JPH0583866B2 - - Google Patents

Info

Publication number
JPH0583866B2
JPH0583866B2 JP7919985A JP7919985A JPH0583866B2 JP H0583866 B2 JPH0583866 B2 JP H0583866B2 JP 7919985 A JP7919985 A JP 7919985A JP 7919985 A JP7919985 A JP 7919985A JP H0583866 B2 JPH0583866 B2 JP H0583866B2
Authority
JP
Japan
Prior art keywords
gas
breakthrough
chlorine gas
detection agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7919985A
Other languages
Japanese (ja)
Other versions
JPS61239162A (en
Inventor
Mamoru Myamoto
Yoshio Nishimura
Masao Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP7919985A priority Critical patent/JPS61239162A/en
Publication of JPS61239162A publication Critical patent/JPS61239162A/en
Publication of JPH0583866B2 publication Critical patent/JPH0583866B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体吸着装置の塩素ガスによる破過
を検知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting breakthrough of a gas adsorption device by chlorine gas.

近年、半導体工業において、例えばアルミニウ
ムなどをドライエツチングする際、ドライエツチ
ングガスとして塩素ガスが単独で、あるいは他の
エツチングガスや不活性ガスと混合されてしばし
ば使用されている。そのドライエツチング廃ガス
を無毒化するのに活性炭の如き吸着剤を充填した
気体吸着装置が用いられている。このような装置
は、吸着剤が一定量の物質を吸着すると破過し、
気体排出口から塩素ガスが経時的に濃度を増加さ
せながら流出し、大気汚染などの問題を引き起す
ことになる。このため吸着剤の破過を的確に検知
することが必要である。
In recent years, in the semiconductor industry, when dry etching materials such as aluminum, chlorine gas is often used as a dry etching gas, either alone or mixed with other etching gases or inert gases. A gas adsorption device filled with an adsorbent such as activated carbon is used to detoxify the dry etching waste gas. Such devices break through when the adsorbent adsorbs a certain amount of substance;
Chlorine gas flows out from the gas outlet with increasing concentration over time, causing problems such as air pollution. Therefore, it is necessary to accurately detect the breakthrough of the adsorbent.

本発明によれば、気体吸着装置から極微量の塩
素ガスが流出する時点で破過検知剤の呈色により
吸着剤の破過を検知することができ、しかも検知
剤の退色がないため、吸着剤の交換を正確に行う
ことができる。
According to the present invention, breakthrough of the adsorbent can be detected by the coloration of the breakthrough detection agent at the time when a trace amount of chlorine gas flows out from the gas adsorption device, and since the detection agent does not discolor, the adsorption The agent can be replaced accurately.

[従来の技術] 従来、塩素ガスを検知する方法として、(1)検知
管法や(2)ヨウ化カリウムを担体に担持させた担持
物の呈色を利用する方法などが知られている。
[Prior Art] Conventionally, known methods for detecting chlorine gas include (1) a detection tube method and (2) a method that utilizes the coloration of a carrier in which potassium iodide is supported on a carrier.

[発明が解決しようとする問題点] しかしながらドライエツチング廃ガス吸着装置
の破過を検知するために前述した(1)の方法を採用
した場合は、しばしば吸着装置から排出される廃
ガスをサンプリングし塩素ガスの有無を確認しな
ければならないという煩雑さがあり、また(2)の方
法の場合は、高濃度の塩素ガス、あるいは多量の
空気、窒素ガスなどを吸着装置に流通させた場
合、吸着装置の破過により一度呈色した担持物
(検知剤)が経時的に退色(白色)し、破過する
前の色相に戻るため、吸着剤の破過を見落すこと
があり、吸着装置に充填された吸着剤の破過を正
確に検知するためには検知剤の色相をしばしば観
測しなければならないといつた問題点を有してい
た。
[Problems to be Solved by the Invention] However, when the above-mentioned method (1) is adopted to detect a breakthrough in a dry etching waste gas adsorption device, it is often necessary to sample the waste gas discharged from the adsorption device. There is the complication of having to check for the presence of chlorine gas, and in the case of method (2), if highly concentrated chlorine gas or a large amount of air or nitrogen gas is passed through the adsorption device, the adsorption The carrier material (sensing agent), which once changed color due to the breakthrough of the device, fades (white) over time and returns to the color before the breakthrough, so the breakthrough of the adsorbent may be overlooked and the adsorption device In order to accurately detect the breakthrough of the filled adsorbent, the color of the detecting agent must be frequently observed.

