軸異方
に優れた異方性は得られない。他方、圧延工法は加圧方
向に垂直な方向に異方化するものの、実用で強く要求さ
れるリング状磁石においての径方向に実質的に一軸に異
方化した永久磁石を得ることはできない。
However, in the rare earth magnet material described above, the C axis, which is the easy axis of magnetization, is anisotropic in the compression direction, so that conventional techniques such as crushed powder and press sintering in a magnetic field are called. In the method of construction, the magnetic property is uniaxial anisotropy, but a ring-shaped permanent magnet uniaxially anisotropic in the radial direction cannot be obtained. Further, even in the hot extrusion method, since pressure plastic working is performed in the radial direction and the circumferential direction, the anisotropy as a magnet is in-plane isotropic, and excellent uniaxial anisotropy cannot be obtained. . On the other hand, although the rolling method anisotropy in the direction perpendicular to the pressing direction, it is impossible to obtain a substantially uniaxially anisotropic permanent magnet in the radial direction in the ring magnet, which is strongly required in practical use.

【0004】リング状径方向一軸異方性を製造する方法
としては後方押出が唯一用いられているが、リング径が
ダイス形状に支配されるため、種々の寸法のリング状磁
石材料を製造するにはコスト高となるとともに、潤滑が
必要で、圧下率が低く、直接薄板のリング状に加工でき
ないなど工業的生産に不適である。そこで、本発明は希
土類系磁石材料でリング状磁石形状を成形するにあた
り、径方向一軸異方性に優れた永久磁石材料を安価に製
造することのできる方法を提供することを目的とする。
Although backward extrusion is the only method used to produce ring-shaped radial uniaxial anisotropy, ring-shaped magnet materials are dominated by the die shape, so ring-shaped magnet materials of various sizes are manufactured. Is costly, requires lubrication, has a low rolling reduction, and is not suitable for industrial production because it cannot be directly processed into a thin plate ring shape. Therefore, it is an object of the present invention to provide a method capable of inexpensively producing a permanent magnet material excellent in radial uniaxial anisotropy when molding a ring-shaped magnet shape with a rare earth magnet material.

【0005】[0005]

【課題を解決するための手段】本発明はリングローリン
グまたはフォージング可能で、被塑性加工材を密封収納
するリング状溝を内包するリング状金属製容器にRFe
B系(Rは希土類元素を示す)磁石材料の合金粉末を充
填封入し、500℃以上液相線以下の温度域においてリ
ング上下巾方向に塑性変形を抑制しつつリング径方向に
加圧塑性加工させ、周方向に塑性流れを形成することに
より、上記容器内の被塑性加工材を実質的に径方向一軸
に異方化させるリング状磁石材料の製造方法にある。
SUMMARY OF THE INVENTION The present invention provides a ring-shaped metal container which is capable of ring rolling or forging and which contains a ring-shaped groove for hermetically containing a plastic work material.
Alloy powder of B type (R is a rare earth element) magnet material is filled and sealed, and pressure plastic working is performed in the radial direction of the ring while suppressing plastic deformation in the width direction of the ring in the temperature range of 500 ° C. or more and the liquidus line or less. By forming a plastic flow in the circumferential direction, the material to be plastically processed in the container is anisotropically uniaxially in the radial direction.

【0006】[0006]

【作用】本発明によれば、金属製容器内に合金粉末を充
填するので、固形環状体の冷間転造に使用されるリング
ローリングまたはリングフォージングによる成形方法を
採用することができる。ここで、金属製容器および内部
の合金粉末は、リング上下巾方向に塑性変形を抑制しつ
つリング径方向に加圧されると、合金粉末にはリング周
方向に塑性流れが生じつつリング径方向に塑性加工され
ることになる。したがって、RFeB系(Rは希土類元
素を示す)磁石材料の合金粉末は圧縮方向に磁化容易軸
方向であるC軸が揃い異方化するため、径方向一軸異方
性化したリング状永久磁石材料を得ることができる。
According to the present invention, since the alloy powder is filled in the metal container, the molding method by ring rolling or ring forging used for cold rolling of the solid annular body can be adopted. Here, when the metal container and the alloy powder in the inside are pressed in the ring radial direction while suppressing the plastic deformation in the ring width direction, the alloy powder undergoes a plastic flow in the ring circumferential direction while generating a plastic flow in the ring radial direction. Will be plastically processed. Therefore, the alloy powder of the RFeB-based (R represents a rare earth element) magnet material is anisotropic because the C-axis, which is the easy axis of magnetization, is anisotropic in the compression direction. Can be obtained.

