JPS6148904A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS6148904A
JPS6148904A JP59170804A JP17080484A JPS6148904A JP S6148904 A JPS6148904 A JP S6148904A JP 59170804 A JP59170804 A JP 59170804A JP 17080484 A JP17080484 A JP 17080484A JP S6148904 A JPS6148904 A JP S6148904A
Authority
JP
Japan
Prior art keywords
extrusion
magnet
subjected
grinding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59170804A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Shigeo Tanigawa
茂穂 谷川
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59170804A priority Critical patent/JPS6148904A/en
Publication of JPS6148904A publication Critical patent/JPS6148904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To produce a thin shaped magnet with good yield by a method wherein rare earth-Fe-B system alloy is refined and powdered, that is, fine grinding is performed after rough grinding, the material is subjected to compression forming in magnetic field and hot extruction process is performed after canning. CONSTITUTION:An ingot, which is the refined alloy of composition showed by the formula, is subjected to rough grinding by stamping mill and jet mill, then is subjected to fine grinding by jet mill. Thereafter, the said powder is subjected to compression forming in magnet field and canning is performed to a forming body using a can made by iron. In this formula, R means Nd only or combination of Nd and one or more than 2 of the othe rare earth element, and M means combination of one or more than 2 of Al, V, P, W, Ti, Ni, Nb, Cr, Mo, Si, Zr, Hf, Mn, Bi, and Sn and Sb. 0<=X<=0.5, 0.02<=Y<=0.3, 0<=Z<=0.03, 4<=A<=7.5. Consequently, hot extrusion process is performed at within the temperature of 600- 1,150 deg.C and extrusion ratio of 3-20. Thus, a thin shaped magnet can be produced with good yield.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、希土類金ff1(Rと以下略記する)とFe
からなる全居間化合物永久磁石の製造法に関するもので
ある。基本的にはBをその構成元素として含むR−Fe
−8金属間化合物磁石の製造法に関するものである。特
に粉末冶金的手段による製造が困難な薄肉アーク形状磁
石の製法に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention is directed to rare earth gold ff1 (hereinafter abbreviated as R) and Fe
The present invention relates to a method for producing an all-living compound permanent magnet consisting of: Basically R-Fe containing B as its constituent element
-8 This relates to a method for manufacturing an intermetallic compound magnet. In particular, it relates to a method for manufacturing thin-walled arc-shaped magnets, which are difficult to manufacture by powder metallurgy.

「従来の技術」 R−Fe−B系永久磁石材料はR−Co系永久磁石材料
よりも高い磁気特性の得られる新しい組成系として開発
が進んでいる。(特開昭59−460o8号公報、特開
昭5 ’9−64733号公報。
"Prior Art" R-Fe-B permanent magnet materials are being developed as a new composition system that can provide higher magnetic properties than R-Co permanent magnet materials. (JP-A-59-460O8, JP-A-5'9-64733.

特開昭59−89401号公報、 M、 SaOawa
 etal  JAP55(’6)2083(1984
)“New  Materials for  pe’
rmanent ma’gnetson a base
 of Nd and Fe ” )これらによれば例
えば、Nd+r、  Fe75 s 10 [原子%1
N d  (F eO,9flB0.12 >5.7 
]なる合金で(B)−1) n1ax 〜35MGOe
JP-A-59-89401, M, SaOawa
etal JAP55 ('6) 2083 (1984
) “New Materials for pe'
rmanent ma'gnetson a base
According to these, for example, Nd+r, Fe75 s 10 [atomic% 1
N d (F eO,9flB0.12 >5.7
] (B)-1) n1ax ~35MGOe
.

IHC〜10KOeの磁気特性が得られ、又Feの1部
をCoで置換することによりキューリ一点が向上スルコ
と、Ti 、 Ni 、 Bi 、 V、 NFJ 、
 Ta 。
Magnetic properties of IHC ~ 10KOe are obtained, and by replacing a part of Fe with Co, the Curie point is improved.Surco, Ti, Ni, Bi, V, NFJ,
Ta.

Cr、MO,’W、Mn、Al、Sb、Ge、Sn。Cr, MO,'W, Mn, Al, Sb, Ge, Sn.

Zr、Hrの添加によりIHCが向上することが示され
ている。
It has been shown that the addition of Zr and Hr improves IHC.

