JP2757442B2 - Manufacturing method of radial anisotropic permanent magnet - Google Patents

Manufacturing method of radial anisotropic permanent magnet

Info

Publication number
JP2757442B2
JP2757442B2 JP8498589A JP8498589A JP2757442B2 JP 2757442 B2 JP2757442 B2 JP 2757442B2 JP 8498589 A JP8498589 A JP 8498589A JP 8498589 A JP8498589 A JP 8498589A JP 2757442 B2 JP2757442 B2 JP 2757442B2
Authority
JP
Japan
Prior art keywords
permanent magnet
hot
metal plate
pressing
anisotropic permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8498589A
Other languages
Japanese (ja)
Other versions
JPH02263415A (en
Inventor
輝夫 渡辺
吉田  裕
俊哉 木南
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8498589A priority Critical patent/JP2757442B2/en
Publication of JPH02263415A publication Critical patent/JPH02263415A/en
Application granted granted Critical
Publication of JP2757442B2 publication Critical patent/JP2757442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の目的】[Object of the invention]

(産業上の利用分野) 本発明は、ラジアル方向に異方性をもつ永久磁石を製
造するのに利用されるラジアル異方性永久磁石の製造方
法に関するものである。 (従来の技術) 近年、永久磁石として、従来のアルニコ系磁石や希土
類−コバルト系磁石に比べてさらに磁気特性の優れた希
土類−鉄系磁石が注目されるようになってきている。 この希土類−鉄系磁石は、Nd−Fe−B等のR−T−M
系のものであって、Rは希土類元素,Tは鉄系の遷移元
素,Mはその他の元素からなるものである。 この種の希土類−鉄系磁石において、ラジアル方向に
異方性をもつ永久磁石を製造するに際しては、例えば、
第3図(a)〜(d)に示す工程をとっていた。 すなわち、第3図(b)に示すように、側部型21と上
部型22と下部型23とからなる熱間成形型24を用い、第3
図(a)に示すように、側部型21と下部型23とで形成さ
れ成形空間25内に、希土類−鉄系磁石粉末26を入れ、あ
るいは希土類−鉄系磁石粉末を冷間成形した図示しない
成形体を入れ、次いで、第3図(b)に示すように、上
部型22を降下させて前記希土類−鉄系磁石粉末26やこれ
の冷間成形体を熱間で加圧する熱間成形(ホットプレ
ス)を行い、次いで、第3図(c)に示すように、側部
型31と上部型32と下部型33とからなる押出ダイス34を用
い、側部型31と下部型33とで形成される成形空間35内
に、第3図(b)の熱間成形型24で成形した熱間成形体
27を入れ、上部型32を降下させて後方押出しを行うこと
によって、第3図(d)を示すような形状の後方押出成
形体35を得ることにより、ラジアル異方性永久磁石が製
造されるようにしていた。 (発明が解決しようとする課題) しかしながら、このような従来のラジアル異方性永久
磁石の製造方法では、後方押出成形体35の内周側に割れ
36を生じやすく、磁気特性が良好である内周側を研磨す
ることとなるため、全体の磁気特性が低下するという課
題があった。 また、熱間成形型24と押出しダイス34とを用いてお
り、同一の成形型で熱間成形と後方押出しとを行うこと
ができないので、押出成形体35に対して対称な歪を与え
ることができず、周方向における磁気特性にばらつきを
生ずることがあるという課題があった。 (発明の目的) 本発明は、上述した従来の課題に着目してなされたも
ので、リング状部を有する押出成形体からなる永久磁石
粗材としたときでもリング状部分の内周面側に割れが発
生せず、したがって割れが発生した場合のように磁気特
性のすぐれた内周面を研磨して除去する必要がないため
磁気特性にすぐれたものとすることが可能であり、かつ
また熱間成形と押出成形とを同一の成形型で行うことに
より押出成形体に対して対称な歪を与えることができ、
周方向における磁気特性のばらつきが少ないラジアル異
方性永久磁石を提供することが可能であるラジアル異方
性永久磁石の製造方法を提供することを目的としてい
る。
The present invention relates to a method for manufacturing a radially anisotropic permanent magnet used for manufacturing a permanent magnet having anisotropy in a radial direction. (Prior Art) In recent years, as permanent magnets, rare earth-iron magnets having more excellent magnetic properties than conventional alnico magnets and rare earth-cobalt magnets have been attracting attention. This rare earth-iron magnet is made of RTM such as Nd-Fe-B.