【0007】本発明が適用されるRFeB系磁石材料と
しては従来Nd−Fe−B系、Pr−Fe−B系が代表
的なものであり、粉砕粉末、急冷粉末、ガスアトマイズ
粉末が使用される。他方、金属製容器としては密封充填
される磁石材料と同等の圧延特性を有する材料を使用す
るのが好ましく、通常ステンレス鋼を使用する。金属製
容器に内包されるリング状溝は全体としてリング状をな
す肉厚環状部にその中央部を周方向に穿設して形成さ
れ、上記合金粉末を充填後リング状溝上部に蓋体を溶接
固定して密封できるようになっている。かかる金属製容
器は塑性加工後内部のリング状磁石材料を取り出すた
め、外殻除去してもよいが、金属製容器材料に非磁性材
を使用してそのまま磁石材料として使用するのが生産コ
ストの低減に役立つ。上記リングローリングまたはリン
グフォージングによる成形は500℃以上液相線以下の
温度域において行われる。通常、500℃未満では塑性
加工による異方性化効果が充分に発揮されず、1100
℃以上では液相線以上であるからである。本発明におい
て、成形製品の寸法精度を向上させるために、上記リン
グ状金属製容器に上記合金粉末を封入前にリング形状に
焼結成形し、または冷間静水圧プレスによりリング形状
に予備形成を施すことにより充填密度を98〜100%
に向上させるのが好ましい。上記焼結成形または予備成
形は合金粉末を金属容器内に充填密封した後に行うよう
にしてもよく、特にRFeB系(Rは希土類元素を示
す)磁石材料の合金粉末は焼成中に酸化し易いので、通
常真空炉で焼成されるが、上記金属製容器内には充填密
封後は通常の大気炉において焼成することができる利点
がある。上記加圧塑性加工後400℃以上700℃以下
の温度において磁気特性向上のための熱処理を施すのが
好ましい。
The RFeB-based magnet material to which the present invention is applied is typically Nd-Fe-B-based or Pr-Fe-B-based, and crushed powder, quenched powder or gas atomized powder is used. On the other hand, as the metal container, it is preferable to use a material having rolling characteristics equivalent to those of the magnetic material to be hermetically filled, and usually stainless steel is used. The ring-shaped groove contained in the metal container is formed by circumferentially drilling the central portion in a ring-shaped thick annular portion as a whole, and after filling the alloy powder, a lid is provided on the upper portion of the ring-shaped groove. It can be fixed by welding and sealed. In such a metal container, the inner ring-shaped magnetic material is taken out after plastic working, so the outer shell may be removed, but using a non-magnetic material for the metal container material as it is as a magnet material leads to production cost. Helps reduce. The molding by ring rolling or ring forging is performed in a temperature range of 500 ° C. or higher and the liquidus line or lower. Generally, if it is less than 500 ° C, the anisotropy effect due to plastic working is not sufficiently exerted, and 1100
This is because the liquidus is above the liquidus line at a temperature of ℃ or above. In the present invention, in order to improve the dimensional accuracy of a molded product, the alloy powder is sinter-formed into a ring shape before being enclosed in the ring-shaped metal container, or preformed into a ring shape by cold isostatic pressing. Filling density is 98-100% by applying
It is preferable to improve The above-mentioned sinter molding or pre-molding may be carried out after the alloy powder is filled and sealed in a metal container. In particular, since the alloy powder of the RFeB system (R represents a rare earth element) magnet material is easily oxidized during firing. Usually, it is fired in a vacuum furnace, but there is an advantage that it can be fired in a normal atmospheric furnace after filling and sealing the metal container. It is preferable to perform heat treatment for improving magnetic properties at a temperature of 400 ° C. or higher and 700 ° C. or lower after the pressure plastic working.

