JPH0579956B2 - - Google Patents

Info

Publication number
JPH0579956B2
JPH0579956B2 JP60040091A JP4009185A JPH0579956B2 JP H0579956 B2 JPH0579956 B2 JP H0579956B2 JP 60040091 A JP60040091 A JP 60040091A JP 4009185 A JP4009185 A JP 4009185A JP H0579956 B2 JPH0579956 B2 JP H0579956B2
Authority
JP
Japan
Prior art keywords
light
pulse
circuit
terminal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60040091A
Other languages
Japanese (ja)
Other versions
JPS61198094A (en
Inventor
Kyoshi Tanigawa
Kyoshi Hasegawa
Rikya Kobashi
Tadanori Myauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Hokuyo Automatic Co Ltd
Original Assignee
Fuji Electric Co Ltd
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Hokuyo Automatic Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60040091A priority Critical patent/JPS61198094A/en
Publication of JPS61198094A publication Critical patent/JPS61198094A/en
Publication of JPH0579956B2 publication Critical patent/JPH0579956B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、パルス光を投射し、このパルス光に
同期した受信信号を取出して検出動作を行う光電
スイツチに関する。
The present invention relates to a photoelectric switch that projects pulsed light and performs a detection operation by extracting a received signal synchronized with the pulsed light.

【従来技術とその問題点】[Prior art and its problems]

光を利用して物体の検出を行う場合、パルス変
調形の光電スイツチを用い、投光パルスに同期し
た受光入力だけを取出し、その他の期間に入つた
受光入力を禁止すれば外部から入射する非連続的
な光に対しては誤動作を防止することができる。
しかしながら、光電スイツチの投光部とこの投光
部に対する受光部とは、光軸が互いに多少ずれて
も光学的結合に支障のないように投光部における
光の投射範囲が広くされているために、複数個の
光電スイツチを並置した場合には隣接する光電ス
イツチの影響を受けることがある。 例えば第5図に示すように2個の光電スイツチ
の投光部1a,1bを並置し、このそれぞれのほ
ぼ光軸上にそれぞれの受光部2a,2bを置いた
場合、受光部2aは投光部1aからの光が被検出
物体3によつて遮断されているにもかかわらず投
光部1bからの光を受けることになる。この場合
当然それぞれの投光部1a,1bからはそれぞれ
異なる周期のパルス光を投射するようにされてい
るが、パルス光の周期は似通つている場合が多
く、特に光電スイツチが多数の場合はこの傾向が
大きい。このため両投光部1a,1bのパルス光
のタイミングが全く重なることもあり、他の光電
スイツチの投射光の影響は従来のこのような同期
ゲート方式だけでは排除できないという欠点があ
る。 また、第6図に示すように2個の光電スイツチ
の両投光部1a,1bと両受光部2a,2bとを
交互に配置することも考えられているが、被検出
物体3の表面反射率が良好な場合、例えば投光部
1aの光は完全に遮断されて受光部2aには達し
ないが、投光部1bの光が被検出物体3から反射
して受光部2aがこれを受光してしまうという欠
点がある。 さらに光電スイツチを複数個並置した場合、こ
れらの投光部が同時に投光しないように投光タイ
ミングをずらして順次投光し、対応したタイミン
グの受光信号だけを選択通過させるようなゲート
回路を設けて相互に影響を避けようという考えも
ある。しかしながら、投光タイミングをずらして
順次投光するためにはそのための制御回路が必要
となり、かつ、この制御回路からそれぞれの投・
受光回路に同期信号を伝えるための電気的接続が
必要になるため構成が複雑化し、結線作業が煩雑
になるほか、それぞれの光電スイツチを単独に使
用できないという欠点がある。
When detecting objects using light, use a pulse modulation type photoelectric switch to extract only the light receiving input synchronized with the light emitting pulse, and prohibiting the light receiving input during other periods. Malfunctions can be prevented against continuous light.
However, the light projecting area of the photoelectric switch and the light receiving part for this light projecting part are designed so that the light projection range in the light projecting part is wide so that even if the optical axes of the light projecting part are slightly shifted from each other, there is no problem in optical coupling. In addition, when a plurality of photoelectric switches are arranged side by side, they may be affected by the neighboring photoelectric switches. For example, as shown in FIG. 5, when the light emitting parts 1a and 1b of two photoelectric switches are placed side by side and the respective light receiving parts 2a and 2b are placed approximately on the respective optical axes, the light receiving part 2a emits light. Even though the light from the portion 1a is blocked by the object to be detected 3, the light from the light projecting portion 1b is received. In this case, of course, each of the light projectors 1a and 1b projects pulsed light with a different period, but the periods of the pulsed light are often similar, especially when there are a large number of photoelectric switches. This trend is significant. For this reason, the timings of the pulsed lights from the two light projectors 1a and 1b may completely overlap, and there is a drawback that the influence of the projected light from other photoelectric switches cannot be eliminated by the conventional synchronization gate method alone. Furthermore, as shown in FIG. 6, it has been considered to alternately arrange both the light emitting parts 1a, 1b and both the light receiving parts 2a, 2b of the two photoelectric switches. When the rate is good, for example, the light from the light emitter 1a is completely blocked and does not reach the light receiver 2a, but the light from the light emitter 1b is reflected from the object to be detected 3 and is received by the light receiver 2a. There is a drawback that it does. Furthermore, when multiple photoelectric switches are arranged side by side, a gate circuit is provided that shifts the light emission timing and sequentially emits light so that these light emitters do not emit light at the same time, and selectively passes only the light reception signal at the corresponding timing. There is also the idea of avoiding mutual influence. However, in order to shift the light emission timing and emit light sequentially, a control circuit is required, and this control circuit can control each emission and
Electrical connections are required to transmit the synchronization signal to the photodetector circuit, which complicates the configuration and makes wiring work complicated.In addition, each photoelectric switch cannot be used independently.

