JPH0580106B2 - - Google Patents

Info

Publication number
JPH0580106B2
JPH0580106B2 JP59139707A JP13970784A JPH0580106B2 JP H0580106 B2 JPH0580106 B2 JP H0580106B2 JP 59139707 A JP59139707 A JP 59139707A JP 13970784 A JP13970784 A JP 13970784A JP H0580106 B2 JPH0580106 B2 JP H0580106B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
battery
storage alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59139707A
Other languages
Japanese (ja)
Other versions
JPS6119063A (en
Inventor
Sanehiro Furukawa
Shuzo Murakami
Takanao Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59139707A priority Critical patent/JPS6119063A/en
Publication of JPS6119063A publication Critical patent/JPS6119063A/en
Publication of JPH0580106B2 publication Critical patent/JPH0580106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は蓄電池の負極として用いられる水素吸
蔵電極に関し、特に高エネルギー密度で且つ長寿
命に改良された水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of a storage battery, and particularly to a hydrogen storage electrode that has been improved to have a high energy density and a long life.

(ロ) 従来技術 従来からよく用いられる蓄電池としては鉛電池
及びニツケル−カドミウム電池があるが、近年こ
れらの電池より軽量で且つ高容量となる可能性が
あるということで、特に低圧で水素を可逆的に吸
蔵・放出することのできる水素吸蔵合金を水素極
として用いたニツケル−水素電池などが注目され
ている。
(b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years, it has been discovered that these batteries have the potential to be lighter and have a higher capacity. Nickel-hydrogen batteries that use hydrogen storage alloys that can absorb and release hydrogen as hydrogen electrodes are attracting attention.

この水素を吸蔵及び放出することのできる水素
吸蔵合金を備えた負極は、特公昭49−25135号
公報にみられるように水素吸蔵合金粉末に固着剤
を加えてなるペーストを支持体に塗着、乾燥した
後焼結して得たもの、特開昭53−103541号公報
に見られるように水素吸蔵合金粉末及びアセチレ
ンブラツクを結着剤により支持体に固着して得た
ものなど従来より種々の提案がなされているが、
かかる電極に用いられる水素吸蔵合金は水素の吸
蔵及び放出により結晶格子の間隔が広がり合金粉
末の微粉化が起こるため、これらの合金を水素吸
蔵材として用いた場合には合金粉末の微粉化によ
る脱落が生じ、電池容量、機械的強度及び電導性
の低下が著しく、長期にわたつて電池性能を維持
することが困難であつた。
A negative electrode equipped with a hydrogen storage alloy that can store and release hydrogen is produced by applying a paste made by adding a binder to a hydrogen storage alloy powder onto a support, as shown in Japanese Patent Publication No. 49-25135. There have been a variety of conventional methods such as those obtained by drying and sintering, and those obtained by fixing hydrogen storage alloy powder and acetylene black to a support with a binder as seen in JP-A-53-103541. Although proposals have been made,
Hydrogen storage alloys used in such electrodes expand the spacing of the crystal lattice due to absorption and release of hydrogen, causing the alloy powder to become pulverized. Therefore, when these alloys are used as hydrogen storage materials, the alloy powder may fall off due to pulverization. This caused a significant decrease in battery capacity, mechanical strength, and conductivity, making it difficult to maintain battery performance over a long period of time.

(ハ) 発明が解決しようとする問題点 本発明が解決しようとする問題点は水素吸蔵電
極の充放電によつて生じる水素吸蔵合金の微粉化
による脱落に起因する電池容量、機会的強度及び
電導性の低下などの電地性能の劣化である。
(C) Problems to be Solved by the Invention The problems to be solved by the present invention are the battery capacity, mechanical strength, and electrical conductivity caused by the falling off of the hydrogen storage alloy due to pulverization caused by charging and discharging of the hydrogen storage electrode. This is a deterioration in electrical performance such as a decrease in electrical properties.

(ニ) 問題点を解決するための手段 本発明の水素吸蔵電極はかかる点に鑑み水素を
透過する金属の薄膜を表面に有する水素吸蔵合金
粉末を備えたものである。
(d) Means for Solving the Problems In view of this point, the hydrogen storage electrode of the present invention is provided with a hydrogen storage alloy powder having a hydrogen-permeable metal thin film on its surface.

