JPH06100708A - Composite laminated sheet - Google Patents

Composite laminated sheet

Info

Publication number
JPH06100708A
JPH06100708A JP25331492A JP25331492A JPH06100708A JP H06100708 A JPH06100708 A JP H06100708A JP 25331492 A JP25331492 A JP 25331492A JP 25331492 A JP25331492 A JP 25331492A JP H06100708 A JPH06100708 A JP H06100708A
Authority
JP
Japan
Prior art keywords
epoxy resin
glass fiber
resin
thermosetting resin
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25331492A
Other languages
Japanese (ja)
Other versions
JP2720726B2 (en
Inventor
Satoshi Sugiura
聡 杉浦
Tatsu Sakaguchi
達 坂口
Mitsutoshi Kamata
満利 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4253314A priority Critical patent/JP2720726B2/en
Publication of JPH06100708A publication Critical patent/JPH06100708A/en
Application granted granted Critical
Publication of JP2720726B2 publication Critical patent/JP2720726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the response to a production process for printed wiring boards for carrying out the heating of the whole boards at high temperatures such as surface mounting by suppressing the warpage of the composite laminated sheet after heating at the high temperatures and ensuring the heat resistance, insulating properties and peel strength of a metallic foil at the same time. CONSTITUTION:The composite laminated sheet is obtained by blending a thermosetting resin (bisphenol A type epoxy resin) impregnated into a glass fiber nonwoven fabric (constructing the core layer of the composite laminated sheet) with (A) a dimer acid-modified epoxy resin or (B) a propylene oxide adduct bisphenol A type epoxy resin. The amounts of the components blended are <=50 pts.wt. component (A) and <=40 pts.wt. component (B) based on 100 pts.wt. thermosetting resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンポジット積層板の
改良に関するものである。
FIELD OF THE INVENTION This invention relates to improvements in composite laminates.

【0002】[0002]

【従来の技術】電子電気機器の低価格化に伴って、これ
れに組み込んで使用されるプリント配線板にも低価格化
が要求されるようになり、プリント配線板の基板となる
積層板は、これまでガラス繊維織布基材積層板が用いら
れていた分野にも低コストのコンポジット積層板が用い
られるようになってきた。コンポジット積層板(CEM
−3)は、芯層に使用されている基材がガラス繊維不織
布であることに起因して、ガラス繊維織布基材の積層板
(FR−4)に比べて加熱後の反りが大きい問題があ
る。これは、ガラス繊維織布がガラス繊維を均一に織っ
たものであるのに対し、ガラス繊維不織布はガラス短繊
維をランダムにからませたものであり空隙率が高いため
である。基材に含浸されている熱硬化性樹脂が硬化する
ときの収縮応力に対して、ガラス繊維不織布では不均一
な応力逃げが行なわれるために反りを生じるものと推測
されている。また、コンポジット積層板は、コスト低減
等の目的で樹脂中に無機充填剤を添加することが多く体
積中に基材の占める割合が低いため、樹脂に生じた応力
を基材が抑えることができなくなったときに反りを生じ
るとも考えられている。
2. Description of the Related Art As the price of electronic and electrical equipment has become lower, the price of printed wiring boards used by incorporating them has also become lower. In the field where glass fiber woven substrate laminates have been used up to now, low cost composite laminates have come to be used. Composite laminate (CEM
-3) is a problem that the warp after heating is large as compared with the laminated plate (FR-4) of the glass fiber woven fabric substrate, because the substrate used for the core layer is the glass fiber nonwoven fabric. There is. This is because the glass fiber woven cloth is a uniform woven glass fiber, whereas the glass fiber nonwoven cloth is a short glass fiber randomly entangled and has a high porosity. It is presumed that warpage occurs due to uneven stress relief in the glass fiber nonwoven fabric against shrinkage stress when the thermosetting resin impregnated in the base material is cured. In addition, in the composite laminated plate, an inorganic filler is often added to the resin for the purpose of cost reduction and the ratio of the base material in the volume is low, so the base material can suppress the stress generated in the resin. It is also thought to warp when it disappears.