【発明の目的】[Purpose of the invention]

本発明は多数の光電スイツチを並置した場合、
光軸調整を必要とせず、検出領域の確保に必要な
投・受光範囲を損なうことなく、他の光電スイツ
チからの投射光の影響を除去してこの投射光によ
る誤動作を防止し、かつ相互の電気的な接続を必
要としない光電スイツチを提供することを目的と
する。
In the present invention, when a large number of photoelectric switches are arranged side by side,
This eliminates the need for optical axis adjustment, eliminates the influence of projected light from other photoelectric switches, prevents malfunctions caused by this projected light, and prevents mutual interference without compromising the light emitting/receiving range necessary to secure the detection area. The purpose is to provide a photoelectric switch that does not require electrical connection.

【発明の要点】[Key points of the invention]

本発明は周期的にパルスを発生するパルス発生
回路と、該パルス発生回路のパルスに応じてパル
ス点灯する投光部と、該投光部の光を受けて受光
信号を発生する受光部と、前記受光部からの受光
信号を記憶する受光信号記憶回路と、前記受光信
号の連続回数を計数し、受光信号が非連続のとき
クリアされるカウンタ回路と、該カウンタ回路の
連続計数値が第1の所定値に達すると前記パルス
発生回路を制御して次のパルスの発生時刻を変え
るパルス制御回路と、前記カウンタ回路の連続計
数値が第2の所定値に達すると検出信号を送出す
る検出回路とを備えてなるもので、カウンタ回路
が受光信号を第1の所定値まで連続計数するとパ
ルス制御回路が次の投光パルスの発生時刻を変え
て(一般には早める)外部からの不必要な投光パ
ルスとのタイミングをずらし、カウンタが第2の
所定値まで計数したときはじめて検出回路から検
出信号を送出させて誤動作を防止しようという構
成できる。
The present invention includes a pulse generating circuit that periodically generates pulses, a light projecting section that lights up pulses in response to the pulses of the pulse generating circuit, and a light receiving section that receives light from the light projecting section and generates a light reception signal. a light-receiving signal storage circuit that stores the light-receiving signal from the light-receiving section; a counter circuit that counts the number of consecutive light-receiving signals and is cleared when the light-receiving signal is discontinuous; a pulse control circuit that controls the pulse generation circuit to change the generation time of the next pulse when a second predetermined value is reached; and a detection circuit that sends out a detection signal when the continuous count value of the counter circuit reaches a second predetermined value. When the counter circuit continuously counts the light reception signal up to a first predetermined value, the pulse control circuit changes (generally advances) the generation time of the next light emission pulse to prevent unnecessary light emission from the outside. A configuration can be constructed in which the timing with the optical pulse is shifted and the detection signal is sent out from the detection circuit only when the counter counts up to a second predetermined value, thereby preventing malfunction.