R is a rare earth element, T is an iron-based transition element, and M is another element. When manufacturing a permanent magnet having anisotropy in the radial direction in such a rare earth-iron magnet, for example,
The steps shown in FIGS. 3A to 3D were performed. That is, as shown in FIG. 3 (b), a hot forming die 24 including a side die 21, an upper die 22 and a lower die 23 is used,
As shown in FIG. 1A, a rare earth-iron magnet powder 26 is placed in a molding space 25 formed by a side mold 21 and a lower mold 23, or a rare earth-iron magnet powder is cold-molded. Then, as shown in FIG. 3 (b), the upper mold 22 is lowered to hot-press the rare-earth-iron-based magnet powder 26 and the cold compact thereof, as shown in FIG. 3 (b). (Hot pressing), and then, as shown in FIG. 3 (c), using an extrusion die 34 composed of a side die 31, an upper die 32 and a lower die 33, the side die 31, the lower die 33 The hot compact formed by the hot forming mold 24 shown in FIG.
27, the upper die 32 is lowered, and backward extrusion is performed to obtain a rear extruded body 35 having a shape as shown in FIG. 3 (d), whereby a radially anisotropic permanent magnet is manufactured. Was like that. (Problems to be Solved by the Invention) However, in such a conventional method for manufacturing a radially anisotropic permanent magnet, the rear extruded body 35 has a crack on the inner peripheral side.
36 is likely to occur, and the inner peripheral side where the magnetic properties are good is polished, so that there is a problem that the overall magnetic properties deteriorate. Further, since the hot forming die 24 and the extrusion die 34 are used, and the hot forming and the backward extrusion cannot be performed with the same forming die, a symmetrical strain can be given to the extruded body 35. However, there is a problem that magnetic properties in the circumferential direction may vary. (Objects of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and even when a permanent magnet coarse material made of an extruded body having a ring-shaped portion is used, the permanent magnet is formed on the inner peripheral surface side of the ring-shaped portion. Cracks do not occur, and therefore it is not necessary to polish and remove the inner peripheral surface having excellent magnetic properties as in the case where cracks occur. By performing the intermolding and the extrusion with the same mold, a symmetrical strain can be given to the extruded body,
It is an object of the present invention to provide a method for manufacturing a radially anisotropic permanent magnet capable of providing a radially anisotropic permanent magnet with less variation in magnetic properties in a circumferential direction.