【0008】[0008]

【発明の効果】以上本発明の製造方法によれば、熱間前
方押出しなどの方法では不可能であった径方向に実質的
に一軸異方性を有したリング状の永久磁石の製造が可能
になるとともに、粉末を出発原料とするため、圧延・押
出などにおける最先端部・最後端部の不健全部の歩留ま
り低下を引き起こすことがなく収率よく、製造できる。
また、後方押出のようにダイス寸法に規制されず、圧下
率を変更することにより種々のリング状磁石が容易に製
造できるので、工業的価値は大なるものである。
As described above, according to the manufacturing method of the present invention, it is possible to manufacture a ring-shaped permanent magnet having substantially uniaxial anisotropy in the radial direction, which was impossible by a method such as hot forward extrusion. In addition, since the powder is used as the starting material, it is possible to manufacture with high yield without causing a decrease in the yield of the unhealthy portions at the leading end and the rearmost end in rolling and extrusion.
Further, unlike the backward extrusion, the size of the die is not restricted, and various ring-shaped magnets can be easily manufactured by changing the reduction ratio, so that the industrial value is great.

【0012】[0012]

【実施例】図1は本発明方法によりリングローリングに
付される前の金属製容器とリングローリング後の金属製
容器の半断面斜視図で、図2は図1に示す金属製容器を
リングローリングするための転造装置を示す正面図
(a)と平面図(b)である。図面に示すように、金属
製容器1は全体として環状をなし、その環状部11中央
には全周にわたって延びるリング状溝12が形成され、
その上端開口を環状の蓋体13にて封鎖され、溶接にて
密封固定されるようになっている。このリング状溝には
RFeB系磁石材料粉末等2が充填される。この金属製
容器1はリング上下巾方向に塑性変形を抑制しつつリン
グ径方向に加圧する周面溝加工されたワーキングロール
3とその対向側に配置される一対のバックアップロール
4との間に配置されたマンドレル5に挿通し、金属製容
器1の外周面に上記ワーキングロール3を噛み合わせ、
金属製容器1を転造できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a half sectional perspective view of a metal container before being subjected to ring rolling and a metal container after ring rolling according to the method of the present invention. FIG. 2 shows the metal container shown in FIG. It is the front view (a) and top view (b) which show the rolling device for performing. As shown in the drawing, the metal container 1 has an annular shape as a whole, and a ring-shaped groove 12 extending over the entire circumference is formed in the center of the annular portion 11.
The upper end opening is closed by an annular lid body 13 and hermetically fixed by welding. The ring-shaped groove is filled with RFeB magnet material powder 2 or the like. The metal container 1 is arranged between a working roll 3 having a grooved peripheral surface that pressurizes in the radial direction of the ring while suppressing plastic deformation in the width direction of the ring and a pair of backup rolls 4 arranged on the opposite side. Through the mandrel 5 that has been cut, and the working roll 3 is engaged with the outer peripheral surface of the metal container 1.
The metal container 1 can be rolled.

【0013】(実施例1)図3に示す粉度分布のPr
17.4Fe76.24.9 Cu1.5 ガスアトマイズ粉末を外径
72mm内径48mm高さ20mmの金属製容器(その
断面形状を図4(a)に示す)のリング溝内充填封入
し、650℃に加熱保持後上記図2に示す転造装置を用
い、径方向に歪み速度10sec-1で温間ローリングし
た。得られた塑性加工リングの断面を図4(b)に示
す。その時の圧縮比は40%で、各方向の最大磁気エネ
ルギ積を表1に示す。
(Example 1) Pr of the fineness distribution shown in FIG.
17.4 Fe 76.2 B 4.9 Cu 1.5 gas atomized powder was filled and sealed in the ring groove of a metal container (the cross-sectional shape of which is shown in FIG. 4 (a)) having an outer diameter of 72 mm, an inner diameter of 48 mm, and a height of 20 mm, and the mixture was heated and held at 650 ° C. Using the rolling apparatus shown in FIG. 2, warm rolling was performed in the radial direction at a strain rate of 10 sec −1 . The cross section of the obtained plastic working ring is shown in FIG. The compression ratio at that time is 40%, and the maximum magnetic energy product in each direction is shown in Table 1.