【発明の実施例】[Embodiments of the invention]

以下本発明の実施例を第1図ないし第4図に基
づいて詳細に説明する。第1図において、光電ス
イツチは、投光部1、受光部2、パルス発生回路
6、受光信号記憶回路8、カウンタ回路9、パル
ス制御回路10、検出回路11を備えている。 パルス発生回路6は発振器12、3個のT形フ
リツプフロツプ(以下フリツプフロツプをFFと
略称する)13,14,15からなり発振器12
の出力がFF13のT端子に接続され、FF13の
Q端子はFF14のT端子に、FF14の端子は
次のFF15のT端子にそれぞれ接続されて3個
のFF13,14,15は、発振器12のパルス
を順次1/2,1/4,1/8と逓降し、いわゆる分周器
として動作する。 パルス制御回路10はインバータ16、3個の
ANDゲート17,18,19、NANDゲート2
0からなり、3個のANDゲート17,18,1
9のそれぞれのa入力端子には発振器12の出力
端がインバータ16を介して接続され、それぞれ
のd端子にはFF15の端子が接続されている。
また、ANDゲート17とNANDゲート20のそ
れぞれのb入力端子にはFF13のQ端子が接続
され、2個のANDゲート18,19のそれぞれ
のb端子にはFF13の端子が接続されている。
2個のANDゲート17,18のそれぞれのc入
力端子とNANDゲート20のc入力端子にはFF
14の端子が接続され、NANDゲート20の
a入力端子にはFF15のQ端子が接続され、
NANDゲート20の出力端子は3個のFF13,
14,15のそれぞれのリセツト端子に接続され
ている。NANDゲート20の入力端子には後に
述べるカウンタ35の“4”カウント端子が接続
されている。 投光部1は電流制御抵抗21と発光ダイオード
22との直列回路でANDゲート17の出力端子
に接続されて、発光ダイオード22はこの出力パ
ルスでパルス発光する。 受光部2はホトトランジスタ23、コンデンサ
24、増幅器25、比較回路26からなり、ホト
トランジスタ23が受光したパルス光の交流分を
増幅器25で増幅し、この出力が動作レベルを超
えると完全な矩形波に整形された受光信号を発生
する。 受光信号記憶回路8は、ANDゲート27,FF
28からなり、ANDゲート27は、一方の入力
端子がANDゲート17の出力端子に接続され、
他方の入力端子は受光部2の出力端子に接続さ
れ、この出力端子はFF28のセツト端子Sに接
続され、FF28のリセツト端子RにはANDゲー
ト18の出力端子が接続されている。したがつて
FF28は、ANDゲート18の出力パルスでリセ
ツトされ、投光パルス期間に受光信号があると
ANDゲート27が開いてセツトされ、受光信号
が受光部から送出されたことを記憶する。 カウンタ回路9は、排他的論理回路(以下EX
−ORゲートと略称する)31、インバータ3
2、2個のANDゲート33,34、カウンタ3
5からなり、EX−ORゲート31は、一方の入
力端子がFF28のQ端子に、他方の入力端子が
後で説明する検出回路11の出力端子39がそれ
ぞれ接続され、出力端子がANDゲート33の一
方の入力端子と、インバータ32を介してAND
ゲート34の一方の入力端子に接続されている。
この2個のANDゲート33,34の他方の入力
端子はANDゲート19の出力端子に接続されて
いる。また、ANDゲート33の出力端子はカウ
ンタ35の入力端子Iに、ANDゲート34の出
力端子はカウンタ35のクリヤ端子Cにそれぞれ
接続されている。カウンタ35は、その入力端子
に4個のパルスが連続入力すると信号を送出する
“4”カウント端子と、パルスが連続7個入力す
ると信号を送出する“7”カウント端子とを有
し、“4”カウント端子は既に述べたNAND回路
20のd入力端子に、“7”カウント端子は次に
説明する検出回路11の2個のANDゲート36,
37の一方の入力端子に接続されている。 検出回路11は、2個のANDゲート36,3
7とFF38を備え、この両ANDゲート36,3
7の他方の入力端子にはFF28のQ,両端子
がそれぞれ接続され、それぞれの一方の入力端子
には既に述べたカウンタ35の“7”カウント端
子が共通に接続されている。そしてFF38のセ
ツト端子SにANDゲート36の出力端子がリセ
ツト端子RにANDゲート37の出力端子がそれ
ぞれ接続され、Q端子がこの光電スイツチの出力
端子39とされている。 次に第2図ないし第4図は第1図各主要部の出
力波形を示すタイムチヤートである。第2図にお
いて発振器12の出力G12がFF13のT端子
に印加されるとFF13の端子の出力G13は
G12が次のハイレベル(以下このハイレベルを
Hと称する)になるとき同時にHになり、さらに
次のHになるときにLになる。そして次のFF1
4のT端子に印加され、FF14の端子の出力
Q14は、Q13がローレベル(以下このローレ
ベルをLと称する)になるとLとなり、次にLに
なるときにHになる。そしてFF15のT端子に
印加され、FF15の端子の出力Q15はQ1
4がLになるとLになり、次のLになるときにH
になる。かくしてFF13,FF14,FF15の
周期は発振器12の周期が1/2,1/4,1/8と分周
される。そしてANDゲート17の総ての入力が
Hのときだけその出力AND17がHになり、
ANDゲート18の総ての入力がHのときだけそ
の出力AND18がHになる。勿論ANDゲート1
9の総ての入力がHとなつたときだけその出力
AND19がHになる。このようにしてAND1
7,AND18,AND19の各パルス波形はそれ
ぞれパルス発生回路6が発生したパルスをパルス
制御回路10の3個のANDゲート17,18,
19から互いに重ならないように同じ周期で順次
送出される。そして第3図に示すようにパルス
AND18がFF28をリセツトした後、発光部1
の発光ダイオード22がパルスAND17で発光
し投光する。はじめ時刻t0に投光部1と受光部2
が図示しない被検出体で遮断されていると、受光
部2は受光しないから増幅器25の出力波形
Amp25、比較器26の出力波形Comp26はロ
ーレベル(以下ローレベルをLと略称する)であ
る。またComp26がLであるからANDゲート
27は閉じ、FF28のQ出力波形FO28もLで
ある。従つてEX−ORゲート31の出力もLで
あるからANDゲート33は閉じ、その出力波形
AND33もLである。このときインバータ32
の出力は反転してハイレベル(以下ハイレベルを
Hと略称する)となるから、カウンタ35はパル
スAND19がANDゲート34を通過したパルス
AND34でクリヤされる。勿論カウンタ35の
“7”カウント端子の出力はLであるから出力端
子39の出力はLである。 次に時刻t1に投光部1と受光部2との間の被検
出体が除去されるとホトダイオード23が受光
し、増幅器25の出力はコンデンサ24を充放電
する三日月状のパルスAmp25を送出し、比較
器26で整形されてパルスAND17と同じ波形、
同じ周期のパルスComp26になり、FF28の
出力FO28は、2個のパルスAND17,Comp
26でHになり、パルスAND18でLになる。
この出力FO28の波形の幅は広い。こうしてEX
−ORゲート31の出力がHになり、ANDゲート
19の出力パルスAND19がANDゲート33を
介してパルスAND33としてカウンタ35に出
力する。パルスAND33にそれぞれ記入された
数値はカウンタ35の計数値である。このように
してカウンタ35はパルスAND19言い換えれ
ばパルスAND33を4個まで計数し、時刻t2
“4”カウント端子がHになる。この信号Hは
NANDゲート20のd入力端子に印加されて
NANDゲート20の出力N20が3個のFF1
3,14,15をリセツトする(第2図参照)。
そして3個のANDゲート17,18,19の最
初のパルスはその以前の1周期T1より早い1周
期T2に送出され、以後は以前と同じ周期T1のパ
ルスを繰り返す。したがつて、カウンタ35の入
力は4カウントと5カウントの間がそれ以前の周
期T1より短くなるが以後は同じ周期T1に戻る。
そして時刻t3までに7個計数すると“7”カウン
ト端子の信号がHになり、2個のANDゲート3
6,37が開くから受光したことを記憶していた
FF28の出力がこのANDゲート36,37を介
して時刻t3にFF38を動作させ出力回路11の
出力端子39にHの信号T39を送出する。この
信号T39とFF28の信号が共にHになればEX
−ORゲート31の出力はLになり、カウンタ3
5の計数を停止するとともにインバータ32の出
力が反転してパルスAND19、言い換えれば
ANDゲート34のパルスAND34でカウンタ3
5の計数をクリヤして光電スイツチの一動作が終
了する。その後時刻t4にパルスAND18FF28
がリセツトされると、その端子がHになり、
FF38がリセツトされて出力端子39の信号は
Lに低下する。ここで投光部1と受光部2との間
の光が再び遮断されると、光電スイツチはタイム
チヤートの時刻t0から同じ動作を繰り返す。 ところで、もし投光部1と受光部2とが被検出
物体で遮断されているにもかかわらず、パルス発
生回路6が発生するパルスの周期とほぼ同じ周期