【発明の構成】Configuration of the Invention

(課題を解決するための手段) 本発明の第1請求項に係るラジアル異方性永久磁石の
製造方法は、R−T−M(たゞし、Rは希土類元素のう
ちから選ばれる1種または2種以上、Tは鉄族の遷移元
素のうちから選ばれる1種または2種以上、Mは特性改
善元素のうちから選ばれる1種または2種以上)を主成
分とする希土類−鉄系磁石粉末を熱間兼押出成形型内に
入れると共に、前記磁石粉末の少なくとも加圧面側に金
属板材を配設して、前記金属板材側から前記磁石粉末を
熱間で加圧する熱間成形を行い、次いで前記金属板材側
からさらに押圧する押出成形を行って、リング状部分を
有するラジアル異方性永久磁石を得る構成とし、本発明
の第2請求項に係るラジアル異方性永久磁石の製造方法
は、上記R−T−Mを主成分とする希土類−鉄系磁石粉
末を冷間成形することにより得た冷間成形体を熱間兼押
出成形型内に入れると共に、前記冷間成形体の少なくと
も加圧面側に金属板材を配設して、前記金属板材側から
前記成形体を熱間で加圧する熱間成形を行い、次いで前
記金属板材側からさらに押圧する押出成形を行って、リ
ング状部分を有するラジアル異方性永久磁石を得る構成
としたことを特徴としており、これらの構成を前述した
従来の課題を解決するための手段としている。 本発明のラジアル異方性永久磁石の製造方法において
適用される永久磁石は、R−T−Mを主成分とする希土
類−鉄系のものであり、Rは高磁気特性が得られるNd,P
rや、比較適低廉なCe,ミッシュメタルや、高保磁力が得
られるDy,Tbなどの希土類元素のうちから選ばれる1種
または2種以上からなるものである。またTは鉄族の遷
移元素であるFe,Co,Niや鉄族以外の遷移元素であるMnな
どのうちから選ばれる1種または2種以上からなるもの
である。さらに、MはB,C,P,Si等のうちから選ばれる1
種または2種以上であり、また、このMには、温度特
性,保磁力,減磁曲線の角形性,耐食性,機械加工性な
どを向上させるために、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Ru,
Rh,Pd,Os,Ir,Pt,Cu,Zn,Al,Ga,In,Tl,Pb,Bi,Li,Mg,Ca等
のうちから選ばれる1種または2種以上が含まれる。さ
らにまた、不純物としてO,N等を若干含んでいても磁気
特性に及ぼす影響は少ない。 さらに、金属板材としてはステンレス鋼やNi基合金な
どからなるものが用いられるが、特に限定はされない。
そして、この金属板材は、押出成形後において、例えば
モータ用シャフトのボス部分などとして使用される場合
のごとくある程度の機械的強度も要求されるときには、
それなりの板厚のものが使用されるが、単にリング状部
分の内周側におけるクラックの発生をおさえようとする
場合には、機械的強度が小さいかほとんどないような極
くうすいものを使用することもできる。 第1図(a)〜(d)は本発明に係るラジアル異方性
永久磁石の製造方法の一実施態様を示すもので、第1図
(b)に示すように、側部型1と、前記側部型1の開口
径よりも小さい面積の押圧面2aを有する上部型2と、前
記側部型1の開口径とほぼ等しい面積の押圧面3aを有す
る下部型3とを備えた熱間兼押出成形型4を用いてい
る。 そしてまず、第1図(a)に示すように、前記熱間兼
押出成形型4の側部型1と下部型3とによって形成され
た成形空間5内に、R−T−Mを主成分とする希土類−
鉄系磁石粉末6を入れ、次いで前記磁石粉末6の少なく
とも加圧側(またはこの加圧側とともに、非加圧側であ
る下部型3の押圧面3aとの間)に金属板材7を配設し
て、第1図(b)に示すように金属板材7側から上部型
2を降下させて前記磁石粉末6を熱間で加圧する熱間成
形を行い、ここで得られた熱間成形体8はそのままにし
て、引続き第1図(c)に示すように、上部型2による
押圧力をさらに増大させることによって金属板材7およ
び熱間成形体8を塑性変形させる後方押出成形を行い、
熱間兼押出成形型4から取り出すことによって、第1図
(d)に示すように、塑性加工された金属板材7を一体
で備えていると共にリング状部分9aおよび閉塞端部分9b
を有するラジアル異方性永久磁石9を得る。 第2図(a)〜(d)は本発明に係るラジアル異方性
永久磁石の製造方法の他の実施態様を示すもので、第1
図に示したと同じ熱間兼押出成形型4を用いている。 そしてまず、第2図(a)に示すように、熱間兼押出
成形型4の側部型1と下部型3とによって形成された成
形空間5内に、R−T−Mを主成分とする希土類−鉄系
磁石粉末を冷間成形することにより得た冷間成形体16を
入れ、次いで前記冷間成形体16の少なくとも加圧側(ま
たはこの加圧側とともに、非加圧側である下部型3の押
圧面3aとの間)に金属板材7を配設して、第2図(b)
に示すように金属板材7側から上部型2を降下させて前
記冷間成形体16を熱間で加圧する熱間成形を行い、ここ
で得られた熱間成形体8はそのままにして、引続き第2
図(c)に示すように、上部型2による押圧力をさらに
増大させることによって金属板材7および熱間成形体8
を塑性変形させる後方押出成形を行い、熱間兼押出成形
型4から取り出すことによって、第2図(d)に示すよ
うに、塑性加工された金属板材7を一体で備えていると
共にリング状部分9aおよび閉塞端部分9bを有するラジア
ル異方性永久磁石9を得る。 このようにして得たラジアル異方性永久磁石9は、そ
の閉塞端部分9bおよびこの閉塞端部分9bにおける金属板
材7までを切除すると共に上端の傾斜部分を切除するこ
とによって、リング状のラジアル異方性永久磁石とな
り、また、閉塞端部分9bを除去しかつ閉塞端部分9bにお
ける金属板材7は残しておくことによって、モータ用シ
ャフトに対するボス部分を有するリング状のラジアル異
方性永久磁石となる。 (発明の作用) 本発明に係るラジアル異方性永久磁石の製造方法で
は、R−T−Mを主成分とする希土類−鉄系磁石粉末
を、またR−T−Mを主成分とする希土類−鉄系磁石粉
末を冷間成形することにより得た冷間成形体を、熱間兼
押出成形型内に入れると共に、前記磁石粉末または冷間
成形体の少なくとも加圧面側に金属板材を配設して、前
記金属板材側から前記磁石粉末または前記成形体を熱間
で加圧する熱間成形を行い、次いで前記金属板材側から
さらに押圧する前方または後方押出成形を行って、リン
グ状部分を有するラジアル異方性永久磁石またはその粗
材を得るようにした構成としているので、前記金属板材
の介在によってリング状部分の内周面側に割れが発生し
ないものとなり、かつまた同一の成形型で熱間成形とそ
の後の前方または後方押出成形とを行うことによって複
合押出の効果が得られると共に押出成形体に対して対称
な歪が与えられるようになるという作用がもたらされ
る。 (実施例) 31重量部Nd−1.0重量%B−2.5重量%Co−残部Feより
なる組成を有し、超急冷法によって製造した希土類−鉄
系磁石粉末を冷間成形することによって冷間成形体16を
得た。 次いで、前記冷間成形体16の上面に、厚さ5mmのステ
ンレス鋼(SUS304)製の金属板材7を載せた状態にし
て、800℃に加熱した熱間兼押出成形型4の成形空間5
内に入れ、圧力1tonf/cm2で1分間加圧する条件で金属
板材7側から加圧する熱間成形を行った。 次いで、同じ成形型4において加圧力を2倍に増やす
ことによって金属板材7側からさらに押圧する後方押出
成形を行い、次いで熱間兼押出成形型4より取り出して
室温まで冷却し、塑性変形された金属板材7を一体でそ
なえている共にリング状部分9aおよび閉塞端部分9bを有
する外径30mm,内径25mm,高さ20mmのラジアル異方性永久
磁石9を得た。 次いで、得られた永久磁石9の外観を調べたところ、
内周面および外周面のいずれにも割れは全く発生してい
なかった。また、ラジアル方向の磁気特性を調べたとこ
ろ、第1表の実施例の欄に示すとおりであり、周方向に
おける磁気特性のばらつきはほとんどないものであっ
た。 (比較例) 31重量%Nd−1.0重量%B−2.5重量%Co−残部Feより
なる組成を有し、超急冷法によって製造した希土類−鉄
系磁石粉末を冷間成形することによって冷間成形体16を
得た。 次いで、前記冷間成形体16の上面に金属板材(7)を
載せることなく、前記冷間成形体16のみを800℃に加熱
した熱間兼押出成形型4の成形空間5内に入れ、圧力1t
onf/cm2で1分間加圧する条件で熱間成形を行った。 次いで、同じ成形型4において加圧力を2倍に増やす
ことによってさらに押圧する後方押出成形を行い、熱間
兼押出成形型4より取り出して室温まで冷却し、リング
状部分(9a)および閉塞端部分(9b)を有する外径30m