【0014】(実施例2)Pr15.7Fe77.85 Cu
1.5 磁石材料の製造において、母材合金粉末をリング形
状に1000℃で1時間焼結成形したのち、外径70m
m内径40mm長さ24mmリング状該金属製容器(そ
の断面形状を図5(a)に示す)に充填封入し、650
℃において図2に示す転造装置を用い、リング径方向よ
り歪み速度10sec-1で加圧塑性加工させ、図5
(b)に示す断面形状のリングを得る。その時の圧縮比
は40%で、各方向の最大磁気エネルギ積を表2に示
す。
Example 2 Pr 15.7 Fe 77.8 B 5 Cu
1.5 In the manufacture of magnet materials, after the base material alloy powder was sintered and molded into a ring shape at 1000 ° C for 1 hour, the outer diameter was 70m
m inner diameter 40 mm length 24 mm ring-shaped metal container (the cross-sectional shape of which is shown in FIG. 5A) is filled and sealed at 650
Using the rolling device shown in FIG. 2 at 0 ° C., pressure plastic working was performed in the radial direction of the ring at a strain rate of 10 sec −1 .
A ring having a cross-sectional shape shown in (b) is obtained. The compression ratio at that time is 40%, and the maximum magnetic energy product in each direction is shown in Table 2.

【0015】(実施例3)Pr21.3Fe145 Cu1.5
磁石材料の製造において、母材合金粉末をリング形状金
属製容器に充填封入し、700℃において温間プレスで
予備成形したのち、外径80mm内径40mm長さ20
mmリング状金属製容器(その断面形状を図6(a)に
示す)に充填封入し、600℃以上の温度域においてリ
ング径方向より歪み速度0.1sec-1で加圧塑性加工
させ、図6(b)に示す断面形状のリングを得る。その
時の圧縮比は75%で、各方向の最大磁気エネルギ積を
表3に示す。
(Example 3) Pr 21.3 Fe 14 B 5 Cu 1.5
In the manufacture of magnet materials, a base material alloy powder is filled and sealed in a ring-shaped metal container and preformed by a warm press at 700 ° C., then an outer diameter of 80 mm, an inner diameter of 40 mm and a length of 20
mm ring-shaped metal container (the cross-sectional shape of which is shown in FIG. 6 (a)) is filled and sealed, and subjected to pressure plastic working at a strain rate of 0.1 sec −1 in the ring radial direction in a temperature range of 600 ° C. or higher. A ring having a cross-sectional shape shown in 6 (b) is obtained. The compression ratio at that time is 75%, and the maximum magnetic energy product in each direction is shown in Table 3.

【0016】(実施例4)NdFeBガスアトマイズ粉
末を図6(a)に示す断面形状の金属製容器に充填封入
し、650℃に加熱保持後図2に示す転造装置を用い、
径方向に歪み速度1.0sec-1でフォージングし、図
6(c)に示す断面形状のリングを得る。その時の圧縮
比は75%で、各方向の最大磁気エネルギ積を表4に示
す。
(Example 4) NdFeB gas atomized powder was filled and sealed in a metal container having a cross-sectional shape shown in FIG. 6 (a), heated at 650 ° C. and held, and using the rolling device shown in FIG.
Forging is performed in the radial direction at a strain rate of 1.0 sec −1 to obtain a ring having a cross-sectional shape shown in FIG. The compression ratio at that time is 75%, and the maximum magnetic energy product in each direction is shown in Table 4.

【0017】(実施例5)NdFeBガスアトマイズ粉
末を図6(a)に示す断面形状の金属製容器に充填封入
し、1000℃に加熱60min保持し予備焼結した
後、650℃に加熱保持後図2に示す転造装置を用い、
径方向に歪み速度1.0/秒でフォージングし、図6
(c)に示す断面形状のリングを得る。その時の圧縮比
は75%で、各方向の最大磁気エネルギ積を表5に示
す。
(Example 5) NdFeB gas atomized powder was filled and sealed in a metal container having a cross-sectional shape shown in FIG. 6 (a), heated at 1000 ° C. for 60 minutes, pre-sintered, and heated at 650 ° C. Using the rolling device shown in 2,
Forging in the radial direction at a strain rate of 1.0 / sec.
A ring having a cross-sectional shape shown in (c) is obtained. The compression ratio at that time was 75%, and the maximum magnetic energy product in each direction is shown in Table 5.