の投光パルスをホトトランジスタ23が他の光源
から受光した場合、第4図に示すように3個の
FF13,14,15が“4”カウント端子のH
信号でリセツトされた後、3個のパルスAND1
7,AND18,AND19はそれぞれ第1発がそ
れ以前の周期T1より短い周期T2で送出されるが、
増幅器25の出力Amp25の周期T1は全く変化
せず、これに従つてパルスComp26の周期T1
変化しないからパルスAND17パルスComp2
6が同時にANDゲート27に入力することがな
くFF28はセツトされない。したがつて信号FO
28はLであり、勿論この時点では検出回路11
の出力信号もLであるからEX−ORゲート31
の出力はLであり、インバータ32の出力が反転
してHとなつてANDゲート34はパルスAND1
9でカウンタ35をクリヤしてしまい投光パルス
を7個までカウントすることはなく、検出回路1
1の出力端子39にはHの信号は送出されない。
すなわち誤動作することはない。また、もしこの
スイツチの投光部以外からの光がホトダイオード
に周期T2で入射した場合は、ANDゲート27の
両入力が連続して一致することがないからこの出
力信号がHになつてFF28がセツトされること
が少なく、常時リセツトされ、カウンタ35はパ
ルスを計数することなく、スイツチとしての誤動
作はしない。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 4. In FIG. 1, the photoelectric switch includes a light projecting section 1, a light receiving section 2, a pulse generation circuit 6, a received light signal storage circuit 8, a counter circuit 9, a pulse control circuit 10, and a detection circuit 11. The pulse generating circuit 6 includes an oscillator 12 and three T-type flip-flops (hereinafter referred to as FF) 13, 14, and 15.
The output of FF13 is connected to the T terminal of FF13, the Q terminal of FF13 is connected to the T terminal of FF14, and the terminal of FF14 is connected to the T terminal of the next FF15. It sequentially steps down the pulse to 1/2, 1/4, and 1/8, and operates as a so-called frequency divider. The pulse control circuit 10 includes an inverter 16 and three
AND gate 17, 18, 19, NAND gate 2
0, and three AND gates 17, 18, 1
The output terminal of the oscillator 12 is connected to each a input terminal of 9 via an inverter 16, and the terminal of FF 15 is connected to each d terminal.
Further, the Q terminal of the FF 13 is connected to the b input terminal of each of the AND gate 17 and the NAND gate 20, and the terminal of the FF 13 is connected to the b terminal of each of the two AND gates 18 and 19.
The c input terminal of each of the two AND gates 17 and 18 and the c input terminal of the NAND gate 20 are connected to FF.
14 terminals are connected, and the Q terminal of FF15 is connected to the a input terminal of the NAND gate 20.
The output terminal of the NAND gate 20 is three FF13,
It is connected to the respective reset terminals 14 and 15. An input terminal of the NAND gate 20 is connected to a "4" count terminal of a counter 35, which will be described later. The light projecting section 1 is connected to the output terminal of the AND gate 17 through a series circuit of a current control resistor 21 and a light emitting diode 22, and the light emitting diode 22 emits pulsed light in response to this output pulse. The light receiving section 2 consists of a phototransistor 23, a capacitor 24, an amplifier 25, and a comparison circuit 26. The amplifier 25 amplifies the alternating current portion of the pulsed light received by the phototransistor 23, and when this output exceeds the operating level, it becomes a complete rectangular wave. A received light signal is generated that is shaped as follows. The light reception signal storage circuit 8 includes an AND gate 27, FF
28, the AND gate 27 has one input terminal connected to the output terminal of the AND gate 17,
The other input terminal is connected to the output terminal of the light receiving section 2, this output terminal is connected to the set terminal S of the FF 28, and the output terminal of the AND gate 18 is connected to the reset terminal R of the FF 28. Therefore
The FF28 is reset by the output pulse of the AND gate 18, and if there is a light reception signal during the light emission pulse period.
The AND gate 27 is opened and set to remember that the light receiving signal has been sent out from the light receiving section. The counter circuit 9 is an exclusive logic circuit (hereinafter EX
-OR gate) 31, inverter 3
2, 2 AND gates 33, 34, counter 3
In the EX-OR gate 31, one input terminal is connected to the Q terminal of the FF 28, the other input terminal is connected to the output terminal 39 of the detection circuit 11, which will be explained later, and the output terminal is connected to the Q terminal of the AND gate 33. AND between one input terminal and the inverter 32