m,内径22mm,高さ20mmのラジアル異方性永久磁石(9)
を得た。 次いで、得られた永久磁石9の内周面に1〜3mm程度
の割れが発生していたため、内周面側を研磨加工するこ
とによって外径30mm,内径25mm,高さ20mmのラジアル異方
性永久磁石とした。そして、ラジアル方向の磁気特性を
調べたところ、第1表の比較例の欄に示すとおりであ
り、周方向における磁気特性のばらつきはほとんどない
ものであった。 第1表に示すように、実施例の永久磁石9の磁気特性
はかなり優れたものであった。一方、比較例の永久磁石
(9)の磁気特性が劣っているのは、圧縮歪の大きな磁
気特性にすぐれた内周部分を研磨加工により除去したこ
と、および割れの発生によって歪が解放されたこと、に
よるものと思われる。
(Means for Solving the Problems) The method for manufacturing a radially anisotropic permanent magnet according to the first aspect of the present invention is a method for manufacturing a radially anisotropic permanent magnet, wherein RTM (where R is one kind selected from rare earth elements). Or two or more, T is one or two or more selected from transition elements of the iron group, and M is one or two or more selected from the property improving elements). Along with placing the magnet powder in a hot / extrusion mold, a metal plate is disposed on at least the pressing surface side of the magnet powder, and hot forming is performed by hot pressing the magnet powder from the metal plate side. The method of manufacturing a radially anisotropic permanent magnet according to the second aspect of the present invention, wherein extrusion molding is performed by further pressing from the metal plate material side to obtain a radially anisotropic permanent magnet having a ring-shaped portion. Is a rare earth containing R-T-M as a main component. A cold compact obtained by cold-forming an iron-based magnet powder is placed in a hot / extrusion mold, and a metal plate is disposed on at least a pressurized surface side of the cold compact to form the metal. Hot forming is performed by pressurizing the compact from the plate side, and then extrusion is further performed from the metal plate side to obtain a radially anisotropic permanent magnet having a ring-shaped portion. These features are used as means for solving the above-mentioned conventional problems. The permanent magnet applied in the method for manufacturing a radially anisotropic permanent magnet of the present invention is a rare earth-iron-based material having R-T-M as a main component, and R is Nd, P having high magnetic properties.
It is composed of one or more rare earth elements selected from the group consisting of r, inexpensive Ce and misch metal, and Dy and Tb which can provide a high coercive force. T is one or two or more selected from Fe, Co, and Ni, which are transition elements of the iron group, and Mn, which is a transition element other than the iron group. Further, M is one selected from B, C, P, Si, etc.
Or more than two kinds. In order to improve the temperature characteristics, coercive force, squareness of demagnetization curve, corrosion resistance, machinability, etc., this M is used for Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ru,
One or more selected from Rh, Pd, Os, Ir, Pt, Cu, Zn, Al, Ga, In, Tl, Pb, Bi, Li, Mg, Ca and the like are included. Furthermore, even if a small amount of O, N, etc. is contained as an impurity, the influence on the magnetic properties is small. Further, as the metal plate material, a material made of stainless steel, Ni-based alloy, or the like is used, but is not particularly limited.
And, when this metal plate material is required to have a certain degree of mechanical strength after extrusion molding, for example, when used as a boss portion of a motor shaft or the like,