(ホ) 作用 水素を透過することのできる金属の薄膜を有す
る水素吸蔵合金粉末は、充放電の際に表面の金属
薄膜を介して水素の吸蔵放出が行なえ、また該金
属薄膜によつて水素吸蔵合金自体が酸化物あるい
は水酸化物に変化することが防止されると共に水
素吸蔵合金の微粉化が抑制される。
(E) Effect A hydrogen storage alloy powder having a thin metal film that can permeate hydrogen can absorb and release hydrogen through the metal thin film on the surface during charging and discharging, and can absorb and release hydrogen through the metal thin film. The alloy itself is prevented from changing into an oxide or hydroxide, and the hydrogen storage alloy is suppressed from being pulverized.

(ヘ) 実施例 負極に水素吸蔵電極を用い、正極に金属酸化物
を用いる代表的な電池であるニツケル−水素電池
を作製し、かかる電池を用いて本発明の一実施例
を以下に示し説明する。
(f) Example A nickel-hydrogen battery, which is a typical battery using a hydrogen storage electrode as a negative electrode and a metal oxide as a positive electrode, was prepared, and an example of the present invention using such a battery will be shown and explained below. do.

水素吸蔵能力を有するLaNi5を機械的に粉砕し
て微粉化し、次いでこの粉末を真空下に於いて
Pdを蒸着し前記粉末表面にPdの薄膜を形成する。
このようにして得た微粉末に小さなせん断力で簡
単に繊維化し塑性変形するポリテトラフルオロエ
チレン粉末を、laNi5粉末の重量に対して1〜5
%添加して混合機で均一に混合すると同時にポリ
テトラフルオロエチレンを繊維化させ、これを分
取し1ton/cm2の圧力で加圧成型することにより直
径30mm、厚み2mmの水素吸蔵電極を得る。
LaNi 5 , which has hydrogen storage capacity, is mechanically crushed into a fine powder, and then this powder is placed under vacuum.
Pd is deposited to form a thin film of Pd on the surface of the powder.
Add polytetrafluoroethylene powder, which easily fiberizes and plastically deforms under small shearing force, to the fine powder obtained in this way, and add 1 to 5
% is added and mixed uniformly in a mixer, at the same time the polytetrafluoroethylene is made into fibers, separated and pressure molded at a pressure of 1 ton/cm 2 to obtain a hydrogen storage electrode with a diameter of 30 mm and a thickness of 2 mm. .

こうして得られた水素吸蔵電極を理論容量が
500mAHである公知のニツケル正極と組み合わ
せ電解液を注ぎ、電解液リツチな状態の本発明に
於ける水素吸蔵電極を備えたアルカリ蓄電池Aを
作製した。
The theoretical capacity of the hydrogen storage electrode obtained in this way is
An alkaline storage battery A equipped with a hydrogen storage electrode according to the present invention in an electrolyte-rich state was prepared by pouring an electrolyte in combination with a known 500 mAH nickel positive electrode.

また、表面に金属の薄膜を持たないlaNi5を水
素吸蔵合金粉末として用い、その他は前記電池A
と同様の比較電池Bを作製し、これらの電池A及
びBのサイクル特性を調べた。図面は電池A及び
Bのサイクル特性図であり、0.1c電流で15時間充
電した後、終止電圧1.0Vとして0.2c電流で放電す
るというサイクル条件で充放電を繰り返し行な
い、初期容量を100として表わしている。
In addition, laNi 5 , which does not have a metal thin film on the surface, was used as the hydrogen-absorbing alloy powder, and the rest was the same as the battery A described above.
A comparative battery B similar to the above was prepared, and the cycle characteristics of these batteries A and B were investigated. The drawing shows the cycle characteristics of batteries A and B. After charging at 0.1c current for 15 hours, charging and discharging were repeated under the cycle conditions of discharging at 0.2c current with a final voltage of 1.0V, and the initial capacity is expressed as 100. ing.