It is connected to one input terminal of gate 34.
The other input terminal of the two AND gates 33 and 34 is connected to the output terminal of the AND gate 19. Further, the output terminal of the AND gate 33 is connected to the input terminal I of the counter 35, and the output terminal of the AND gate 34 is connected to the clear terminal C of the counter 35. The counter 35 has a "4" count terminal that sends out a signal when four pulses are continuously input to its input terminal, and a "7" count terminal that sends out a signal when seven pulses are continuously input to the input terminal. The "7" count terminal is connected to the d input terminal of the NAND circuit 20 described above, and the "7" count terminal is connected to the two AND gates 36 of the detection circuit 11, which will be described next.
It is connected to one input terminal of 37. The detection circuit 11 includes two AND gates 36, 3
7 and FF38, both AND gates 36, 3
The Q and both terminals of the FF 28 are connected to the other input terminal of the FF 28, and the "7" count terminal of the counter 35 mentioned above is commonly connected to one input terminal of each. The output terminal of the AND gate 36 is connected to the set terminal S of the FF 38, the output terminal of the AND gate 37 is connected to the reset terminal R, and the Q terminal is used as the output terminal 39 of this photoelectric switch. Next, FIGS. 2 to 4 are time charts showing output waveforms of each main part in FIG. 1. In FIG. 2, when the output G12 of the oscillator 12 is applied to the T terminal of FF13, the output G13 of the terminal of FF13 becomes H at the same time when G12 becomes the next high level (hereinafter this high level is referred to as H). Furthermore, it becomes L when it becomes the next H. And the next FF1
The output Q14 from the terminal of the FF 14 becomes L when Q13 becomes a low level (hereinafter this low level is referred to as L), and becomes H when it becomes L next. Then, it is applied to the T terminal of FF15, and the output Q15 of the terminal of FF15 is Q1
When 4 becomes L, it becomes L, and when it becomes the next L, it becomes H.
become. Thus, the periods of FF13, FF14, and FF15 are the periods of the oscillator 12 divided into 1/2, 1/4, and 1/8. Then, only when all the inputs of AND gate 17 are H, its output AND17 becomes H,
Only when all the inputs of AND gate 18 are H, its output AND18 becomes H. Of course AND gate 1
The output only when all inputs of 9 become H.
AND19 becomes H. In this way AND1
Each pulse waveform of 7, AND18, AND19 is a pulse generated by the pulse generation circuit 6, and the three AND gates 17, 18, of the pulse control circuit 10, respectively.
From No. 19 onwards, they are sent out sequentially at the same cycle so as not to overlap each other. Then, as shown in Figure 3, the pulse
After AND18 resets FF28, light emitting section 1
The light emitting diode 22 emits light and projects light with the pulse AND17. At the initial time t 0 , the light emitter 1 and the light receiver 2
is blocked by an object to be detected (not shown), the light receiving section 2 does not receive light, so the output waveform of the amplifier 25
The output waveform Comp26 of Amp25 and comparator 26 is at a low level (hereinafter, low level will be abbreviated as L). Also, since Comp26 is at L, AND gate 27 is closed, and Q output waveform FO28 of FF28 is also at L. Therefore, since the output of EX-OR gate 31 is also L, AND gate 33 is closed, and its output waveform is
AND33 is also L. At this time, the inverter 32
Since the output of is inverted and becomes a high level (hereinafter, high level is abbreviated as H), the counter 35 receives the pulse AND19 which has passed through the AND gate 34.