【0003】一方、プリント配線板への部品搭載の方式
が、基板にあけた貫通孔への挿入実装から表面実装へ移
行しており、プリント配線板への部品の半田付け方式
も、部品を半田付けする位置だけを半田ごて等で加熱す
る手付け方式から、プリント配線板上に部品を搭載して
噴流半田槽の中を通すフローソルダー方式や、プリント
配線板上にクリーム半田を塗布し、部品を搭載して加熱
炉の中を通すリフロー方式に移行してきた。従来の方式
による半田付けでは、プリント配線板の一部分だけが加
熱されることが多く、プリント配線板全体が加熱される
ことは少なかったが、フローソルダー方式やリフロー方
式への移行により、プリント配線板全体が加熱される工
程が必須となってきた。
On the other hand, the method of mounting components on a printed wiring board is shifting from insertion mounting in through holes formed in a board to surface mounting, and the method of soldering components to a printed wiring board is also soldering of components. From a manual method that heats only the position to be attached with a soldering iron, etc., a flow solder method that mounts components on the printed wiring board and lets it pass through the jet solder bath, or apply cream solder to the printed wiring board It has been moved to a reflow method in which the In conventional soldering, only a part of the printed wiring board is often heated and the entire printed wiring board is not heated so much, but due to the shift to the flow solder method or reflow method, the printed wiring board is The process of heating the whole has become essential.

【0004】このような状況において、加熱処理により
反りやすいコンポジット積層板について、内部に生ずる
応力を抑える種々の検討が行われている。コンポジット
積層板は、マトリックス樹脂である熱硬化性樹脂をガラ
ス繊維織布、ガラス繊維不織布に含浸し、芯層をガラス
繊維不織布で、両表面層をガラス繊維織布で構成して、
加熱加圧成形して製造されるが、例えば、表面層に配置
するガラス繊維織布に含浸する熱硬化性樹脂に、可撓性
付与剤を単に添加したり、添加した可撓性付与剤を前記
熱硬化性樹脂または硬化剤と反応させて低応力化を図る
検討が行われている。
Under such circumstances, various studies have been conducted on the composite laminated plate which is likely to warp by heat treatment to suppress the stress generated inside. The composite laminated plate is formed by impregnating a glass fiber woven fabric and a glass fiber non-woven fabric with a thermosetting resin which is a matrix resin, and forming the core layer with the glass fiber non-woven fabric and both surface layers with the glass fiber woven fabric,
It is produced by heat and pressure molding. For example, the flexibility-imparting agent is simply added to the thermosetting resin impregnated in the glass fiber woven fabric arranged in the surface layer, or the flexibility-imparting agent added is added. Studies have been conducted to reduce the stress by reacting with the thermosetting resin or the curing agent.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、コンポジット積層板の加熱後の反りを低
減することはできるが、プリント配線板の基板として必
要な他の特性、すなわち耐熱性および金属箔引き剥がし
強さの低下をもたらすという問題点があった。本発明が
解決しようとする課題は、表面実装等の基板全体の高温
加熱を行なうプリント配線板の製造工程に対応できる、
プリント配線板の基板として適したコンポジット積層板
を提供するもので、高温加熱後の反りを抑え、併せて耐
熱性、絶縁性、および金属箔引き剥がし強さを確保する
ことである。
However, although the above-mentioned conventional technique can reduce the warpage of the composite laminate after heating, it has other properties required for the substrate of the printed wiring board, namely, heat resistance and metal. There is a problem in that the peeling strength of the foil is reduced. The problem to be solved by the present invention can be applied to a manufacturing process of a printed wiring board that performs high temperature heating of the entire substrate such as surface mounting.
The object of the present invention is to provide a composite laminated board suitable as a substrate for a printed wiring board, to suppress warpage after heating at a high temperature, and at the same time, ensure heat resistance, insulation, and metal foil peeling strength.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る第1のコンポジット積層板は、芯層を
構成するガラス繊維不織布に含浸されている熱硬化性樹
脂がダイマー酸変性エポキシ樹脂を含み、ダイマー酸変
性エポキシ樹脂の配合量が、固型重量比で、前記熱硬化
性樹脂100部に対して50部以下であることを特徴と
する本発明に係る第2のコンポジット積層板は、上記第
1の発明において、ダイマー酸変性エポキシ樹脂がノボ
ラック型フェノール樹脂と反応させたものであり、その
配合量が固型重量比で、熱硬化性樹脂100部に対して
60部以下であることを特徴とする。本発明に係る第3
のコンポジット積層板は、芯層を構成するガラス繊維不
織布に含浸されている熱硬化性樹脂がプロピレンオキサ
イド付加ビスフェノールA型エポキシ樹脂を含み、プロ
ピレンオキサイド付加ビスフェノールA型エポキシ樹脂
の配合量が、固型重量比で、前記熱硬化性樹脂100部
に対して40部以下であることを特徴とする。
In order to solve the above-mentioned problems, in the first composite laminate of the present invention, the thermosetting resin impregnated in the glass fiber nonwoven fabric constituting the core layer is modified with dimer acid. A second composite laminate according to the present invention, which contains an epoxy resin, and a dimer acid-modified epoxy resin is mixed in a solid weight ratio of 50 parts or less based on 100 parts of the thermosetting resin. The plate is a product obtained by reacting a dimer acid-modified epoxy resin with a novolac type phenol resin in the above-mentioned first invention, and the compounding amount thereof is 60 parts or less based on 100 parts of the thermosetting resin in a solid weight ratio. Is characterized in that. Third according to the present invention
In the composite laminated plate of No. 3, the thermosetting resin impregnated in the glass fiber non-woven fabric forming the core layer contains propylene oxide-added bisphenol A type epoxy resin, and the blending amount of propylene oxide-added bisphenol A type epoxy resin is solid type. The weight ratio is 40 parts or less with respect to 100 parts of the thermosetting resin.