これらR−Fe−B合金で得られる( B H) ma
xは35〜l G Oeにも達し、R−Go系磁石で1
qられている(BH)max〜30MGOeを大きく上
まわっている。これら、永久磁石材料は粉末冶金法によ
って作製される。すなわち、真空溶解によるインゴット
作製、粉砕、磁界中成形、焼結、熱処理、加工の工程に
よって製造される。溶解は通常の方法でA1・中ないし
真空中で行う。Bはフェロボロンを用いることも可能で
あり、希土類元素は最後に投入する。粉砕は粗粉砕と微
粉砕に工程的にはわかれるが、粗粉砕はスタンプミル、
ショークラッシャー、ブラウンミル、ディスクミルで、
又微粉砕はジェットミル、振動ミル、ボールミル等で行
われる。いずれも酸化を防ぐために非酸化性°雰囲気で
行うが、有礪溶解や不活性ガスが用いられる。
(B H) ma obtained with these R-Fe-B alloys
x reaches 35 ~ l G Oe, and 1 with R-Go magnets.
(BH) max~30MGOe, which is qqd. These permanent magnet materials are produced by powder metallurgy. That is, it is manufactured through the steps of ingot preparation by vacuum melting, crushing, molding in a magnetic field, sintering, heat treatment, and processing. The melting is carried out in a conventional manner in A1 medium or in vacuum. Ferroboron can also be used as B, and the rare earth element is added last. Grinding can be divided into coarse grinding and fine grinding, and coarse grinding involves stamp mills,
Show crusher, brown mill, disc mill,
Further, fine pulverization is performed using a jet mill, a vibration mill, a ball mill, or the like. Both processes are carried out in a non-oxidizing atmosphere to prevent oxidation, but long-term dissolution and inert gas are used.

粉砕粒度は3〜5μm’ (F 1scher sub
 −5ievesizer >が望ましい。成形は金型
成形により磁場中で行われる。これは異方性をつけるた
めに必要な技術で、本合金の場合、C@に粉砕粉をそろ
えるだめに不可欠の工程である。しかしながら、金型成
形によって得られる圧粉体には限界があり、一般に厚み
の薄い、アーク状の製品の製造は困難であった。これは
磁場中で粉末の配向と成形とを同時に行う際、成形体に
密度の不均一が生じ、充分な強度を持ち、又カケ、クラ
ックのない成形体が得られないためである。したがって
、薄肉の製品の場合は厚内の成形体を焼結後切削、切断
して製造される。焼結は、Ar 、He等の不活性ガス
中又は真空中で1050〜1150℃の温度範囲で行わ
れる。さらにはH2ガス中の焼結も可能である。熱処理
は用いる希土類′元素や組成によって異なるが、400
〜1000℃の温度範囲で行われる。加工は切断。
The pulverized particle size is 3 to 5 μm' (F 1scher sub
−5ievesizer> is desirable. Molding is performed in a magnetic field by molding. This is a necessary technique to impart anisotropy, and in the case of this alloy, it is an essential step to align the crushed powder with C@. However, there are limits to the compacted powder that can be obtained by molding, and it has generally been difficult to manufacture thin, arc-shaped products. This is because when the powder is oriented and molded simultaneously in a magnetic field, non-uniform density occurs in the compact, making it impossible to obtain a compact with sufficient strength and without chips or cracks. Therefore, in the case of a thin-walled product, it is manufactured by cutting and cutting a thick-walled molded body after sintering. Sintering is carried out in an inert gas such as Ar, He, etc. or in a vacuum at a temperature in the range of 1050 to 1150°C. Furthermore, sintering in H2 gas is also possible. Heat treatment varies depending on the rare earth element and composition used, but
It is carried out at a temperature range of ~1000°C. Processing is cutting.

平面研削、内研、センタレス、両面研削種々の方法で行
われるが薄肉製品の場合は加工徂が多く、工数1歩留の
点でコスト高となっている。
Various methods such as surface grinding, internal grinding, centerless grinding, and double-sided grinding are used, but in the case of thin-walled products, the processing range is large and the cost is high in terms of yield per man-hour.