Although a plate with a reasonable thickness is used, if it is merely intended to suppress the occurrence of cracks on the inner peripheral side of the ring-shaped portion, use a very thin plate having little or no mechanical strength. You can also. 1 (a) to 1 (d) show one embodiment of a method for manufacturing a radially anisotropic permanent magnet according to the present invention. As shown in FIG. 1 (b), A hot mold including an upper mold 2 having a pressing surface 2a having an area smaller than the opening diameter of the side mold 1 and a lower mold 3 having a pressing surface 3a having an area substantially equal to the opening diameter of the side mold 1. An extrusion mold 4 is used. First, as shown in FIG. 1 (a), R-T-M is mainly contained in a molding space 5 formed by the side mold 1 and the lower mold 3 of the hot / extrusion mold 4. Rare earth-
The iron-based magnet powder 6 is put in, and then the metal plate 7 is arranged at least on the pressing side of the magnet powder 6 (or between the pressing side and the pressing surface 3a of the lower mold 3 which is the non-pressing side). As shown in FIG. 1 (b), the upper mold 2 is lowered from the metal plate material 7 side to perform hot compaction in which the magnet powder 6 is hot pressed, and the hot compact 8 obtained here is directly used as it is. Then, as shown in FIG. 1 (c), rearward extrusion for plastically deforming the metal plate 7 and the hot formed body 8 by further increasing the pressing force by the upper mold 2 is performed.
As shown in FIG. 1 (d), by taking out from the hot / extrusion mold 4, the metal plate 7 which has been plastically worked is integrally provided, and the ring-shaped portion 9a and the closed end portion 9b are provided.
Is obtained. FIGS. 2 (a) to 2 (d) show another embodiment of the method for manufacturing a radially anisotropic permanent magnet according to the present invention.
The same hot / extrusion mold 4 as shown in the figure is used. First, as shown in FIG. 2 (a), in a molding space 5 formed by the side mold 1 and the lower mold 3 of the hot / extrusion mold 4, R-T-M is mainly contained. The cold compact 16 obtained by cold compacting the rare-earth-iron-based magnet powder to be formed is put into the cold mold 16 and then the lower mold 3 at least on the pressurized side of the cold compact 16 (or the pressurized side and the non-pressurized side) 2 (b) with the metal plate material 7 disposed between the pressing surface 3a of FIG.
As shown in (1), the upper mold 2 is lowered from the metal plate 7 side to perform hot forming in which the cold compact 16 is hot pressed, and the hot compact 8 obtained here is left as it is. Second
As shown in FIG. 3 (c), the pressing force of the upper mold 2 is further increased so that the metal plate 7 and the hot compact 8 are formed.
2 is removed from the hot / extrusion mold 4 by plastic extrusion to obtain a plastically worked metal plate member 7 as shown in FIG. A radially anisotropic permanent magnet 9 having 9a and closed end portion 9b is obtained. The radially anisotropic permanent magnet 9 thus obtained is cut by cutting off the closed end portion 9b and the metal plate 7 at the closed end portion 9b, and by cutting off the inclined portion at the upper end, thereby obtaining a ring-shaped radially different permanent magnet. By removing the closed end portion 9b and leaving the metal plate 7 at the closed end portion 9b, a ring-shaped radial anisotropic permanent magnet having a boss portion for the motor shaft is obtained. . (Operation of the Invention) In the method for manufacturing a radially anisotropic permanent magnet according to the present invention, a rare earth-iron-based magnet powder mainly composed of R-T-M and a rare earth element mainly composed of R-T-M are used. -A cold compact obtained by cold-forming an iron-based magnet powder is placed in a hot / extrusion mold, and a metal plate is disposed on at least the pressing surface side of the magnet powder or the cold compact. Then, hot pressing the magnet powder or the compact is performed from the metal plate side, and then performing forward or backward extrusion to further press from the metal plate side to have a ring-shaped portion. Since the radial