【0007】[0007]

【作用】本発明に係るコンポジット積層板は、ダイマー
酸変性エポキシ樹脂、またはプロピレンオキサイド付加
ビスフェノールA型エポキシ樹脂を芯層へ使用すること
により、プリント配線板の基板として必要な特性を低下
させることなく、高温加熱後の反りを低減するものであ
る。低弾性のダイマー酸変性エポキシ樹脂あるいはプロ
ピレンオキサイド付加ビスフェノールA型エポキシ樹脂
が熱硬化性樹脂中に存在することにより、熱硬化性樹脂
の硬化収縮により生ずる積層板の内部応力を吸収、緩和
する。ダイマー酸変性エポキシ樹脂がノボラック型フェ
ノール樹脂と反応させたものであるときは、未反応のダ
イマー酸変性エポキシ樹脂を低減することができ、耐熱
性の低下を抑制する上でより好ましいものである。低弾
性の上記ダイマー酸変性エポキシ樹脂を、コンポジット
積層板の表面層に配置するガラス繊維織布に含浸する熱
硬化性樹脂に配合して使用した場合は、ダイマー酸変性
エポキシ樹脂が有する脂肪族骨格の影響で、積層板の耐
熱性、および積層板の成形時に表面に一体に貼付た金属
箔の接着力を低下させてしまう。また、上記プロピレン
オキサイド付加ビスフェノールA型エポキシ樹脂を、コ
ンポジット積層板の表面層に配置するガラス繊維織布に
含浸する熱硬化性樹脂に配合して使用した場合は、プロ
ピレンオキサイド付加ビスフェノールA型エポキシ樹脂
が有するエーテル結合の影響で、積層板表面の絶縁抵抗
が劣化し、耐電食性を低下させてしまう。そこで、上記
ダイマー酸変性エポキシ樹脂あるいはプロピレンオキサ
イド付加ビスフェノールA型エポキシ樹脂を、芯層に配
置するガラス繊維不織布に含浸する熱硬化性樹脂に配合
しているわけである。但し、ダイマー酸変性エポキシ樹
脂の配合割合が多いと、積層板のガラス転移温度が低下
し、耐熱性、耐湿絶縁特性が低下する。また、プロピレ
ンオキサイド付加ビスフェノールA型エポキシ樹脂の配
合割合が多いと、積層板のガラス転移温度が低下し、耐
熱性、耐湿絶縁特性が低下するので、上記所定の配合量
に限定すべきである。
The composite laminated board according to the present invention uses a dimer acid-modified epoxy resin or a propylene oxide-added bisphenol A type epoxy resin for the core layer without deteriorating the characteristics required as a substrate for a printed wiring board. In addition, the warp after heating at a high temperature is reduced. The presence of the low-elasticity dimer acid-modified epoxy resin or propylene oxide-added bisphenol A type epoxy resin in the thermosetting resin absorbs and relaxes the internal stress of the laminated plate caused by the curing shrinkage of the thermosetting resin. When the dimer acid-modified epoxy resin is reacted with a novolac type phenol resin, the amount of unreacted dimer acid-modified epoxy resin can be reduced, which is more preferable in suppressing the decrease in heat resistance. When the low-elasticity dimer acid-modified epoxy resin is blended with the thermosetting resin impregnated into the glass fiber woven fabric arranged in the surface layer of the composite laminate, the aliphatic skeleton of the dimer acid-modified epoxy resin is used. Under the influence of, the heat resistance of the laminated plate and the adhesive force of the metal foil integrally attached to the surface during molding of the laminated plate are reduced. Further, when the propylene oxide-added bisphenol A type epoxy resin is mixed with a thermosetting resin impregnated in a glass fiber woven fabric arranged in the surface layer of the composite laminate, the propylene oxide-added bisphenol A type epoxy resin is used. Due to the influence of the ether bond contained in, the insulation resistance of the surface of the laminated plate is deteriorated and the electrolytic corrosion resistance is reduced. Therefore, the above-mentioned dimer acid-modified epoxy resin or propylene oxide-added bisphenol A type epoxy resin is blended with the thermosetting resin that impregnates the glass fiber nonwoven fabric arranged in the core layer. However, when the blending ratio of the dimer acid-modified epoxy resin is high, the glass transition temperature of the laminated plate is lowered, and the heat resistance and the moisture resistant insulation property are lowered. Further, when the blending ratio of the propylene oxide-added bisphenol A type epoxy resin is large, the glass transition temperature of the laminated plate is lowered, and the heat resistance and the moisture resistance insulation characteristic are lowered, so the content should be limited to the above predetermined amount.