【0018】(実施例6)Pr17.4Fe76.15 Cu
1.5 ガスアトマイズ粉末を図6(a)に示す断面形状の
金属製容器に充填封入し、650℃に加熱保持後図2に
示す転造装置を用い、径方向に歪み速度1.0/秒でフ
ォージングし、図6(c)に示す断面形状のリングを得
る。塑性加工後500℃で30min熱処理を行った。
その時の圧縮比は75%で、各方向の最大磁気エネルギ
積を表6に示す。
(Example 6) Pr 17.4 Fe 76.1 B 5 Cu
1.5 Gas atomized powder was filled and sealed in a metal container having a cross-sectional shape shown in FIG. 6 (a), heated and held at 650 ° C., and then rolled by a rolling device shown in FIG. Then, the ring having the cross-sectional shape shown in FIG. 6C is obtained. After the plastic working, heat treatment was performed at 500 ° C. for 30 minutes.
The compression ratio at that time was 75%, and the maximum magnetic energy product in each direction is shown in Table 6.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において用いる塑性加工前(a)および
後(b)のリング状金属製容器の形状を示す半断面斜視
図、
FIG. 1 is a half cross-sectional perspective view showing the shape of a ring-shaped metal container before (a) and after (b) plastic working used in the present invention,

【図2】本発明方法を実施するための転造装置の概要を
示す正面図(a)および平面図(b)、
FIG. 2 is a front view (a) and a plan view (b) showing an outline of a rolling device for carrying out the method of the present invention.

【図3】本発明において使用したガスアトマイズ粉末の
粉度分布を示すグラフである。
FIG. 3 is a graph showing the fineness distribution of the gas atomized powder used in the present invention.

【図4】本発明において使用した第1の金属製容器の塑
性加工前(a)および後(b)の断面図、
FIG. 4 is a sectional view of the first metal container used in the present invention before (a) and after (b) plastic working.

【図5】本発明において使用した第2の金属製容器の塑
性加工前(a)および加工後(b)の断面図、
FIG. 5 is a cross-sectional view of a second metal container used in the present invention before (a) plastic working and after (b) plastic working;

【図6】本発明において使用した第3の金属製容器の塑
性加工前(a)および(b),(c)の断面図である。
FIG. 6 is a cross-sectional view of a third metal container used in the present invention before plastic working (a) and (b), (c).

【符号の説明】[Explanation of symbols]

1 金属製容器 12 リング状溝 2 充填合金粉末 3 ワーキングロール 4 バックアップロール 5 マンドレル 1 Metal Container 12 Ring-shaped Groove 2 Filled Alloy Powder 3 Working Roll 4 Backup Roll 5 Mandrel