Cleared by AND34. Of course, since the output of the "7" count terminal of the counter 35 is L, the output of the output terminal 39 is L. Next, at time t 1 , when the object to be detected between the light emitter 1 and the light receiver 2 is removed, the photodiode 23 receives the light, and the output of the amplifier 25 sends out a crescent-shaped pulse Amp 25 that charges and discharges the capacitor 24. Then, it is shaped by the comparator 26 and has the same waveform as the pulse AND17,
The pulse Comp26 has the same period, and the output FO28 of FF28 is the two pulses AND17, Comp
It becomes H at 26, and becomes L at pulse AND18.
The width of the waveform of this output FO28 is wide. In this way EX
- The output of the OR gate 31 becomes H, and the output pulse AND19 of the AND gate 19 is outputted to the counter 35 as a pulse AND33 via the AND gate 33. The numerical values written in each pulse AND33 are the counted values of the counter 35. In this way, the counter 35 counts up to four pulses AND19, in other words, pulses AND33, and the "4" count terminal becomes H at time t2 . This signal H is
Applied to the d input terminal of the NAND gate 20
The output N20 of the NAND gate 20 is three FF1
3, 14, and 15 (see Figure 2).
The first pulse of the three AND gates 17, 18, 19 is sent out in one period T2 earlier than the previous one period T1 , and thereafter the pulses of the same period T1 as before are repeated. Therefore, the input to the counter 35 is shorter between the 4th count and the 5th count than the previous cycle T1 , but thereafter returns to the same cycle T1 .
When 7 items are counted by time t3 , the signal at the "7" count terminal becomes H, and the two AND gates 3
6,37 opened, so I remembered that it received light.
The output of the FF 28 operates the FF 38 via the AND gates 36 and 37 at time t3, and sends an H signal T39 to the output terminal 39 of the output circuit 11. If both the signals T39 and FF28 become H, EX
-The output of OR gate 31 becomes L, and counter 3
5 is stopped and the output of the inverter 32 is inverted to produce a pulse AND19, in other words.
Counter 3 with pulse AND34 of AND gate 34
When the count of 5 is cleared, one operation of the photoelectric switch is completed. After that, at time t 4 , pulse AND18FF28
When is reset, that terminal becomes H,
The FF 38 is reset and the signal at the output terminal 39 drops to L. When the light between the light emitter 1 and the light receiver 2 is cut off again, the photoelectric switch repeats the same operation from time t0 on the time chart. Incidentally, even if the light emitting section 1 and the light receiving section 2 are blocked by an object to be detected, if the phototransistor 23 transmits a light emitting pulse with approximately the same period as that of the pulse generated by the pulse generating circuit 6, When receiving light from a light source, three
FF13, 14, 15 are “4” count terminal H
After being reset with a signal, three pulses AND1
7, AND18, and AND19, the first one of which is sent out at a cycle T2 shorter than the previous cycle T1 ,
The period T1 of the output Amp25 of the amplifier 25 does not change at all, and accordingly the period T1 of the pulse Comp26 also does not change, so the pulse AND17 pulse Comp2
6 are not input to the AND gate 27 at the same time, and the FF 28 is not set. Therefore the signal FO
28 is L, and of course at this point the detection circuit 11
Since the output signal of is also L, EX-OR gate 31
The output of the inverter 32 is inverted and becomes H, and the AND gate 34 outputs the pulse AND1.
9, the counter 35 is cleared and the emitted light pulses are not counted up to 7, and the detection circuit 1
No H signal is sent to the output terminal 39 of No. 1.
In other words, there will be no malfunction. Also, if light from a source other than the light projecting section of this switch is incident on the photodiode with a period of T 2 , the output signal becomes H because the two inputs of the AND gate 27 do not match continuously. The counter 35 is rarely set and is always reset, so the counter 35 does not count pulses and does not malfunction as a switch.