【0008】[0008]

【実施例】本発明で使用するガラス繊維不織布は、ガラ
ス−紙混抄不織布等も含む。また、マトリックス樹脂で
ある熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、
ユリア樹脂、ポリイミド、ポリエステル等を適宜用いる
ことができる。これら熱硬化性樹脂には、品質改善、加
工性の向上、コスト低減などの目的で、無機充填剤(A
23,Al23・H2O,Al23・3H2O,タル
ク,MgO,SiO2等)を配合してもよい。ノボラッ
ク型フェノール樹脂は、フェノール、アルキルフェノー
ル、2価フェノール、多価フェノール等フェノール類を
原料とするものである。本発明に係るコンポジット積層
板は、通常のプリント配線板のためのもののほか、多層
プリント配線板のための積層板も含むものである。本発
明に係るコンポジット積層板で使用するダイマー酸変性
エポキシ樹脂は、例えば、(化1)で示すものである。
また、プロピレンオキサイド付加ビスフェノールA型エ
ポキシ樹脂は、(化2)で示すものなどである。
EXAMPLES The glass fiber non-woven fabric used in the present invention also includes a glass-paper mixed non-woven fabric. Further, the thermosetting resin which is a matrix resin, epoxy resin, phenol resin,
Urea resin, polyimide, polyester or the like can be used as appropriate. These thermosetting resins include inorganic filler (A) for the purpose of quality improvement, processability improvement, cost reduction, etc.
1 2 O 3 , Al 2 O 3 .H 2 O, Al 2 O 3 .3H 2 O, talc, MgO, SiO 2 etc.) may be added. The novolac type phenol resin is made of phenols such as phenol, alkylphenol, dihydric phenol and polyhydric phenol as raw materials. The composite laminate according to the present invention includes not only those for ordinary printed wiring boards but also those for multilayer printed wiring boards. The dimer acid-modified epoxy resin used in the composite laminate according to the present invention is, for example, one represented by (Chemical Formula 1).
In addition, the propylene oxide-added bisphenol A type epoxy resin is, for example, the one shown in Chemical formula 2.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【化2】 [Chemical 2]