[問題を解決するための手段] 本発明者らは、前記問題点を解決するために鋭
意検討を行つた結果、担体にヨウ化カリウムを担
持させた担持物をコーテイングして得られるもの
が極微量の塩素ガスに対しても鋭敏に呈色し、し
かも一度呈色すると容易に退色しないため、塩素
ガスに対する破過検知剤として極めてすぐれてい
ることを知見し、本発明に到つた。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a product obtained by coating a support in which potassium iodide is supported on a support is extremely It has been found that it is extremely excellent as a breakthrough detection agent for chlorine gas because it is sensitive to even a trace amount of chlorine gas and does not easily fade once it has developed a color, leading to the present invention.

本発明は、担体にヨウ化カリウムを担持させた
担持物をアクリル樹脂またはセルロース誘導体か
らなるコーテイング剤により担持物100重量部に
対して前記コーテイング剤が0.1〜20重量部にな
るようにコーテイングして得られる破過検知剤
を、吸着剤が充填された気体吸着装置の気体排出
口近傍に充填し、該検知剤の呈色により破過を検
知することを特徴とする気体吸着装置の塩素ガス
による破過を検知する方法に関する。
In the present invention, a supported material in which potassium iodide is supported on a carrier is coated with a coating agent made of an acrylic resin or a cellulose derivative such that the amount of the coating agent is 0.1 to 20 parts by weight based on 100 parts by weight of the supported material. The breakthrough detection agent obtained is filled in the vicinity of the gas outlet of a gas adsorption device filled with an adsorbent, and the breakthrough is detected by coloration of the detection agent. Relating to a method for detecting breakthrough.

本発明で使用する担体としては、担体の色相が
白色ないしは透明のものが色相の変化がはつきり
区別でき、破過の確認が容易であるので好まし
い。好適な担体としては、例えばα−アルミナ、
シリカ、シリカアルミナなどを挙げることができ
る。担体の形状は球状、粒状、破砕粒、成型体な
どいずれも使用することができる。
As the carrier used in the present invention, it is preferable that the carrier has a white or transparent hue because the change in hue is clearly distinguishable, and breakthrough can be easily confirmed. Suitable carriers include, for example, α-alumina,
Examples include silica and silica alumina. The shape of the carrier may be spherical, granular, crushed, molded, or the like.

担体にヨウ化カリウムを担持させる方法は、公
知の方法、例えばヨウ化カリウム水溶液と担体と
を接触させて担持した後、空気雰囲気下、乾燥さ
せるという方法を採用することができる。
As a method for supporting potassium iodide on the carrier, a known method can be adopted, for example, a method of bringing an aqueous potassium iodide solution into contact with the carrier to support the carrier, and then drying the solution in an air atmosphere.