「発明が解決しようとする問題点」 上述したように従来技術である粉末冶金、焼結法によっ
て得られるアーク状磁石の厚みはアークの弧1面積にも
よるが3+nmが限界であった。例えば、第1図(a 
)に示したアーク状磁石の場合、同図(b)に示した2
2mmx 18mmx 6.5mm程度の長方形f2結
磁石を作製し加工するが、アークの厚み5mm程度のも
のを作製し加工するかによって製造される。したがって
製品歩留は加工のために非常に低下していた。又あらか
じめ厚みのあるアーク状磁石を作製する場合も成形時の
割れ、亀裂が多発し、ざらに歩留を低下させていた。し
たがって、薄肉のアーク状磁石の製造比は歩留の悪さか
ら非常に高く、応用分野を制限し、広範な用途開発が行
えない状況にあった。
"Problems to be Solved by the Invention" As mentioned above, the thickness of arc-shaped magnets obtained by the conventional techniques of powder metallurgy and sintering is limited to 3+ nm, although it depends on the area of one arc of the arc. For example, in Figure 1 (a
) In the case of the arc-shaped magnet shown in (b),
A rectangular f2 magnet of approximately 2 mm x 18 mm x 6.5 mm is manufactured and processed, and it is manufactured by manufacturing and processing an arc with a thickness of approximately 5 mm. Therefore, the product yield was greatly reduced due to processing. Furthermore, even when a thick arc-shaped magnet is produced in advance, cracks and cracks occur frequently during molding, which significantly reduces the yield. Therefore, the production rate of thin-walled arc-shaped magnets is extremely high due to poor yield, which limits the field of application and prevents the development of a wide range of applications.

「問題を解決するための手段」と「作用」上記問題点を
解決するため、本発明では押出加工を用いる。押出加工
は600〜1150’Cの熱間で行われ、製品形状を考
慮したダイスの設計を必要とするが、最終製品に非常に
近い緻密な”押出材が得られる。押出加工は磁場中成形
されたごレットに対し行われ、本方法によれば焼結は必
要ない。成形体の緻密化はキャンニングしたビレットの
加熱時や押出時に達成されるからである。押出材は押出
方向に長い棒状のものが得られ、加工によって押出材表
面にうずく存在するキャニング材の除去。
"Means for solving the problem" and "effect" In order to solve the above problems, extrusion processing is used in the present invention. Extrusion processing is carried out at a temperature of 600 to 1150'C, and requires die design that takes the product shape into consideration, but it yields a dense extruded material that is very similar to the final product.Extrusion processing is performed by forming in a magnetic field. This method does not require sintering, as the densification of the compact is achieved during heating or extrusion of the canned billet.The extruded material is long in the extrusion direction. A rod-shaped product is obtained, and the canning material that is present on the surface of the extruded material due to processing is removed.

切断が行われ、所望の製品が得られる。Cutting is done and the desired product is obtained.

押出加工は押出時に加圧されるため薄肉形状であっても
機械的強度のすぐれた製品を連続的に製造できる。
In extrusion processing, pressure is applied during extrusion, so products with excellent mechanical strength can be continuously produced even if they are thin-walled.

第2図に従来法と本発明による方法における製造工程を
比較して示す。
FIG. 2 shows a comparison of manufacturing steps in the conventional method and the method according to the present invention.

本発明による製造法を用いて効果のある合金は、R(F
e、−x−ン、Cox BXM、)A  (ここでRは
Nd単独あるいはNdとPrを中心とした希土類元素の
1種又は2種以上の組みあわせ、MはAI 、V、P、
’vV、Ti 、Ni 、Nb、Cr。
The alloy that is effective using the manufacturing method according to the present invention is R(F
e, -x-n, Cox BXM, )A (here, R is Nd alone or a combination of one or more rare earth elements centered on Nd and Pr, M is AI, V, P,
'vV, Ti, Ni, Nb, Cr.

Mo、Si、Zr、1−1f、Mn、Bi、Sn。Mo, Si, Zr, 1-1f, Mn, Bi, Sn.

sbの1種又は2種以上の組みあわせ、0≦X≦0.5
. 0.02≦y≦0.3.  O≦z≦0.03,4
≦A≦7.5)である。基本的にはR2Fe、4B合金
の持つ機械的性質を利用したものである。ここで、合金
組成限定理由を述べる。
One type or combination of two or more types of sb, 0≦X≦0.5
.. 0.02≦y≦0.3. O≦z≦0.03,4
≦A≦7.5). Basically, it utilizes the mechanical properties of R2Fe and 4B alloy. Here, the reason for limiting the alloy composition will be described.