【0011】実施例1〜2、比較例1 ビスフェノールA型エポキシ樹脂(大日本インキ製エピ
クロン855)80重量部に対して、硬化剤としてノボ
ラック型フェノール樹脂(大日本インキ製ブライオーフ
ェンVH−4170)20重量部、硬化促進剤2−エチ
ル−4−メチル−イミダゾール0.5重量部、無機充填
剤SiO250重量部を配合し、ビスフェノールA型エ
ポキシ樹脂ワニス(A)を調製した。ワニス(A)と、
ダイマー酸変性エポキシ樹脂(東都化成製YD−17
1)とを、表1に示す配合量(樹脂固型分重量)で希釈
溶剤メチルエチルケトンに溶解し、ワニス(B)を調製
した。単位重量50g/m2のガラス繊維不織布に、ワ
ニス(B)を含浸乾燥して、充填剤を含む樹脂付着量8
4重量%のプリプレグ(I)を得た。別に準備したビス
フェノールA型エポキシ樹脂ワニス(C)を、単位重量
205g/m2のガラス繊維織布に含浸乾燥し、樹脂付
着量40重量%のプリプレグ(II)を得た。プリプレグ
(I)を6プライ重ね、その両側にプリプレグ(II)を
1プライずつ配置し、さらに両側に厚さ18μmの銅箔
を載置して、加熱加圧積層成形により、厚さ1.6mmの
コンポジット銅張り積層板を得た。
Examples 1 and 2, Comparative Example 1 80 parts by weight of a bisphenol A type epoxy resin (Dainippon Ink's Epicron 855) was used as a curing agent for a novolac type phenolic resin (Dainippon Ink's Briafen VH-4170). 20 parts by weight of a curing accelerator, 0.5 parts by weight of 2-ethyl-4-methyl-imidazole, and 50 parts by weight of an inorganic filler SiO 2 were mixed to prepare a bisphenol A type epoxy resin varnish (A). Varnish (A),
Dimer acid-modified epoxy resin (YD-17 manufactured by Tohto Kasei)
1) and 1) were dissolved in a diluting solvent methyl ethyl ketone in the blending amounts (resin solid content weight) shown in Table 1 to prepare a varnish (B). A glass fiber non-woven fabric having a unit weight of 50 g / m 2 is impregnated with the varnish (B) and dried to give a resin adhesion amount of 8 including a filler.
4% by weight of prepreg (I) was obtained. Separately prepared bisphenol A type epoxy resin varnish (C) was impregnated into a glass fiber woven fabric having a unit weight of 205 g / m 2 and dried to obtain a prepreg (II) having a resin adhesion amount of 40% by weight. Six plies of prepreg (I) are stacked, one ply of prepreg (II) is placed on each side of the prepreg, and copper foil with a thickness of 18 μm is placed on each side of the prepreg (I). A composite copper clad laminate of was obtained.

【0012】実施例3 実施例1におけるダイマー酸変性エポキシ樹脂70重量
部とノボラック型フェノール樹脂30重量部、2−エチ
ル−4−メチル−イミダゾール0.5重量部を配合し、
80℃で5時間反応させ、ダイマー酸変性エポキシ樹脂
とノボラック型フェノール樹脂の予備反応物を調製し
た。実施例1で使用したワニス(A)と、前記予備反応
物とを、表1に示す配合量(樹脂固型分重量)で希釈溶
剤メチルエチルケトンに溶解し、ワニス(D)を調製し
た。単位重量50g/m2のガラス繊維不織布に、ワニ
ス(D)を含浸乾燥して、充填剤を含む樹脂付着量84
重量%のプリプレグ(III)を得た。プリプレグ(III)
を6プライ重ね、その両側にプリプレグ(II)を1プラ
イずつ配置し、さらに両側に厚さ18μmの銅箔を載置
して、加熱加圧積層成形により、厚さ1.6mmのコンポ
ジット銅張り積層板を得た。
Example 3 70 parts by weight of the dimer acid-modified epoxy resin in Example 1, 30 parts by weight of a novolac type phenol resin, and 0.5 parts by weight of 2-ethyl-4-methyl-imidazole were blended,
Reaction was carried out at 80 ° C. for 5 hours to prepare a preliminary reaction product of a dimer acid-modified epoxy resin and a novolac type phenol resin. Varnish (D) was prepared by dissolving the varnish (A) used in Example 1 and the pre-reacted product in the diluent solvent methyl ethyl ketone in the blending amounts (resin solid content weight) shown in Table 1. A glass fiber nonwoven fabric having a unit weight of 50 g / m 2 is impregnated with a varnish (D) and dried to obtain a resin adhesion amount of 84 including a filler.
A weight percent of prepreg (III) was obtained. Prepreg (III)
6 plies are stacked, 1 ply of prepreg (II) is placed on each side, and copper foil with a thickness of 18 μm is placed on both sides. A laminated board was obtained.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例4〜5、比較例2 実施例1で使用したワニス(A)と、プロピレンオキサ
イド付加ビスフェノールA型エポキシ樹脂(三洋化成製
BPP−350)とを、表2に示す配合量(樹脂固型分
重量)で希釈溶剤メチルエチルケトンに溶解し、ワニス
(E)を調製した。単位重量50g/m2のガラス繊維
不織布に、ワニス(E)を含浸乾燥して、充填剤を含む
樹脂付着量84重量%のプリプレグ(IV)を得た。プリ
プレグ(IV)を6プライ重ね、その両側にプリプレグ
(II)を1プライずつ配置し、さらに両側に厚さ18μ
mの銅箔を載置して、加熱加圧積層成形により、厚さ
1.6mmのコンポジットタイプの銅張積層板を得た。
Examples 4 to 5 and Comparative Example 2 The varnish (A) used in Example 1 and the propylene oxide-added bisphenol A type epoxy resin (BPP-350 manufactured by Sanyo Kasei) were blended in amounts shown in Table 2 ( A resin varnish (E) was prepared by dissolving the resin solid component weight) in a diluent solvent methyl ethyl ketone. A glass fiber nonwoven fabric having a unit weight of 50 g / m 2 was impregnated with the varnish (E) and dried to obtain a prepreg (IV) containing a filler and having a resin adhesion amount of 84% by weight. 6 plies of prepreg (IV) are piled up, 1 ply of prepreg (II) is placed on each side of the prepreg (IV), and the thickness is 18μ
m of copper foil was placed on the copper foil, and the laminate was heated and pressed to obtain a composite-type copper-clad laminate having a thickness of 1.6 mm.