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 7/02 Z (72)発明者 原 田 昇 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 高 須 一 郎 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 田 中 義 和 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 7/02 Z (72) Inventor Noboru Harada No. 3007, Nakajima, Shikoma-ku, Himeji-shi, Hyogo Sanyo Special Steel Manufacturing Co., Ltd. (72) Inventor Ichiro Takasu 3007, Nakajima, Himeji-shi, Hyogo Prefecture, Nakajima 3007, Sanyo Special Steel Co., Ltd. Address Sanyo Special Steel Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リングローリングまたはフォージング可
能で、被塑性加工材を密封収納するリング状溝を内包す
るリング状金属製容器にRFeB系(Rは希土類元素を
示す)磁石材料の合金粉末を充填封入し、500℃以上
液相線以下の温度域においてリング上下巾方向に塑性変
形を抑制しつつリング径方向に加圧塑性加工させ、周方
向に塑性流れを形成することにより、上記容器内の被塑
性加工材を実質的に径方向一軸に異方化させることを特
徴とするリング状磁石材料の製造方法。
1. An alloy powder of RFeB-based (R represents a rare earth element) magnet material is filled in a ring-shaped metal container capable of ring rolling or forging and having a ring-shaped groove for hermetically containing a plastic work material. By encapsulating and performing pressure plastic working in the radial direction of the ring while suppressing plastic deformation in the vertical width direction of the ring in the temperature range of 500 ° C. or more and the liquidus line or less, a plastic flow is formed in the circumferential direction, thereby A method for producing a ring-shaped magnet material, which comprises substantially anisotropically uniaxially deforming a plastically worked material.
【請求項2】 上記リング状金属製容器に上記合金粉末
を封入前にリング形状に焼結成形し、または冷間静水圧
プレスによりリング形状に予備成形を施す請求項1記載
のリング状磁石材料の製造方法。
2. The ring-shaped magnetic material according to claim 1, wherein the alloy powder is sintered and formed into a ring shape before being enclosed in the ring-shaped metal container or preformed into a ring shape by cold isostatic pressing. Manufacturing method.
【請求項3】 上記リング状金属製容器に充填封入した
上記合金粉末を加圧塑性加工前温間プレスなどで予備成
形を施すか、または焼結成形を施す請求項1記載のリン
グ状磁石材料の製造方法。
3. The ring-shaped magnet material according to claim 1, wherein the alloy powder filled and sealed in the ring-shaped metal container is preformed by a warm press before pressure plastic working or is sintered. Manufacturing method.
【請求項4】 上記加圧塑性加工後400℃以上700
℃以下の温度において磁気特性向上のための熱処理を施
す請求項1〜3のいずれかに記載のリング状磁石材料の
製造方法。
4. After the pressure plastic working, 400 ° C. or higher 700
The method for producing a ring-shaped magnet material according to any one of claims 1 to 3, wherein heat treatment for improving magnetic properties is performed at a temperature of ℃ or less.
【請求項5】 塑性加工した径方向一軸異方性化したR
FeB系磁石材料が同時に塑性加工した非磁性金属製容
器に内包されているリング状永久磁石材料。
5. A radially uniaxially anisotropic R obtained by plastic working
A ring-shaped permanent magnet material in which a FeB-based magnet material is enclosed in a non-magnetic metal container that is plastically processed at the same time.
JP3359901A 1991-12-28 1991-12-28 Manufacturing method of ring-shaped magnet material Expired - Lifetime JP2791616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359901A JP2791616B2 (en) 1991-12-28 1991-12-28 Manufacturing method of ring-shaped magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359901A JP2791616B2 (en) 1991-12-28 1991-12-28 Manufacturing method of ring-shaped magnet material

Publications (2)

Publication Number Publication Date
JPH06140223A true JPH06140223A (en) 1994-05-20
JP2791616B2 JP2791616B2 (en) 1998-08-27

Family

ID=18466874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359901A Expired - Lifetime JP2791616B2 (en) 1991-12-28 1991-12-28 Manufacturing method of ring-shaped magnet material

Country Status (1)

Country Link
JP (1) JP2791616B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190955A1 (en) * 2013-05-27 2014-12-04 Brück Am Spol. S R.O. Basic body of magnetic clamping plate and method of production thereof
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335703A (en) * 1986-07-28 1988-02-16 クル−シブル マテリアルス コ−ポレイシヨン Formation of permanent magnet alloy substance by extrusion and permanent magnet alloy substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335703A (en) * 1986-07-28 1988-02-16 クル−シブル マテリアルス コ−ポレイシヨン Formation of permanent magnet alloy substance by extrusion and permanent magnet alloy substance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet
WO2014190955A1 (en) * 2013-05-27 2014-12-04 Brück Am Spol. S R.O. Basic body of magnetic clamping plate and method of production thereof
CZ308660B6 (en) * 2013-05-27 2021-02-03 BOHEMIA RINGS s.r.o. The basic body of a magnetic clamping plate and producing it

Also Published As

Publication number Publication date
JP2791616B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
EP1895551B1 (en) Process for producing radially anisotropic magnet
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JP2007180368A (en) Method for manufacturing magnetic circuit part
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
JPS6148904A (en) Manufacture of permanent magnet
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
US5516371A (en) Method of manufacturing magnets
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2791616B2 (en) Manufacturing method of ring-shaped magnet material
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2816130B2 (en) Permanent magnet manufacturing method
US5342574A (en) Method for producing anisotropic rare earth magnet
JP2689445B2 (en) Rare earth magnet manufacturing method
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
JP2000012359A (en) Magnet and its manufacture
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
Yang et al. A new method for the preparation of anisotropic Nd-Fe-B-based magnets
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JP2024054785A (en) Molding Method
JPH07169618A (en) Large-sized radial anisotropic ring-shaped permanent magnet, and its manufacture
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JP2583113B2 (en) Rare earth magnet manufacturing method
JPS60165702A (en) Manufacture of permanent magnet