Coの置換fixが0.5を越える場合は4πlrの低
下が大きく、永久磁石材料として好ましくない。CO装
1?1tJiX S 0.5を越えない場合はキューリ
一点の向上を利用できる。B置換myが0.02未満の
場合キューリ一点が上昇せず、高いZHCも得られない
。一方、yが0.3を越える場合には逆にキューリ一点
、4π)rが低下し、磁気特性の好ましくない相の発生
が見られる。M元素は含有されていなくともよいが、M
元素の含有により保磁力が上り2が0.0001以上の
場合zHcの向上を期待できる。一方Xが0.03を越
える場合には4πIr(Br)および角型性が低下し、
永久磁石材料として好ましくない。Aが4未満の場合、
4πlrが低下し7.5を越えるとFe 、Coに富ん
だ相が現われ、x l−l cの低下が顕著となる。
When the substitution fix of Co exceeds 0.5, 4πlr decreases significantly, which is not preferable as a permanent magnet material. If the CO equipment does not exceed 1?1tJiX S 0.5, you can take advantage of the improvement of one cucumber. If B substitution my is less than 0.02, the Curie point will not increase and high ZHC will not be obtained. On the other hand, when y exceeds 0.3, the Curie point (4π)r decreases, and a phase with unfavorable magnetic properties appears. M element does not need to be contained, but M
Coercive force increases due to the inclusion of elements, and when 2 is 0.0001 or more, an improvement in zHc can be expected. On the other hand, when X exceeds 0.03, 4πIr(Br) and squareness decrease,
Not preferred as a permanent magnet material. If A is less than 4,
When 4πlr decreases and exceeds 7.5, a phase rich in Fe and Co appears, and the decrease in x l-lc becomes remarkable.

熱間押出温度が600℃以下の場合は塑性変形が不充分
で押出が不可能であり、1150℃以上の場合は不可避
な液相が熱間押出加工を阻害する。押出比が3未満の場
合は押出加工による配向性改i、s!密度が実現できず
、20を越える場合は、通常の押出久によって加工が不
可能となる。
If the hot extrusion temperature is 600° C. or lower, the plastic deformation is insufficient and extrusion is impossible, and if the hot extrusion temperature is 1150° C. or higher, the inevitable liquid phase inhibits hot extrusion processing. When the extrusion ratio is less than 3, the orientation is changed by extrusion i, s! If the density cannot be achieved and exceeds 20, processing by normal extrusion becomes impossible.

「実施例」 〈実施例1〉 Nd  (Feo、、 Coo、lQ BO,O’l?
 S’0.02 )S、’;なる合金な高周波溶解にて
作製した。得られたインゴットをスタンプミルおよびジ
ェットミルにて粗粉砕し、32メツシユ以下に調整後、
ジェットミルで微粉砕した。粉砕媒体はN2ガスを用い
、微粉砕粒度3.5μm  (FSSS)の微粉末を得
た。本微粉砕粉をラバープレスし、〜60mmφ×〜1
00mmtの成形体を作製した。配向方向は径方向であ
る。ラバープレスは以下の手順で行った。内径40mm
φ×高さ120mmtの比較的硬いラバーチューブに5
KOeの磁界を印加しつつ微粉砕粉を充填、スタックし
た。
"Example"<Example1> Nd (Feo,, Coo, lQ BO, O'l?
An alloy of S'0.02)S,'; was produced by high-frequency melting. The obtained ingot was coarsely pulverized using a stamp mill and a jet mill, and after adjusting to 32 mesh or less,
Finely ground with a jet mill. N2 gas was used as the grinding medium to obtain a fine powder with a particle size of 3.5 μm (FSSS). Rubber press this finely pulverized powder to ~60mmφ x ~1
A molded body of 00 mmt was produced. The orientation direction is the radial direction. The rubber press was performed according to the following procedure. Inner diameter 40mm
5 in a relatively hard rubber tube of φ x height 120mmt.
Finely pulverized powder was filled and stacked while applying a KOe magnetic field.