【0015】[0015]

【表2】 [Table 2]

【0016】従来例1〜3 実施例1で使用したワニス(C)と、ダイマー酸変性エ
ポキシ樹脂或はプロピレンオキサイド付加ビスフェノー
ルA型エポキシ樹脂とを、表3に示す配合量(樹脂固型
分重量)で配合し、ワニス(F)を調製した。単位重量
205g/m2のガラス繊維織布に、ワニス(F)を含
浸乾燥して、樹脂付着量40重量%のプリプレグ(V)
を得た。実施例1で使用したワニス(A)を、単位重量
50g/m2のガラス繊維不織布に含浸乾燥して、充填
剤を含む樹脂付着量84重量%のプリプレグ(VI)を得
た。プリプレグ(VI)を6プライ重ね、その両側にプリ
プレグ(V)を1プライずつ配置し、さらに両側に厚さ
18μmの銅箔を載置して、加熱加圧積層成形により、
厚さ1.6mmのコンポジット銅張り積層板を得た。
Conventional Examples 1 to 3 The varnish (C) used in Example 1 and a dimer acid-modified epoxy resin or a propylene oxide-added bisphenol A type epoxy resin were blended in amounts shown in Table 3 (resin solid content weight). ) To prepare a varnish (F). A prepreg (V) having a unit weight of 205 g / m 2 impregnated with a varnish (F) and dried to give a resin adhesion amount of 40% by weight.
Got The varnish (A) used in Example 1 was impregnated into a glass fiber nonwoven fabric having a unit weight of 50 g / m 2 and dried to obtain a prepreg (VI) containing a filler and having a resin adhesion amount of 84% by weight. 6 plies of prepreg (VI) are stacked, 1 ply of prepreg (V) is placed on each side of the prepreg (VI), and a copper foil having a thickness of 18 μm is placed on each side of the prepreg (VI).
A 1.6 mm thick composite copper clad laminate was obtained.

【0017】[0017]

【表3】 [Table 3]

【0018】上記実施例、比較例、従来例の各積層板の
特性を表4に示す。表中、加熱後の反りは、試験片(サ
イズ:340×255mm,n=12)に500gの荷重
をかけてこれを260℃半田浴に10秒間浮かべた後に
測定した平均値である。半田耐熱性は、試験片を300
℃半田浴に浮かべ表面にふくれが発生するまでの時間を
測定した。銅箔ピール強度は、JIS法により測定し
た。絶縁抵抗は、プレッシャークッカー処理(121
℃,2気圧,6hr)後に測定した。
Table 4 shows the characteristics of the laminates of the above-mentioned examples, comparative examples and conventional examples. In the table, the warpage after heating is an average value measured after applying a load of 500 g to a test piece (size: 340 × 255 mm, n = 12) and floating it in a solder bath at 260 ° C. for 10 seconds. Solder heat resistance is 300
The time until the blistering on the floating surface in the solder bath was measured. The copper foil peel strength was measured by the JIS method. Insulation resistance is measured by pressure cooker treatment (121
The measurement was carried out after 2 hours at 6 ° C).