【発明の効果】【Effect of the invention】

以上述べたように本発明によれば、カウンタ回
路の連続計数値が第1の所定値に達するとパルス
発生回路は次のパルスの発生時刻を変えるから、
たとえ外部から初めの周期に同期したパルス光が
受光部に入射していてもここで同期が破られカウ
ンタ回路は以後の計数を停止し、第2の所定値ま
で計数しないから、検出回路はスイツチの動作信
号を発することがなく、受光部に入射するパルス
光が外乱光であるか否かを何ら判断することなく
外乱光による誤動作を防止して自己のパルス光を
確実に検出することができ、他の光電スイツチと
の連携接続なしに光電スイツチとの相互干渉が防
止できる。
As described above, according to the present invention, when the continuous count value of the counter circuit reaches the first predetermined value, the pulse generation circuit changes the generation time of the next pulse.
Even if pulsed light synchronized with the first cycle is incident on the light receiving section from the outside, the synchronization is broken and the counter circuit stops counting from then on and does not count up to the second predetermined value, so the detection circuit does not switch. It is possible to reliably detect the own pulsed light without emitting any operating signal, and without making any judgments as to whether or not the pulsed light incident on the light receiving section is ambient light, preventing malfunctions caused by ambient light. , Mutual interference with photoelectric switches can be prevented without cooperative connection with other photoelectric switches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光電スイツチの一実施例
を示す結線図、第2図はパルス発生回路とパルス
制御回路の動作を示すタイムチヤート、第3図は
第1図に示す光電スイツチの平常動作を示すタイ
ムチヤート、第4図は第1図に示す光電スイツチ
の受光部が他の光源からの光を受光した場合の動
作を示すタイムチヤート、第5図、第6図は複数
の光電スイツチを並置した場合、隣接投光部の影
響を受ける例を示し、第5図は互いに対向する投
光部と受光部を並置した場合、第6図は互いに対
向する投光部と受光部を交互に入れ換えて並置し
た場合を示す。 1……投光部、2……受光部、6……パルス発
生回路、8……受光信号記憶回路、9……カウン
タ回路、10……パルス制御回路、11……検出
回路。
Fig. 1 is a wiring diagram showing one embodiment of the photoelectric switch according to the present invention, Fig. 2 is a time chart showing the operation of the pulse generation circuit and pulse control circuit, and Fig. 3 is a normal operation of the photoelectric switch shown in Fig. 1. Figure 4 is a time chart showing the operation when the light receiving section of the photoelectric switch shown in Figure 1 receives light from another light source. Figures 5 and 6 are time charts showing the operation of multiple photoelectric switches. Figure 5 shows an example in which the opposite light emitters and light receivers are juxtaposed, and Figure 6 shows the example in which the opposite light emitters and light receivers are alternately arranged. This shows the case where they are swapped and placed side by side. DESCRIPTION OF SYMBOLS 1...Light emitter, 2...Light receiver, 6...Pulse generation circuit, 8...Light reception signal storage circuit, 9...Counter circuit, 10...Pulse control circuit, 11...Detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 周期的にパルスを発生するパルス発生回路
と、該パルス発生回路のパルスに応じてパルス点
灯する投光部と、該投光部の光を受けて受光信号
を発生する受光部と、前記受光部からの受光信号
を記憶する受光信号記憶回路と、前記受光信号の
連続回数を計数し、受光信号が非連続のときクリ
アされるカウンタ回路と、該カウンタ回路の連続
計数値が第1の所定値に達すると前記パルス発生
回路を制御して次のパルスの発生時刻を変えるパ
ルス制御回路と、前記カウンタ回路の連続計数値
が第2の所定値に達すると検出信号を送出する検
出回路とを備えてなることを特徴とする光電スイ
ツチ。
1. A pulse generating circuit that periodically generates pulses, a light projecting section that lights up pulses in response to the pulses of the pulse generating circuit, a light receiving section that receives light from the light projecting section and generates a light reception signal, and the light receiving section. a light reception signal storage circuit that stores the light reception signal from the unit; a counter circuit that counts the number of consecutive light reception signals and is cleared when the light reception signal is discontinuous; a pulse control circuit that controls the pulse generation circuit to change the generation time of the next pulse when the value reaches a second predetermined value; and a detection circuit that sends out a detection signal when the continuous count value of the counter circuit reaches a second predetermined value. A photoelectric switch characterized by:
JP60040091A 1985-02-28 1985-02-28 Photoelectric switch Granted JPS61198094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040091A JPS61198094A (en) 1985-02-28 1985-02-28 Photoelectric switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040091A JPS61198094A (en) 1985-02-28 1985-02-28 Photoelectric switch