両端を固定したあと30KOeのパルス配向をさらに行
い、静水圧プレスで6℃on/ am2の圧力で成形し
た。成形体を純鉄製の缶を用いてキャンニングした。缶
の厚みは5mmである。キャンニングのあと真空引きを
行い、缶内のガスを除去した。キャンニングした成形体
を1050℃に30分加熱し、押出加工した。加工され
た平板は厚み4mm 、幅30m1llであつた。なお
ビレットのあらかじめ付けた異方性方向と平板の厚み方
向が平行となるようあらかじめ調整した。押出比は10
.5で押出圧は85/cn+’であった。得られた平板
を長さ40mmに切断した後、厚み方向に手研すること
によりFeを除去した。
After fixing both ends, pulse orientation of 30 KOe was further performed, and molding was performed using a hydrostatic press at a pressure of 6°C on/am2. The molded body was canned using a can made of pure iron. The thickness of the can is 5 mm. After canning, a vacuum was drawn to remove the gas inside the can. The canned molded body was heated to 1050° C. for 30 minutes and extruded. The processed flat plate had a thickness of 4 mm and a width of 30 ml. Note that the anisotropy direction of the billet was adjusted in advance so that it was parallel to the thickness direction of the flat plate. The extrusion ratio is 10
.. 5 and the extrusion pressure was 85/cn+'. After cutting the obtained flat plate into a length of 40 mm, Fe was removed by hand polishing in the thickness direction.

以上の加工によって、40mmx 30mmx 3mm
の形状の磁石を得た。ざらに、30mm方向の残ったF
eを研はによって除去し、最終的に4ox 28x 3
 (1m)の平板状磁石な得た。得られた平板磁石を6
00’Cで・1時間熱処理し、Siオイル中に急冷した
。本平板状磁石の磁気特性は以下の通りであった。
By the above processing, 40mm x 30mm x 3mm
A magnet with the shape of was obtained. Roughly, the remaining F in the 30mm direction
e is removed by grinding and finally 4ox 28x 3
(1 m) flat magnet was obtained. The obtained flat magnet is 6
The sample was heat-treated at 00'C for 1 hour and quenched in Si oil. The magnetic properties of this flat magnet were as follows.

Br−12500G sHc  〜  1?000Q6 IHc 〜13500Q6 (B H) max 〜37.2M G Oe密度〜7
.42  g/cc 比較のため、従来法によりラバープレス焼結(1100
℃x2hrAr中)、熱処理(600”CX lhr(
mm)の平板状磁石を作製した。
Br-12500G sHc ~ 1?000Q6 IHc ~13500Q6 (B H) max ~37.2M G Oe density ~7
.. 42 g/cc For comparison, rubber press sintering (1100
℃×2hr in Ar), heat treatment (600”CX lhr(
A flat magnet with a diameter of 1 mm) was produced.

得られた磁気特性は、 Br 〜11800G aHc〜 92000e THc〜103000e (B H) max 〜32.5M GOe密度〜7,
361J/’CO であった。押出加工により得られる磁気特性は大幅に向
上したことが判明した。3rの向上は押出時に得られる
配向度の改善によるものであり、IHcの向上は結晶粒
微細化によるものである。
The obtained magnetic properties are: Br ~11800G aHc ~92000e THc ~103000e (BH) max ~32.5M GOe density ~7,
It was 361J/'CO. It was found that the magnetic properties obtained by extrusion processing were significantly improved. The improvement in 3r is due to the improvement in the degree of orientation obtained during extrusion, and the improvement in IHc is due to grain refinement.

したがって、熱間押出加工により、配向度の高い。Therefore, the degree of orientation is high due to hot extrusion processing.

r l−1cの高い、薄板磁石が得られることがわかる
It can be seen that a thin plate magnet with high r l-1c can be obtained.

〈実施例2〉 ””  (Fe111128O,Q9 T’LOD@)
5.0なる合金を〈実施例1〉と同様の方法で溶解、1
粉砕、微粉砕を行った。さらに、〈実施例1〉と同様の
方法で35mmφX 100mmt成形体をラバープレ
スを用いて作製した。配向方向は径方向である。第1図
に示したアーク状磁石を作製することを目標に外径11
.4mm。
<Example 2>"" (Fe111128O, Q9 T'LOD@)
5.0 was melted in the same manner as in Example 1.
It was crushed and finely pulverized. Furthermore, in the same manner as in Example 1, a 35 mmφ×100 mmt molded body was produced using a rubber press. The orientation direction is the radial direction. With the goal of producing the arc-shaped magnet shown in Figure 1, the outer diameter was 11 mm.
.. 4mm.