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】上述したように、本発明に係るコンポジ
ット積層板は、加熱後の反り抑制と併せて、耐熱性、金
属箔引き剥がし強さおよび耐湿絶縁性を確保することが
できた。高温加熱工程対応のプリント配線板の基板とし
て適しており、耐湿絶縁性の確保により、狭ピッチのス
ルーホールを設けることが可能となり、従来より高密度
のプリント配線板を製造することができる。
As described above, the composite laminate according to the present invention is able to secure the heat resistance, the peeling strength of the metal foil and the moisture-proof insulation together with the suppression of the warp after heating. It is suitable as a substrate for a printed wiring board compatible with high-temperature heating processes. By ensuring moisture-proof insulation, it is possible to provide through holes with a narrow pitch, and it is possible to manufacture a printed wiring board with a higher density than before.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/03 J 7011−4E // B29K 63:00 105:06 Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H05K 1/03 J 7011-4E // B29K 63:00 105: 06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面層のシート状基材がガラス繊維織布、
芯層のシート状基材がガラス繊維不織布であり、これら
に熱硬化性樹脂が含浸され加熱加圧成形により一体化さ
れているコンポジット積層板において、ガラス繊維不織
布に含浸されている熱硬化性樹脂がダイマー酸変性エポ
キシ樹脂を含み、ダイマー酸変性エポキシ樹脂の配合量
が、固型重量比で、前記熱硬化性樹脂100部に対して
50部以下であることを特徴とするコンポジット積層
板。
1. A sheet-like base material for a surface layer is woven glass fiber cloth,
In a composite laminate in which the sheet-like base material of the core layer is a glass fiber non-woven fabric and these are impregnated with a thermosetting resin and integrated by heat and pressure molding, the thermosetting resin impregnated in the glass fiber non-woven fabric Contains a dimer acid-modified epoxy resin, and the compounding amount of the dimer acid-modified epoxy resin is 50 parts or less based on 100 parts by weight of the thermosetting resin in a solid weight ratio.
【請求項2】ダイマー酸変性エポキシ樹脂がノボラック
型フェノール樹脂と反応させたものであり、その配合量
が、固型重量比で、熱硬化性樹脂100部に対して60
部以下であることを特徴とする請求項1記載のコンポジ
ット積層板。
2. A dimer acid-modified epoxy resin is made to react with a novolac type phenol resin, and the compounding amount thereof is 60 relative to 100 parts of thermosetting resin in a solid weight ratio.
The composite laminate according to claim 1, wherein the composite laminate is less than or equal to 1 part.
【請求項3】表面層のシート状基材がガラス繊維織布、
芯層のシート状基材がガラス繊維不織布であり、これら
に熱硬化性樹脂が含浸され加熱加圧成形により一体化さ
れているコンポジット積層板において、ガラス繊維不織
布に含浸されている熱硬化性樹脂がプロピレンオキサイ
ド付加ビスフェノールA型エポキシ樹脂を含み、プロピ
レンオキサイド付加ビスフェノールA型エポキシ樹脂の
配合量が、固型重量比で、前記熱硬化性樹脂100部に
対して40部以下であることを特徴とするコンポジット
積層板。
3. A sheet-like substrate for the surface layer is a glass fiber woven fabric,
In a composite laminate in which the sheet-like base material of the core layer is a glass fiber non-woven fabric and these are impregnated with a thermosetting resin and integrated by heat and pressure molding, the thermosetting resin impregnated into the glass fiber non-woven fabric Includes a propylene oxide-added bisphenol A type epoxy resin, and the blending amount of the propylene oxide-added bisphenol A type epoxy resin is 40 parts or less based on 100 parts by weight of the thermosetting resin in a solid weight ratio. Composite laminated board.
JP4253314A 1992-09-24 1992-09-24 Composite laminate Expired - Lifetime JP2720726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253314A JP2720726B2 (en) 1992-09-24 1992-09-24 Composite laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253314A JP2720726B2 (en) 1992-09-24 1992-09-24 Composite laminate

