JPH0579372B2 - - Google Patents

Info

Publication number
JPH0579372B2
JPH0579372B2 JP59239644A JP23964484A JPH0579372B2 JP H0579372 B2 JPH0579372 B2 JP H0579372B2 JP 59239644 A JP59239644 A JP 59239644A JP 23964484 A JP23964484 A JP 23964484A JP H0579372 B2 JPH0579372 B2 JP H0579372B2
Authority
JP
Japan
Prior art keywords
container
liquid
mixing container
mixing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59239644A
Other languages
Japanese (ja)
Other versions
JPS61118127A (en
Inventor
Atsuki Wada
Seiichi Numata
Hitoo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP59239644A priority Critical patent/JPS61118127A/en
Publication of JPS61118127A publication Critical patent/JPS61118127A/en
Publication of JPH0579372B2 publication Critical patent/JPH0579372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ウエハー処理プロセスに用いられる
半導体用化学薬品を調合する調合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compounding apparatus for compounding semiconductor chemicals used in wafer processing processes.

[従来技術] 一般に、半導体デバイスの製造に際しては、デ
バイスのベースとなるシリコン等のウエハーの表
面の洗浄、エツチングやホトリソグラフイ等を行
なう必要があり、それらの処理には夫々目的に応
じた化学薬品が使用される。
[Prior Art] In general, when manufacturing semiconductor devices, it is necessary to perform cleaning, etching, photolithography, etc. on the surface of a wafer such as silicon that is the base of the device, and these processes require chemical treatment depending on the purpose. Chemicals are used.

ところで、このような化学薬品は、通常作業者
によつて調合するようにしているが、その場合は
処理の直前に調合することが難しいため、化学薬
品の貯蔵中に反応等によつて成分変化が生じると
いう問題がある。
By the way, such chemicals are usually mixed by workers, but in that case, it is difficult to mix them immediately before processing, so chemical components may change due to reactions etc. during storage. There is a problem that occurs.

又、化学薬品の調合に用いられる原液は、主と
してフツ化水素酸、硫酸、塩酸等の強酸や過酸化
水素水、アンモニア等の劇薬であるため、取扱い
が危険である上、調合を作業者によつて行なうよ
うにすると、最大の汚洗源である作業者から化学
薬品にダストが混入する確率が極めて高くなる。
良く知られているように、このようなダストの混
入は、半導体デバイスの精密化、高集積化にとつ
て大きなネツクとなるものである。
In addition, the stock solutions used for compounding chemicals are mainly strong acids such as hydrofluoric acid, sulfuric acid, and hydrochloric acid, and powerful chemicals such as hydrogen peroxide and ammonia, which are dangerous to handle and do not allow workers to prepare them. If this is done side by side, there is an extremely high probability that dust will be mixed into the chemicals from the workers, which is the biggest source of cleaning.
As is well known, such dust contamination is a major hindrance to the refinement and high integration of semiconductor devices.

又、作業者によつて調合を行なう場合は、ダス
トの混入を防止する必要があるため、化学薬品を
充分に攪拌して均一な組成を得ることが難しい。
Furthermore, when mixing is performed by an operator, it is difficult to sufficiently stir the chemicals to obtain a uniform composition because it is necessary to prevent dust from entering.

[発明の目的] 本発明は、上述の問題に鑑みてなされたもので
あつて、半導体材料の処理の直前に自動的に化学
薬品を調合しうるようにすることを目的としてい
る。本発明の別の目的は、ダスト等の異物の混入
が少なく、組成の均一な化学薬品を提供すること
である。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to enable automatic preparation of chemicals immediately before processing of semiconductor materials. Another object of the present invention is to provide a chemical agent with a uniform composition and less contamination with foreign substances such as dust.

[発明の構成] このため、本発明に係る半導体材料の調合装置
は、半導体用化学薬品を調合するための複数の原
液を夫々貯留する複数の貯留容器と、各貯留容器
の原液を混合する密閉式の混合容器と、複数の貯
留容器の原液を混合容器に個別に供給する複数の
供給手段と、混合容器に供給される各原液の供給
量を計量する計量手段と、混合容器内の液を吸引
する吸引手段と液中の異物を除去するフイルタ手
段とを含み、上記吸引手段及びフイルタ手段を介
して混合容器内の液を循環させる循環路とを備え
て構成されたものである。
[Structure of the Invention] Therefore, the semiconductor material blending device according to the present invention includes a plurality of storage containers each storing a plurality of stock solutions for blending semiconductor chemicals, and a sealed container for mixing the stock solutions in each storage container. a mixing container of the type, a plurality of supply means for individually supplying the stock solutions in the plurality of storage containers to the mixing container, a measuring means for measuring the supply amount of each stock solution to be supplied to the mixing container, and a The mixing container includes a suction means for sucking and a filter means for removing foreign matter from the liquid, and a circulation path for circulating the liquid in the mixing container via the suction means and the filter means.