内径8.4n+m、 7−り角130°の形状を107
0°Cで熱問押出加工した。ビレットの異方性方向とア
ークの厚み方向は平行であった。押出比は16で、押出
圧10tOn / Cm2であった。〈実施例1〉と同
様の方法で研削加工を行い、第1図に示したアーク状し
!!石を得た。研削加工のあと、650℃X1hrの熱
処理をAr中で行い、Si オイル中に急冷した。
107 with an inner diameter of 8.4n+m and a 7-angle of 130°.
Hot extrusion processing was performed at 0°C. The billet anisotropy direction and the arc thickness direction were parallel. The extrusion ratio was 16 and the extrusion pressure was 10tOn/Cm2. Grinding was performed in the same manner as in Example 1, resulting in the arc shape shown in Figure 1! ! I got a stone. After the grinding process, heat treatment was performed at 650° C. for 1 hr in Ar, followed by quenching in Si oil.

得られた腎蚤気特性は、 Br 〜12800G BHc〜112000゜ rHc〜14000o。The obtained kidney characteristics are as follows: Br ~12800G BHc~112000° rHc~14000o.

(BH) maX +−38,7M G Oe密度〜7
.43(1/’ccであった。
(BH) maX +-38,7M G Oe density ~7
.. 43 (1/'cc).

比較のため縦磁場成形にて厚み5tの焼結体を作成し、
熱処理を行った。焼結条件は1080℃x 2hrsA
r中、熱処理は650℃x1hr(Ar中、熱処理iD
 S iオイル中急冷)さらに加工によって第1図に示
した形状の磁石を加工によって作製した。
For comparison, a sintered body with a thickness of 5t was created by vertical magnetic field forming,
Heat treatment was performed. Sintering conditions are 1080℃ x 2hrsA
heat treatment at 650°C x 1 hr (heat treatment iD in Ar)
A magnet having the shape shown in FIG. 1 was produced by further processing (quenching in Si oil).

得られた磁気特性は、 Br−11200G a Hc 〜100000e IHc 〜 1160008 (B H)max  〜28,9M Gos密度〜7 
、33g/ CO 押出加工によって得られるアーク状磁石はl11m場成
形合成形た従来法によるものより高い配向度の得られる
ことがわかる。
The obtained magnetic properties are: Br-11200G a Hc ~100000e IHc ~1160008 (B H)max ~28,9M Gos density ~7
, 33 g/CO It can be seen that the arc-shaped magnet obtained by extrusion has a higher degree of orientation than that obtained by the conventional method of field forming synthesis.

〈実施例3〉 (N d、、 D y、、1.)  (F eo、92
 B、、、、 )5.、なる合金を〈実施例1〉と同様
の方法で溶解、粗粉砕、微粉砕、ラバープレスを行りた
。配向方向は高さ方向であり、ラバープレスによる成形
体は45mmφ×10−0 m m tである。(Fe
 製缶の厚みは2.5mmである。
<Example 3> (N d,, D y,, 1.) (F eo, 92
B,,,, )5. An alloy consisting of , was melted, coarsely pulverized, finely pulverized, and rubber pressed in the same manner as in <Example 1>. The orientation direction is the height direction, and the molded product formed by rubber press has a size of 45 mmφ×10 −0 m m t. (Fe
The thickness of the can is 2.5 mm.

)内径10mmφ、外径20mmφ、高さ3mmの磁石
を得る目標で、内径9.’5mmφ、外径20.5mm
φの円筒状押出材を作製した。押出比は7.6.押出圧
は7ton/cm”であり、押出温度は1050℃であ
った。内外研によりFeスリーブを取り除き、3mmの
高さに切断した。加工後670℃XIhrAr中で熱処
理を行い、磁気時性を測定した。
) With the goal of obtaining a magnet with an inner diameter of 10 mmφ, an outer diameter of 20 mmφ, and a height of 3 mm, the inner diameter is 9. '5mmφ, outer diameter 20.5mm
A cylindrical extruded material with a diameter of φ was produced. The extrusion ratio is 7.6. The extrusion pressure was 7 ton/cm'', and the extrusion temperature was 1050°C.The Fe sleeve was removed by internal and external grinding and cut into pieces with a height of 3 mm.After processing, heat treatment was performed at 670°C in XIhrAr to improve magnetic properties. It was measured.