ヨウ化カリウムを担持させた担持物をコーテイ
ングする方法としては、スプレー噴霧法、浸漬法
などを挙げることができる。前記方法に使用する
コーテイング剤としては、特に限定されないが、
塩素、ヨウ素、塩化水素、ヨウ化水素、三塩化ホ
ウ素などのハロゲン化合物に安定で、しかも呈色
を妨げないものであればよく、特にポリメタクリ
ル酸エステル、ポリアクリル酸エステルなどのア
クリル樹脂、トリアセチルセルロース、エチルセ
ルロースなどのセルロース誘導体などが好適であ
る。コーテイングされた担体は、室温〜200℃で
空気雰囲気下、乾燥し、塩素ガス破過検知剤とし
て使用される。コーテイング量は、ヨウ化カリウ
ムを担持させた担持物100重量部に対して前記コ
ーテイング剤が0.1〜20重量部、好ましくは1〜
15重量部になるようにコーテイングさせるのがよ
い。
Examples of the method for coating the supported material on which potassium iodide is supported include a spraying method, a dipping method, and the like. The coating agent used in the method is not particularly limited, but may include:
Any material is acceptable as long as it is stable against halogen compounds such as chlorine, iodine, hydrogen chloride, hydrogen iodide, and boron trichloride, and does not interfere with color development. Cellulose derivatives such as acetylcellulose and ethylcellulose are suitable. The coated carrier is dried in an air atmosphere at room temperature to 200°C and used as a chlorine gas breakthrough detection agent. The coating amount is 0.1 to 20 parts by weight, preferably 1 to 20 parts by weight of the coating agent per 100 parts by weight of the potassium iodide supported material.
It is preferable to coat it in an amount of 15 parts by weight.

本発明で使用する気体吸着装置は、気体導入口
と気体排出口とを有する容器に吸着剤を充填した
ものであればよい。また該装置の吸着剤として
は、特に制限はなく、例えば活性炭、活性アルミ
ナ、シリカゲル、二酸化チタン、ベントナイト、
酸性白土、ケイソウ土、炭酸カルシウムなどを好
適に挙げることができる。
The gas adsorption device used in the present invention may be one in which a container having a gas inlet and a gas outlet is filled with an adsorbent. There are no particular restrictions on the adsorbent used in the device, such as activated carbon, activated alumina, silica gel, titanium dioxide, bentonite, etc.
Preferred examples include acid clay, diatomaceous earth, and calcium carbonate.

本発明の気体吸着装置から塩素ガスの破過を検
知する方法は、例えば第1図に示したように気体
導入口1および気体排出口2を有する容器3に吸
着剤4を充填した気体吸着装置の気体排出口近傍
に、塩素ガス破過検知剤5を充填した内部が透視
できる容器からなる塩素ガス破過検知部6を設置
し、塩素ガス破過検知剤の塩素ガスによる呈色
(白色から黄褐色に呈色)を確認することにより
実施することができる。
A method for detecting breakthrough of chlorine gas from a gas adsorption apparatus of the present invention is, for example, as shown in FIG. A chlorine gas breakthrough detection unit 6 consisting of a container filled with a chlorine gas breakthrough detection agent 5 whose interior can be seen through is installed near the gas outlet of the chlorine gas breakthrough detection agent 5. This can be done by checking the coloration (yellow-brown coloration).

本発明で使用する塩素ガス破過検知剤は、塩化
水素ガス、三塩化ホウ素ガスなどの共存ガスによ
つて何ら呈色を妨げられたり、影響されたりする
ことはなく、塩素ガス検知感度は0.1ppmである。
The chlorine gas breakthrough detection agent used in the present invention is not hindered or affected by coexisting gases such as hydrogen chloride gas and boron trichloride gas, and has a chlorine gas detection sensitivity of 0.1. It is ppm.

[実施例] 以下に、実施例および比較例を示し、さらに詳
しく本発明について説明する。
[Example] Below, the present invention will be explained in more detail by showing Examples and Comparative Examples.

実施例 1 ヨウ化カリウム30gを水36gに溶解して、これ
に360gのα−アルミナ相体(平均粒子径5mm、
不二見研磨剤(株)製、商品名:AM−S34)を添加
してヨウ化カリウムを担体に担持後、空気雰囲気
下、120℃の温度で、20時間乾燥した。
Example 1 30 g of potassium iodide was dissolved in 36 g of water, and 360 g of α-alumina phase (average particle size 5 mm,
After adding potassium iodide (manufactured by Fujimi Abrasive Co., Ltd., trade name: AM-S34) to the carrier, it was dried at a temperature of 120° C. in an air atmosphere for 20 hours.