anisotropic permanent magnet or its coarse material is obtained, cracks do not occur on the inner peripheral surface side of the ring-shaped portion due to the interposition of the metal plate material. Between forming and before By performing the one-sided or backward-extrusion molding, the effect of the composite extrusion is obtained, and the effect that the symmetrical strain is given to the extruded body is brought about. (Example) Cold-forming by cold-forming a rare-earth-iron-based magnet powder having a composition of 31 parts by weight Nd-1.0% by weight B-2.5% by weight Co-balance Fe and produced by a super-quenching method. I got body 16. Then, a metal plate 7 made of stainless steel (SUS304) having a thickness of 5 mm is placed on the upper surface of the cold compact 16 and the molding space 5 of the hot / extrusion mold 4 heated to 800 ° C.
Then, hot forming was performed by pressing from the metal plate 7 side under the condition of pressing at 1 tonf / cm 2 for 1 minute. Next, in the same molding die 4, the pressing force was increased by a factor of two to perform backward extrusion molding in which the metal plate material 7 was further pressed, and then removed from the hot / extrusion molding die 4, cooled to room temperature, and plastically deformed. A radially anisotropic permanent magnet 9 having an outer diameter of 30 mm, an inner diameter of 25 mm, and a height of 20 mm, which integrally has the metal plate member 7 and has a ring-shaped portion 9a and a closed end portion 9b, is obtained. Next, when the appearance of the obtained permanent magnet 9 was examined,
No cracks occurred on either the inner peripheral surface or the outer peripheral surface. When the magnetic properties in the radial direction were examined, the results were as shown in the column of Example in Table 1, and there was almost no variation in the magnetic properties in the circumferential direction. (Comparative Example) Cold-forming by cold-forming a rare-earth-iron-based magnet powder having a composition of 31% by weight Nd-1.0% by weight B-2.5% by weight Co-balance Fe and manufactured by a rapid quenching method. I got body 16. Next, without placing the metal plate material (7) on the upper surface of the cold compact 16, only the cold compact 16 was placed in the molding space 5 of the hot / extrusion mold 4 heated to 800 ° C. 1t
Hot forming was performed under the condition of pressing at onf / cm 2 for 1 minute. Next, in the same molding die 4, backward pressing is performed by further increasing the pressing force by a factor of two, taken out of the hot and extrusion molding die 4, cooled to room temperature, and the ring-shaped portion (9a) and the closed end portion are formed. Outer diameter 30m with (9b)
Radial anisotropic permanent magnet with m, inner diameter of 22mm and height of 20mm (9)
I got Next, since a crack of about 1 to 3 mm occurred on the inner peripheral surface of the obtained permanent magnet 9, the inner peripheral surface was polished to obtain a radial anisotropic material having an outer diameter of 30 mm, an inner diameter of 25 mm, and a height of 20 mm. A permanent magnet was used. When the magnetic properties in the radial direction were examined, it was as shown in the column of Comparative Example in Table 1, and there was almost no variation in the magnetic properties in the circumferential direction. As shown in Table 1, the magnetic properties of the permanent magnet 9 of the example were quite excellent. On the other hand, the magnetic properties of the permanent magnet (9) of the comparative example were inferior because the inner peripheral portion having excellent magnetic properties with large compressive strain was removed by polishing, and the strain was released by the occurrence of cracks. That seems to be due.