図面から明らかなように本発明の水素吸蔵電極
を備えた電池Aは比較電池Bに比しサイクル寿命
が向上していることがわかる。これは電池Bが充
放電に伴う水素吸蔵合金の水素の吸蔵及び放出に
よつて、水素吸蔵合金の結晶格子間隔がひろがり
微粉化が進み、これによつて合金の脱落が生じる
ため200サイクル経過時くらいから急激な容量が
低下が起こるのに対して、電池Aでは水素吸蔵合
金の表面がPdの薄膜によつて覆われ補強されて
いるので水素吸蔵合金の水素吸蔵による膨張、即
ち結晶格子の変形が抑制されて水素吸蔵合金の微
粉化及び微粉化による水素吸蔵合金の脱落が起こ
り難くなるため、電極の機械的強度が維持される
と共に導電性の低下が著しく抑制されてより長期
にわたつて電池容量が維持できたものと考えられ
る。
As is clear from the drawings, it can be seen that battery A equipped with the hydrogen storage electrode of the present invention has an improved cycle life compared to comparative battery B. This is because battery B absorbs and releases hydrogen in the hydrogen storage alloy as it charges and discharges, which expands the crystal lattice spacing of the hydrogen storage alloy and progresses to pulverization, which causes the alloy to fall off after 200 cycles. In contrast, in battery A, the surface of the hydrogen storage alloy is covered and reinforced by a thin Pd film, so the hydrogen storage alloy expands due to hydrogen absorption, that is, deformation of the crystal lattice. This suppresses the pulverization of the hydrogen storage alloy and makes it difficult for the hydrogen storage alloy to fall off due to pulverization, so the mechanical strength of the electrode is maintained and the decrease in conductivity is significantly suppressed, allowing the battery to last for a longer period of time. It is thought that the capacity was maintained.

更に放電時に電解液と接して酸化物あるいは水
酸化物に変化して水素吸蔵能力を失う水素吸蔵合
金、例えばCaNi5のように水素吸蔵能力を持たな
い水酸化カルシウムに変化してしまう水素吸蔵合
金を用いる場合に於いては、本発明のように表面
を水素を透過する金属の薄膜によつて保護すれば
水素吸蔵合金は電解液と直接接しないため、水素
吸蔵合金が酸化物あるいは水酸化物となつて水素
吸蔵能力を失うことによる容量減少が防止でき、
充放電時に起こる水素の吸蔵・放出が長期間にわ
たつて安定して行なわれることになる。
Furthermore, hydrogen storage alloys that change into oxides or hydroxides and lose their hydrogen storage capacity when they come into contact with the electrolyte during discharge, such as CaNi 5 , which change into calcium hydroxide that does not have hydrogen storage capacity. When using a hydrogen storage alloy, as in the present invention, if the surface is protected with a hydrogen-permeable metal thin film, the hydrogen storage alloy will not be in direct contact with the electrolyte. As a result, capacity reduction due to loss of hydrogen storage capacity can be prevented.
The storage and release of hydrogen that occurs during charging and discharging is performed stably over a long period of time.

尚、本実施例では水素吸蔵合金粉末表面に形成
する金属の薄膜としてPdを示したが、水素吸蔵
合金粉末が水素を吸蔵・放出しなければならない
ことから、前記金属としてはPdの他に水素を透
過するTi、Ni、V、Zr、Nb、Hf、Ta、Cuが適
している。また、水素吸蔵合金としてLaNi5を使
用したが、本発明は他の水素吸蔵合金全てに適用
されるものであり、水素吸蔵合金表面へ金属の薄
膜を形成する方法についても蒸着法に限定される
ものではなく、メツキなどによつても行なうこと
ができる。
In this example, Pd is shown as the metal thin film formed on the surface of the hydrogen storage alloy powder, but since the hydrogen storage alloy powder must absorb and release hydrogen, other metals such as Pd may be used as the metal. Suitable materials are Ti, Ni, V, Zr, Nb, Hf, Ta, and Cu, which transmit . Furthermore, although LaNi 5 was used as the hydrogen storage alloy, the present invention is applicable to all other hydrogen storage alloys, and the method for forming a thin metal film on the surface of the hydrogen storage alloy is also limited to the vapor deposition method. It can also be done not with objects, but with metals, etc.

(ト) 発明の効果 本発明の水素吸蔵電極は、水素を透過する金属
の薄膜を表面に配した水素吸蔵合金粉末を備えた
ものであるから、充放電に伴う水素の吸蔵・放出
による水素吸蔵合金の微粉化が抑制され、水素吸
蔵合金の脱落、電極の機械的強度の低下及び導電
性の低下が抑制され、より長期にわたつて高容量
を維持することが可能となる。
(G) Effects of the Invention Since the hydrogen storage electrode of the present invention is equipped with a hydrogen storage alloy powder on the surface of which a hydrogen permeable metal thin film is arranged, the hydrogen storage electrode of the present invention is capable of absorbing and releasing hydrogen during charging and discharging. The pulverization of the alloy is suppressed, the falling off of the hydrogen storage alloy, the decrease in the mechanical strength of the electrode, and the decrease in conductivity are suppressed, making it possible to maintain high capacity for a longer period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の水素吸蔵電極を用いた電池と比
較電池のサイクル特性図である。 A……本発明の水素吸蔵電極を用いた電池、B
……比較電池。
The drawing is a cycle characteristic diagram of a battery using the hydrogen storage electrode of the present invention and a comparative battery. A...Battery using the hydrogen storage electrode of the present invention, B
...Comparison battery.