前記担体をポリメタクリル酸エステル樹脂10重
量%水溶液を使用し、スプレー噴霧法にてコーテ
イングし、空気雰囲気下50℃の温度で、20時間乾
燥し、塩素ガス破過検知剤を調製した。コーテイ
ング量は、ヨウ化カリウム担持の担体に対して、
2重量%であつた。
The carrier was coated with a 10% by weight aqueous solution of polymethacrylic acid ester resin by a spray method, and dried in an air atmosphere at a temperature of 50° C. for 20 hours to prepare a chlorine gas breakthrough detection agent. The coating amount is based on the potassium iodide supported carrier.
It was 2% by weight.

実施例 2 内部に1mm径の分散板を有する直径50mm、長さ
255mmのバイレツクスガラス製気体吸着装置に吸
着剤(粒状活性炭:約3mm径×約4mm長)を50ml
充填し、該気体吸着装置の気体排出口近傍に実施
例1で調製した検知剤をパイレツクスガラス製の
容器に充填した塩素ガス破過検知部を設置した。
Example 2 Diameter 50mm, length with 1mm diameter dispersion plate inside
Add 50 ml of adsorbent (granular activated carbon: approx. 3 mm diameter x approx. 4 mm length) to a 255 mm Virex glass gas adsorption device.
A chlorine gas breakthrough detection unit was installed in the vicinity of the gas outlet of the gas adsorption device, in which the detection agent prepared in Example 1 was filled in a Pyrex glass container.

前記気体吸着装置に塩素ガス32vol%、窒素ガ
ス68vol%のガス組成からなるモデル廃ガスを740
ml/分の供給速度で流通した。
A model waste gas with a gas composition of 32 vol% chlorine gas and 68 vol% nitrogen gas was added to the gas adsorption device.
Flowed at a feed rate of ml/min.

気体排出口近傍の排出ガスを随時サンプリング
し、ガス組成を検知管法により定量しつつ、塩素
ガス破過検知剤の色相の変化を観測した。
Exhaust gas near the gas outlet was sampled at any time, and the gas composition was quantified using the detection tube method, while changes in the hue of the chlorine gas breakthrough detection agent were observed.

流通をはじめてから140分経過後に排出ガス中
に塩化水素ガス(塩素ガスが吸着剤層に含まれる
水と反応して発生するものと考えられる。)を
17ppm検出したが、塩素ガス破過検知剤の色相
(白色)の変化はみられなかつた。
Hydrogen chloride gas (probably generated when chlorine gas reacts with water contained in the adsorbent layer) is detected in the exhaust gas 140 minutes after the start of distribution.
Although 17ppm was detected, no change in the hue (white) of the chlorine gas breakthrough detection agent was observed.

270分経過後に排出ガス中に塩素ガスを、2ppm
検出した。この時点で、塩素ガス破過検知剤は該
検知部の入口側から黄褐色に変化しはじめ、284
分経過後には完全に褐色に変化した。
After 270 minutes, 2ppm of chlorine gas is added to the exhaust gas.
Detected. At this point, the chlorine gas breakthrough detection agent begins to turn yellow-brown from the inlet side of the detection section, and 284
After a few minutes, it completely turned brown.

さらに流通を続けたが、480分経過後において
も色相の変化はなく、退色現象は全く観測されな
かつた。
Although the distribution continued, there was no change in hue even after 480 minutes, and no fading phenomenon was observed.

比較例 1 アクリル樹脂のコーテイング処理を施さなかつ
た以外は、実施例1と同様な方法により塩素ガス
破過検知剤を調製した。
Comparative Example 1 A chlorine gas breakthrough detection agent was prepared in the same manner as in Example 1, except that the acrylic resin coating treatment was not performed.

該検知剤を使用し、実施例2と同様な方法によ
りモデル廃ガスを流通し、検知剤の色相の変化を
観測した。
Using the detection agent, a model waste gas was passed through in the same manner as in Example 2, and changes in the hue of the detection agent were observed.

流通をはじめてから142分経過後に塩素水素ガ
ス10ppmを検出したが、塩素ガス破過検知剤の色
相の変化はなかつた。
Although 10 ppm of chlorine hydrogen gas was detected 142 minutes after the start of distribution, there was no change in the hue of the chlorine gas breakthrough detection agent.