得られた磁気特性は、 Br 〜 11200G aHc  〜 110000e I Hc  〜  258000G (B H)  max  〜31.OM G Os密度
〜7.45g/cc であった。比較のために縦磁場成形により同形状のもの
を作製した。磁場成形の際の磁場強度は8K Oe 、
成形圧は3tOn/C1n2である。焼結G;tAr中
で1120’Cx 2hrs行い炉冷した。熱処理は6
70℃×IHrAr中で行いSiオイル中に8冷した。
The obtained magnetic properties are: Br ~ 11200G aHc ~ 110000e I Hc ~ 258000G (B H) max ~ 31. The OMG Os density was ~7.45 g/cc. For comparison, the same shape was fabricated by vertical magnetic field molding. The magnetic field strength during magnetic field forming was 8K Oe,
The molding pressure was 3tOn/C1n2. Sintering G: Sintering was carried out at 1120'Cx for 2 hours in tAr and cooled in a furnace. Heat treatment is 6
It was carried out at 70° C. in IHrAr and cooled in Si oil for 8 hours.

得られた磁気特性は、 Br−10400G BHc 〜98000c rHc〜175000e (B H) max 〜25〜I G Oe密度〜7.
40g/cc であった。押出加工によって得られるトロイダル状磁石
は縦磁場成形を用いた従来法よりも高い配向度どI H
cが19られる。第3図に各実施例におけるビレット(
右図)と押出材(左図)の異方性の方向(矢印M)をま
とめて示す。第3図(a )は上の実施例1の平板磁石
、(b)は実施例2のアーク状磁石、(C)は実施例3
のトロイダル状磁石の場合を示す。
The obtained magnetic properties are as follows: Br-10400G BHc ~98000c rHc ~175000e (B H) max ~25 ~ I G Oe density ~7.
It was 40g/cc. The toroidal magnet obtained by extrusion has a higher degree of orientation than the conventional method using vertical magnetic field forming.
c is reduced to 19. Figure 3 shows the billet (
The anisotropic direction (arrow M) of the extruded material (right figure) and the extruded material (left figure) are shown together. Figure 3 (a) shows the flat magnet of Example 1, (b) shows the arc-shaped magnet of Example 2, and (C) shows the example 3.
The case of a toroidal magnet is shown.

「発明の効果」 以上実施例に示したように本発明による押出法を用いる
ことにより薄肉磁石が歩留よく作製でき、しかも高配向
度、微細結晶粒により、高3r、高zHc 、高(B 
H) maxのR−Fe −B系永久磁石材料を得るこ
とかできる。
"Effects of the Invention" As shown in the examples above, by using the extrusion method according to the present invention, thin-walled magnets can be produced with a high yield, and due to the high degree of orientation and fine crystal grains, high 3r, high zHc, and high (B
H) Maximum R-Fe-B permanent magnet material can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアーク状磁石の例、第2図は従来法(粉末冶金
)と本発明による方法(押出法)の製造工程の比較、第
3図は各実施例におけるビレットと押出材の異方性方向
を示したものである。 第 2 図 従糸う夫          坤聾そヌ珂I;よる方辿
(粉末冶金)        (押ヨ建n第 3 図 N土材            ビレット手続補正= 昭和  年  月  日
Figure 1 is an example of an arc-shaped magnet, Figure 2 is a comparison of the manufacturing process of the conventional method (powder metallurgy) and the method according to the present invention (extrusion method), and Figure 3 is the anisotropy of billet and extruded material in each example. It shows the direction of sexual orientation. Fig. 2 Follow-up method (powder metallurgy) (powder metallurgy) (Powder metallurgy) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] R(Fe_1_−_x_−_y_−_zCo_xB_y
M_z)_A(ここでRはNd単独あるいはNdとPr
を中心とした希土類元素の1種又は2種以上の組みあわ
せ、MはAl、V、P、W、Ti、Ni、Nb、Cr、
Mo、Si、Zr、Hf、Mn、Bi、Sn、Sbの1
種又は2種以上の組みあわせ、0≦x≦0.5、0.0
2≦y≦0.3、0≦z≦0.03、4≦A≦7.5)
なる組成を持つ合金を溶解し、粗粉砕後微粉砕した粉末
を磁場中で圧縮成形し、本成形体をキャンニングしたも
のを600〜1150℃の温度範囲で又押出比3〜20
で熱間押出加工することを特徴とする永久磁石の製造方
法。
R(Fe_1_-_x_-_y_-_zCo_xB_y
M_z)_A (Here, R is Nd alone or Nd and Pr
One or a combination of two or more rare earth elements centered on, M is Al, V, P, W, Ti, Ni, Nb, Cr,
1 of Mo, Si, Zr, Hf, Mn, Bi, Sn, Sb
species or combination of two or more species, 0≦x≦0.5, 0.0
2≦y≦0.3, 0≦z≦0.03, 4≦A≦7.5)
An alloy having a composition of
A method for producing a permanent magnet, characterized by hot extrusion processing.
JP59170804A 1984-08-16 1984-08-16 Manufacture of permanent magnet Pending JPS6148904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170804A JPS6148904A (en) 1984-08-16 1984-08-16 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170804A JPS6148904A (en) 1984-08-16 1984-08-16 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS6148904A true JPS6148904A (en) 1986-03-10