【発明の効果】【The invention's effect】

本発明に係るラジアル異方性永久磁石の製造方法で
は、R−T−Mを主成分とする希土類−鉄系磁石粉末
を、またはR−T−Mを主成分とする希土類−鉄系磁石
粉末を冷間成形することにより得た冷間成形体を、熱間
兼押出成形型内に入れると共に、前記磁石粉末または冷
間成形体の少なくとも加圧面側に金属板材を配設して、
前記金属板材側から前記磁石粉末または前記成形体を熱
間で加圧する熱間成形を行い、次いで前記金属板材側か
らさらに押圧する前方または後方押出成形を行って、リ
ング状部分を有するラジアル異方性永久磁石を得るよう
にした構成としているので、前記金属板材の介在によっ
てリング状部分の内周面側に割れが発生しないものとな
り、したがって割れが発生した場合のように加工歪が大
きく磁気特性のすぐれた内周面を研磨して除去すること
がないため磁気特性のすぐれたものとすることが可能で
あり、かつまた同一の成形型で熱間成形と押出成形とを
行うようにしているので押出成形体に対して対称な歪を
与えることができ、周方向における磁気特性のばらつき
が著しく少ないラジアル異方性永久磁石を提供すること
が可能であるという非常に優れた効果がもたらされる。
In the method for manufacturing a radially anisotropic permanent magnet according to the present invention, a rare earth-iron magnet powder containing R-T-M as a main component or a rare earth-iron magnet powder containing R-T-M as a main component The cold compact obtained by cold compacting, while placed in a hot and extrusion mold, a metal plate material is disposed on at least the pressing surface side of the magnet powder or the cold compact,
From the metal plate side, hot-pressing the magnet powder or the green compact is performed, and then forward or rearward extrusion molding is further performed from the metal plate side to obtain a radial anisotropic having a ring-shaped portion. The structure is such that a permanent magnet is obtained, so that cracks do not occur on the inner peripheral surface side of the ring-shaped portion due to the interposition of the metal plate material. It is possible to have excellent magnetic properties because it does not remove the excellent inner peripheral surface by polishing, and it is also possible to perform hot forming and extrusion molding with the same mold. Therefore, it is possible to provide a radially anisotropic permanent magnet that can give a symmetrical strain to the extruded product and has a significantly small variation in magnetic properties in the circumferential direction. Very good effect is brought about.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)は本発明に係るラジアル異方性永
久磁石の製造方法の一実施態様を工程順に示す断面説明
図、第2図(a)〜(d)は本発明に係るラジアル異方
性永久磁石の製造方法の他の実施態様を工程順に示す断
面説明図、第3図(a)〜(d)は従来のラジアル異方
性永久磁石の製造方法を工程順に示す断面説明図であ
る。 4……熱間兼押出成形型、 5……成形空間、 6……希土類−鉄系磁石粉末。 7……金属板材、 8……熱間成形体、 9……押出成形体(ラジアル異方性永久磁石)、 9a……リング状部分、 16……希土類−鉄系合金粉末の冷間成形体。
1 (a) to 1 (d) are cross-sectional explanatory views showing one embodiment of a method for manufacturing a radially anisotropic permanent magnet according to the present invention in the order of steps, and FIGS. 2 (a) to 2 (d) show the present invention. FIGS. 3A to 3D are cross-sectional explanatory views showing another embodiment of the method for manufacturing a radially anisotropic permanent magnet in the order of steps, and FIGS. FIG. 4 hot and extrusion mold 5 molding space 6 rare earth-iron magnet powder 7: Metal plate material, 8: Hot compact, 9: Extruded compact (radial anisotropic permanent magnet), 9a: Ring-shaped portion, 16: Cold compact of rare earth-iron alloy powder .