278分経過後に排出ガス中に、塩素ガスを4ppm
検出した。この時点で、塩素ガス破過検知剤は該
検知部の入口側から黄褐色に変化しはじめ、290
分経過後には完全に褐色に変化した。
After 278 minutes, 4ppm of chlorine gas is added to the exhaust gas.
Detected. At this point, the chlorine gas breakthrough detection agent begins to turn yellowish brown from the inlet side of the detection section, and
After a few minutes, it completely turned brown.

さらに流通を続けると、330分経過後頃から検
知剤の色相が次第に退色しはじめ、480分経過後
には薄黄色になるまで退色し、600分経過後には、
ほぼ白色となつた。
As distribution continues, the color of the detection agent gradually begins to fade after 330 minutes, fades to pale yellow after 480 minutes, and after 600 minutes, the color of the detection agent gradually fades.
It turned almost white.

実施例 3 実施例1で調整した検知剤をパイレツクスガラ
ス製容器に充填し、塩化水素ガス5000ppm、三塩
化ホウ素1000ppm含有窒素ガス雰囲気に1ケ月間
曝露したが、検知剤の色相の変化はみられなかつ
た。次に、塩素ガス130ppm含有窒素ガスを流通
したところ、検知剤の色相はすぐに白色から黄褐
色に鮮やかに変色した。
Example 3 The detection agent prepared in Example 1 was filled into a Pyrex glass container and exposed to a nitrogen gas atmosphere containing 5000 ppm of hydrogen chloride gas and 1000 ppm of boron trichloride for one month, but no change in the hue of the detection agent was observed. I couldn't help it. Next, when nitrogen gas containing 130 ppm of chlorine gas was passed through it, the color of the detection agent immediately changed from white to bright yellowish brown.

[発明の効果] 本発明の方法で使用する塩素ガス破過検知剤
は、ドライエツチングガスとして塩素ガスを使用
した場合の廃ガスを無毒化する気体吸着装置から
極微量の塩素ガスが流出する時点で直ちに黄褐色
に呈色し、しかも退色現象がみられないため、該
装置の排出口近傍に検知剤層を設置することによ
り、該装置から塩素ガスの破過を正確に検知する
ことができる。また該検知剤は、塩化水素、三塩
化ホウ素などの共存ガスによつて何ら呈色を妨げ
られたり、影響されたりすることがない。このた
め該気体吸着装置の吸着剤の交換時期を正確に、
かつ容易に検知することができるという特長を有
する。
[Effect of the invention] The chlorine gas breakthrough detection agent used in the method of the present invention detects the point at which a trace amount of chlorine gas flows out from the gas adsorption device that detoxifies waste gas when chlorine gas is used as a dry etching gas. Since the color changes to yellowish brown immediately and no fading phenomenon is observed, by installing a detection agent layer near the outlet of the device, it is possible to accurately detect the breakthrough of chlorine gas from the device. . Furthermore, the coloring of the detection agent is not hindered or affected by coexisting gases such as hydrogen chloride and boron trichloride. Therefore, it is possible to accurately determine when to replace the adsorbent in the gas adsorption device.
It also has the advantage of being easily detectable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、塩素ガスを用いるドライエツチング
廃ガスの気体吸着装置および塩素ガス破過検知部
の例を示した図である。 1:気体導入口、2:気体排出口、3:容器、
4:吸着剤、5:塩素ガス破過検知剤、6:塩素
ガス破過検知部。
FIG. 1 is a diagram showing an example of a gas adsorption device for dry etching waste gas using chlorine gas and a chlorine gas breakthrough detection section. 1: gas inlet, 2: gas outlet, 3: container,
4: Adsorbent, 5: Chlorine gas breakthrough detection agent, 6: Chlorine gas breakthrough detection section.