Publications (2)

Publication Number Publication Date
JPH06100708A true JPH06100708A (en) 1994-04-12
JP2720726B2 JP2720726B2 (en) 1998-03-04

Family

ID=17249578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253314A Expired - Lifetime JP2720726B2 (en) 1992-09-24 1992-09-24 Composite laminate

Country Status (1)

Country Link
JP (1) JP2720726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264158A (en) * 2001-03-14 2002-09-18 Sumitomo Bakelite Co Ltd Method for producing laminated plate
US6839187B2 (en) 2002-12-11 2005-01-04 Pentax Corporation Lens distance-varying mechanism, and step-zoom lens incorporating the same
US6906871B2 (en) 2002-12-11 2005-06-14 Pentax Corporation Cam mechanism for lens barrel
US6940658B2 (en) 2002-12-11 2005-09-06 Pentax Corporation Step-zoom lens
CN114057395A (en) * 2021-12-13 2022-02-18 苏州市华研富士新材料有限公司 High-strength high-temperature-resistant glass fiber composite board and production process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225132A (en) * 1985-07-24 1987-02-03 Shin Kobe Electric Mach Co Ltd Production of laminated sheet
JPS63270747A (en) * 1987-04-30 1988-11-08 Shin Kobe Electric Mach Co Ltd Production of laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225132A (en) * 1985-07-24 1987-02-03 Shin Kobe Electric Mach Co Ltd Production of laminated sheet
JPS63270747A (en) * 1987-04-30 1988-11-08 Shin Kobe Electric Mach Co Ltd Production of laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264158A (en) * 2001-03-14 2002-09-18 Sumitomo Bakelite Co Ltd Method for producing laminated plate
US6839187B2 (en) 2002-12-11 2005-01-04 Pentax Corporation Lens distance-varying mechanism, and step-zoom lens incorporating the same
US6906871B2 (en) 2002-12-11 2005-06-14 Pentax Corporation Cam mechanism for lens barrel
US6940658B2 (en) 2002-12-11 2005-09-06 Pentax Corporation Step-zoom lens
CN114057395A (en) * 2021-12-13 2022-02-18 苏州市华研富士新材料有限公司 High-strength high-temperature-resistant glass fiber composite board and production process thereof
CN114057395B (en) * 2021-12-13 2023-09-12 苏州市华研富士新材料有限公司 High-strength high-temperature-resistant glass fiber composite board and production process thereof

Also Published As

Publication number Publication date
JP2720726B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
KR101014517B1 (en) Manufacturing process for a prepreg with a carrier, prepreg with a carrier, manufacturing process for a thin double-sided plate, thin double-sided plate and manufacturing process for a multilayer-printed circuit board
JP2013239701A (en) Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same
JP2002347172A (en) Method for producing laminated sheet
JP2692508B2 (en) Manufacturing method of laminated board
JP2720726B2 (en) Composite laminate
KR20210062632A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal clad laminate, and printed wiring board
JP3067512B2 (en) Production method of metal foil-clad laminate and metal foil used for the production
JP3125582B2 (en) Manufacturing method of metal foil-clad laminate
JPH08157621A (en) Prepreg, printed board using the same and cover lay film
JP2003318499A (en) Prepreg for inner layer circuit, metal-foiled laminate for inner layer circuit, and multilayer printed circuit board
JP3033335B2 (en) Manufacturing method of laminated board
JP3906547B2 (en) Copper-clad laminate, multilayer laminate
JP3077491B2 (en) Manufacturing method of metal-foil-clad laminate and metal foil used therefor
JP2675810B2 (en) Manufacturing method of electric laminate
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP2000336242A (en) Epoxy resin composition, prepreg, metal foil coated with resin, and laminate
JP3409245B2 (en) Epoxy resin composition for copper clad laminate, copper clad laminate, multilayer laminate
JP2633286B2 (en) Manufacturing method of electric laminate
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JP2642714B2 (en) Manufacturing method of paper base epoxy resin laminate
JPH0423654B2 (en)
JPH0748586B2 (en) Method for manufacturing multilayer printed wiring board
JPH05286074A (en) Copper-clad laminate
JP2002053681A (en) Prepreg and laminated sheet using the same
JPH06270337A (en) Highly heat-resistant prepreg