Claims (1)

【特許請求の範囲】 1 水素を透過する金属の薄膜を表面に配した水
素吸蔵合金粉末を備えた水素吸蔵電極。 2 前記水素を透過する金属が、Ti、Ni、V、
Zr、Nb、Hf、Ta、Cu、Pdのうち少なくとも一
種からなる特許請求の範囲第1項記載の水素吸蔵
電極。
[Claims] 1. A hydrogen storage electrode comprising a hydrogen storage alloy powder with a hydrogen permeable metal thin film disposed on its surface. 2 The hydrogen permeable metal is Ti, Ni, V,
The hydrogen storage electrode according to claim 1, comprising at least one of Zr, Nb, Hf, Ta, Cu, and Pd.
JP59139707A 1984-07-05 1984-07-05 Hydrogen occlusion electrode Granted JPS6119063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139707A JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139707A JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Publications (2)

Publication Number Publication Date
JPS6119063A JPS6119063A (en) 1986-01-27
JPH0580106B2 true JPH0580106B2 (en) 1993-11-05

Family

ID=15251543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139707A Granted JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6119063A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164069A (en) * 1984-09-05 1986-04-02 Agency Of Ind Science & Technol Hydrogen-absorbing electrode and its manufacture
JPS61101957A (en) * 1984-10-24 1986-05-20 Agency Of Ind Science & Technol Hydrogen occluding electrode and its manufacturing method
JPS6222370A (en) * 1985-07-22 1987-01-30 Matsushita Electric Ind Co Ltd Nickel-hydrogen alkaline storage battery
JPH0815077B2 (en) * 1986-08-27 1996-02-14 松下電器産業株式会社 Sealed alkaline storage battery
JPS6486448A (en) * 1987-08-20 1989-03-31 Sanyo Electric Co Hydrogen absorption electrode
JP2575840B2 (en) * 1988-09-13 1997-01-29 株式会社東芝 Dry manufacturing method of hydrogen storage alloy electrode
EP1708297A3 (en) * 1996-12-27 2007-03-07 Canon Kabushiki Kaisha Powdery material, electrode member, method for manufacturing same and secondary cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881960A (en) * 1973-02-17 1975-05-06 Deutsche Automobilgesellsch Electrode for galvanic cells
JPS50111546A (en) * 1973-10-18 1975-09-02
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
JPS5532729A (en) * 1978-08-25 1980-03-07 Toppan Printing Co Ltd Hydrogen storing structure having electrode part
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS588841A (en) * 1981-07-07 1983-01-19 Nissan Motor Co Ltd Shock absorber
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS6110855A (en) * 1984-06-26 1986-01-18 Asahi Glass Co Ltd Electrode for cell and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881960A (en) * 1973-02-17 1975-05-06 Deutsche Automobilgesellsch Electrode for galvanic cells
JPS50111546A (en) * 1973-10-18 1975-09-02
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
JPS5532729A (en) * 1978-08-25 1980-03-07 Toppan Printing Co Ltd Hydrogen storing structure having electrode part
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS588841A (en) * 1981-07-07 1983-01-19 Nissan Motor Co Ltd Shock absorber
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS6110855A (en) * 1984-06-26 1986-01-18 Asahi Glass Co Ltd Electrode for cell and its manufacturing method

Also Published As

Publication number Publication date
JPS6119063A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0580106B2 (en)
JP3387381B2 (en) Alkaline storage battery
JP3478030B2 (en) Alkaline storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPS6119058A (en) Hydrogen occlusion electrode
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JP3454780B2 (en) Alkaline storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH05144433A (en) Electrode with hydrogen storage alloy
JP3268013B2 (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH05211063A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2679441B2 (en) Nickel-metal hydride battery
JPS6147076A (en) Metal-hydrogen alkaline storage battery
JPH09129227A (en) Nickel-hydrogen storage battery
JPH0586622B2 (en)
JPH0582025B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term