Claims (1)

【特許請求の範囲】[Claims] 1 担体にヨウ化カリウムを担持させた担持物を
アクリル樹脂またはセルロース誘導体からなるコ
ーテイング剤により担持物100重量部に対して前
記コーテイング剤が0.1〜20重量部になるように
コーテイングして得られる破過検知剤を、吸着剤
が充填された気体吸着装置の気体排出口近傍に充
填し、該検知剤の呈色により破過を検知すること
を特徴とする気体吸着装置の塩素ガスによる破過
を検知する方法。
1 A fracture obtained by coating a supported material in which potassium iodide is supported on a carrier with a coating agent made of an acrylic resin or a cellulose derivative so that the amount of the coating agent is 0.1 to 20 parts by weight per 100 parts by weight of the supported material. A method for detecting breakthrough caused by chlorine gas in a gas adsorption device, characterized in that an overdetection agent is filled near the gas outlet of a gas adsorption device filled with an adsorbent, and breakthrough is detected by coloration of the detection agent. How to detect.
JP7919985A 1985-04-16 1985-04-16 Method for detecting break through of gas adsorbing device by gaseous chlorine Granted JPS61239162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7919985A JPS61239162A (en) 1985-04-16 1985-04-16 Method for detecting break through of gas adsorbing device by gaseous chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7919985A JPS61239162A (en) 1985-04-16 1985-04-16 Method for detecting break through of gas adsorbing device by gaseous chlorine

Publications (2)

Publication Number Publication Date
JPS61239162A JPS61239162A (en) 1986-10-24
JPH0583866B2 true JPH0583866B2 (en) 1993-11-29

Family

ID=13683292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7919985A Granted JPS61239162A (en) 1985-04-16 1985-04-16 Method for detecting break through of gas adsorbing device by gaseous chlorine

Country Status (1)

Country Link
JP (1) JPS61239162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073617A1 (en) * 2010-11-30 2012-06-07 日本インスツルメンツ株式会社 Heating/combustion tube for use in analysis of mercury, thermal decomposition apparatus, and mercury analysis apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614723C1 (en) * 1986-04-30 1987-10-01 Draegerwerk Ag Indicator for the detection of chlorine
JP2526178B2 (en) * 1991-01-18 1996-08-21 株式会社荏原総合研究所 Exhaust gas adsorption device
JP2823101B2 (en) * 1991-11-15 1998-11-11 宇部興産株式会社 Method for detecting breakthrough of chlorine gas in exhaust gas treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073617A1 (en) * 2010-11-30 2012-06-07 日本インスツルメンツ株式会社 Heating/combustion tube for use in analysis of mercury, thermal decomposition apparatus, and mercury analysis apparatus

Also Published As

Publication number Publication date
JPS61239162A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
JPH0583866B2 (en)
JP4212746B2 (en) Halogen compound detoxification tower and detection method
JPH0479576B2 (en)
JP3567058B2 (en) Detecting agent
JPS6227039A (en) Boron trichloride adsorption device
JP2823101B2 (en) Method for detecting breakthrough of chlorine gas in exhaust gas treatment equipment
JP2001324492A (en) Detection agent of fluorine compound gas, and detection method using the same
JP2815080B2 (en) Method for detecting breakthrough of chlorine gas in exhaust gas treatment equipment
JPH0479578B2 (en)
WO1999058960A1 (en) High-sensitivity luminescence quenching oxygen sensitive material
JP2596816B2 (en) Detecting agent
JP2596815B2 (en) Detecting agent
KR100473178B1 (en) Detection agent
JP2665528B2 (en) Detecting agent
JPS6221061A (en) Detecting agent
JP2596804B2 (en) Detecting agent
JP2665529B2 (en) Detecting agent
US3412038A (en) Determination of carbon disulfide
JP4747046B2 (en) Germanium detection agent
JP3545881B2 (en) Detecting agent
JP3889083B2 (en) Detection agent
JP3895604B2 (en) Germanium detection agent and detection method
Pitschmann et al. Detector tube for the determination of chlorine in air
JPH0664041B2 (en) Boron trichloride detection agent and breakthrough detection method for boron trichloride adsorption device
JPH0617900B2 (en) Selective detection agent