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 41/02 B22F 3/00,3/20 C22C 33/02──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 41/02 B22F 3 / 00,3 / 20 C22C 33/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−T−Mを主成分とする希土類−鉄系磁
石粉末を熱間兼押出成形型内に入れると共に、前記磁石
粉末の少なくとも加圧面側に金属板材を配設して、前記
金属板材側から前記磁石粉末を熱間で加圧する熱間成形
を行い、次いで前記金属板材側からさらに押圧する押出
成形を行って、リング状部分を有するラジアル異方性永
久磁石を得ることを特徴とするラジアル異方性永久磁石
の製造方法。
1. A rare-earth-iron magnet powder containing RTM as a main component is placed in a hot / extrusion mold, and a metal plate is disposed on at least a pressing surface side of the magnet powder. From the metal plate side, hot-pressing the magnet powder is performed by hot pressing, and then extruding by pressing further from the metal plate side to obtain a radially anisotropic permanent magnet having a ring-shaped portion. A method for producing a radially anisotropic permanent magnet, which is characterized in that:
【請求項2】R−T−Mを主成分とする希土類−鉄系磁
石粉末を冷間成形することにより得た冷間成形体を熱間
兼押出成形型内に入れると共に、前記冷間成形体の少な
くとも加圧面側に金属板材を配設して、前記金属板材側
から前記成形体を熱間で加圧する熱間成形を行い、次い
で前記金属板材側からさらに押圧する押出成形を行っ
て、リング状部分を有するラジアル異方性永久磁石を得
ることを特徴とするラジアル異方性永久磁石の製造方
法。
2. A cold compact obtained by cold-forming a rare-earth-iron-based magnet powder containing RTM as a main component is placed in a hot / extrusion mold, and the cold compact is formed. A metal plate is disposed on at least the pressing surface side of the body, hot forming is performed by pressing the molded body hot from the metal plate side, and then extruding is further performed from the metal plate side. A method for producing a radially anisotropic permanent magnet, comprising obtaining a radially anisotropic permanent magnet having a ring-shaped portion.
JP8498589A 1989-04-04 1989-04-04 Manufacturing method of radial anisotropic permanent magnet Expired - Lifetime JP2757442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8498589A JP2757442B2 (en) 1989-04-04 1989-04-04 Manufacturing method of radial anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8498589A JP2757442B2 (en) 1989-04-04 1989-04-04 Manufacturing method of radial anisotropic permanent magnet

Publications (2)

Publication Number Publication Date
JPH02263415A JPH02263415A (en) 1990-10-26
JP2757442B2 true JP2757442B2 (en) 1998-05-25

Family

ID=13845916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8498589A Expired - Lifetime JP2757442B2 (en) 1989-04-04 1989-04-04 Manufacturing method of radial anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JP2757442B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086103A (en) * 2003-09-10 2005-03-31 Ricoh Co Ltd Method and device of manufacturing rare earth magnet block
CN106890863A (en) * 2017-03-28 2017-06-27 解伟 A kind of heat back of the body radially oriented ring press of extrusion

Also Published As

Publication number Publication date
JPH02263415A (en) 1990-10-26

Similar Documents

Publication Publication Date Title
KR101306880B1 (en) Method for producing rare-earth magnet
CN101103422B (en) Process for producing radially anisotropic magnet
EP0187538B1 (en) Permanent magnet and method for producing same
CA2887984C (en) Rare-earth magnet production method
EP0174735A2 (en) Method of producing a permanent magnet having high and low coercivity regions
KR20130116933A (en) Method producing rare earth magnet
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
JPS6148904A (en) Manufacture of permanent magnet
JP5786708B2 (en) Rare earth magnet manufacturing method
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
JPS59103309A (en) Manufacture of permanent magnet
CN107851506B (en) Mold and method for forming permanent magnets from preforms and thermal deformation system
JP2018073873A (en) Rare earth magnet and method for manufacturing the same
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2000012359A (en) Magnet and its manufacture
KR0159651B1 (en) Method for manufacturing a magnet made from anisotropic rare earth
JPH06140223A (en) Manufacture of annular magnet material
JPH07169618A (en) Large-sized radial anisotropic ring-shaped permanent magnet, and its manufacture
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH01239901A (en) Rare-earth magnet and its manufacture
US5342574A (en) Method for producing anisotropic rare earth magnet
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
JPH0390298A (en) Press forming method for brittle material