Family

ID=15911647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170804A Pending JPS6148904A (en) 1984-08-16 1984-08-16 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS6148904A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet
JPS6335703A (en) * 1986-07-28 1988-02-16 クル−シブル マテリアルス コ−ポレイシヨン Formation of permanent magnet alloy substance by extrusion and permanent magnet alloy substance
EP0255939A2 (en) * 1986-08-04 1988-02-17 Sumitomo Special Metals Co., Ltd. Rare earth magnet and rare earth magnet alloy powder having high corrosion resistance
JPS63226007A (en) * 1986-10-31 1988-09-20 Tokin Corp Rare-earth magnet and manufacture thereof
EP0311049A2 (en) * 1987-10-08 1989-04-12 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
JPH01114007A (en) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01115106A (en) * 1987-10-28 1989-05-08 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01146307A (en) * 1987-12-03 1989-06-08 Tokin Corp Manufacture of rare-earth permanent magnet
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
JPH03195482A (en) * 1989-12-26 1991-08-27 Kagome Kk Method for concentrating vegetable juice and/or fruit juice and production of juice using concentrate obtained by same concentrating method
JP2008091867A (en) * 2006-09-06 2008-04-17 Daido Steel Co Ltd Method for manufacturing permanent magnet, and permanent magnet
US7604021B2 (en) 2002-10-29 2009-10-20 Kabushiki Kaisha Toshiba Steam valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet
JPS6335703A (en) * 1986-07-28 1988-02-16 クル−シブル マテリアルス コ−ポレイシヨン Formation of permanent magnet alloy substance by extrusion and permanent magnet alloy substance
EP0261292A2 (en) * 1986-07-28 1988-03-30 Crucible Materials Corporation Method of producing fully dense permanent magnet alloy article
JPH0468361B2 (en) * 1986-07-28 1992-11-02 Crucible Materials Corp
EP0255939A2 (en) * 1986-08-04 1988-02-17 Sumitomo Special Metals Co., Ltd. Rare earth magnet and rare earth magnet alloy powder having high corrosion resistance
JPS63226007A (en) * 1986-10-31 1988-09-20 Tokin Corp Rare-earth magnet and manufacture thereof
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
EP0311049A2 (en) * 1987-10-08 1989-04-12 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
JPH01114007A (en) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01115106A (en) * 1987-10-28 1989-05-08 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01146307A (en) * 1987-12-03 1989-06-08 Tokin Corp Manufacture of rare-earth permanent magnet
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
JPH03195482A (en) * 1989-12-26 1991-08-27 Kagome Kk Method for concentrating vegetable juice and/or fruit juice and production of juice using concentrate obtained by same concentrating method
US7604021B2 (en) 2002-10-29 2009-10-20 Kabushiki Kaisha Toshiba Steam valve
JP2008091867A (en) * 2006-09-06 2008-04-17 Daido Steel Co Ltd Method for manufacturing permanent magnet, and permanent magnet

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH09275004A (en) Permanent magnet and its manufacture
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPS6148904A (en) Manufacture of permanent magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS60144908A (en) Permanent magnet material
JPS6181604A (en) Preparation of rare earth magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH0568841B2 (en)
JPS6242404A (en) Manufacture of rare-earh iron permanent magnet
JPH02285605A (en) Manufacture of permanent magnet
JPS60165702A (en) Manufacture of permanent magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPS63114106A (en) Permanent magnet and manufacture thereof
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS6235602A (en) Permannet magnet and manufacture thereof
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS61252604A (en) Manufacture of rare earth magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPH027403A (en) Magnetic-anisotropy magnet and its manufacture