Publications (2)

Publication Number Publication Date
JPS61198094A JPS61198094A (en) 1986-09-02
JPH0579956B2 true JPH0579956B2 (en) 1993-11-05

Family

ID=12571213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040091A Granted JPS61198094A (en) 1985-02-28 1985-02-28 Photoelectric switch

Country Status (1)

Country Link
JP (1) JPS61198094A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553806B2 (en) * 1992-09-11 1996-11-13 サンクス株式会社 Photoelectric switch
EP0675376B1 (en) * 1993-10-12 1998-01-07 The Nippon Signal Co. Ltd. Fail-safe multiple optical-axis light beam sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642632U (en) * 1979-09-08 1981-04-18
JPS5873888A (en) * 1982-09-18 1983-05-04 Omron Tateisi Electronics Co Photoelectric switch
JPS5836382B2 (en) * 1980-04-11 1983-08-09 パナフアコム株式会社 Shared bus control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836382U (en) * 1981-09-02 1983-03-09 日本信号株式会社 Optical level crossing obstacle detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642632U (en) * 1979-09-08 1981-04-18
JPS5836382B2 (en) * 1980-04-11 1983-08-09 パナフアコム株式会社 Shared bus control method
JPS5873888A (en) * 1982-09-18 1983-05-04 Omron Tateisi Electronics Co Photoelectric switch

Also Published As

Publication number Publication date
JPS61198094A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
US4381446A (en) Photoelectric switch
US5243182A (en) Photoelectric switch including synch timing signal emitter and detector and photoelectric detector system using the same
EP0206334B1 (en) Photoelectronic switch
US5057683A (en) Error preventive circuit for a photoelectric switch
JPH0579956B2 (en)
JP2911369B2 (en) Multi-optical axis photoelectric sensor
JPH06342082A (en) Multibeam sensor system
JPH0327877B2 (en)
JP3354210B2 (en) Photoelectric switch
JPH0241210B2 (en)
JP3358087B2 (en) Photoelectric switch
JP3293044B2 (en) Photoelectric switch
JP2550652B2 (en) Photoelectric switch
JP2605033B2 (en) Photoelectric switch
JPS6177423A (en) Multi-optical axis photoelectric switch
JPH0936725A (en) Photoelectric sensor
JPS6259879A (en) Photoelectric signal processing circuit
JPS5873888A (en) Photoelectric switch
JPH0511683B2 (en)
JPH04271613A (en) Photoelectric switch
JPH05136678A (en) Photoelectric switch
JPS61198088A (en) Photoelectric switch
JPS62112418A (en) Photoelectric switch
JPH01276086A (en) Reflection type photoelectric detector
JPH044772B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term