[発明の効果] 本発明によると、半導体用化学薬品の調合が自
動化されるので、処理の直前に迅速に化学薬品を
調合して化学薬品の成分変化を防止することがで
きると共に、作業者の危険を回避することができ
る。
[Effects of the Invention] According to the present invention, the preparation of chemicals for semiconductors is automated, so it is possible to quickly prepare the chemicals just before processing to prevent changes in the composition of the chemicals, and it also saves the operator's time. Danger can be avoided.

又、調合を自動化すると共に、調合に密閉式の
混合容器を使用したので、化学薬品へのダスト等
の異物の混入が防止されると共に、原液に混入し
ている異物も、上記循環路内で循環されるうちに
フイルタ手段によつて除去されるので、不純物の
少ない化学薬品を提供することができる。
In addition, we have automated the blending process and used a closed mixing container for blending, which prevents foreign matter such as dust from entering the chemicals, and also prevents foreign matter from entering the stock solution in the circulation path. As it is being circulated it is removed by filter means, thus providing a chemical with less impurities.

更に又、調合された化学薬品を循環路内で循環
させることにより、化学薬品を攪拌し、化学薬品
の組成を充分に均一化させることができる。
Furthermore, by circulating the prepared chemicals in the circulation path, the chemicals can be stirred and the composition of the chemicals can be made sufficiently uniform.

[実施例] 以下、添付図面に基づいて実施例を説明する。[Example] Hereinafter, embodiments will be described based on the accompanying drawings.

第3図には半導体材料の洗浄用の化学薬品の調
合装置が示されており、該調合装置6は、アンモ
ニアNH4OHを貯留する第1貯留ボツクス1と、
過酸化水素水H2O2を貯留する第2貯留ボツクス
2と、硫酸H2SO4を貯留する第3貯留ボツクス
3と、アンモニアと過酸化水素水と純水とから第
1の洗浄用化学薬品を調合する第1調合ボツクス
4と、硫酸と過酸化水素水とから第2の洗浄用化
学薬品を調合する第2調合ボツクス5とを連設し
て構成されている。
FIG. 3 shows a compounding device for chemicals for cleaning semiconductor materials, and the compounding device 6 includes a first storage box 1 for storing ammonia NH 4 OH;
A second storage box 2 for storing hydrogen peroxide solution H 2 O 2 , a third storage box 3 for storing sulfuric acid H 2 SO 4 , and a first cleaning chemical from ammonia, hydrogen peroxide solution and pure water. It consists of a first mixing box 4 for mixing chemicals and a second mixing box 5 for mixing a second cleaning chemical from sulfuric acid and hydrogen peroxide solution.

第4図に示す如く、第1貯留ボツクス1内に
は、アンモニアを貯留する固定式の第1貯留容器
7と、該第1貯留容器7にアンモニアを補充する
移動可能な第1補充容器8等が収納されており、
該第1補充容器8は第1貯留ボツクス1外へ搬出
されうるようになつている。第2、第3貯留ボツ
クス2,3も同様に構成されている。
As shown in FIG. 4, the first storage box 1 includes a fixed first storage container 7 for storing ammonia, a movable first replenishment container 8 for replenishing the first storage container 7 with ammonia, etc. is stored,
The first replenishment container 8 can be carried out of the first storage box 1. The second and third storage boxes 2 and 3 are similarly constructed.

又、第5図に示す如く、第1調合ボツクス4内
には、第1の洗浄用化学薬品が調製される第1の
混合容器10と、該第1混合容器10が載置され
る台秤11(自動平衡形電子天秤又はロードセル
形天秤等)と、第1の洗浄用化学薬品を過する
流体フイルタ12等が収納されている。第2調合
ボツクス5も同様に構成されている。
As shown in FIG. 5, the first mixing box 4 includes a first mixing container 10 in which a first cleaning chemical is prepared, and a platform scale 11 on which the first mixing container 10 is placed. (such as a self-balancing electronic balance or a load cell type balance) and a fluid filter 12 for passing the first cleaning chemical. The second mixing box 5 is similarly constructed.

以下、本調合装置の構成をより具体的に説明す
る。
The configuration of this blending device will be explained in more detail below.

第1図に示すように、上記第1補充容器8と第
1貯留容器7は共に密閉式であり、第1貯留容器
7内のアンモニアの液面レベルが、常に予め設定
された上限レベルL1と下限レベルL2との間に位
置するように、第1補充容器8から開閉弁13が
介設された送液配管14を通して送液ポンプ15
により第1貯留容器7にアンモニアが供給される
ようになつている。第1貯留容器7には、上述の
上限レベルL1と下限レベルL2とを検出するレベ
ル検出器16,17が設けられると共に、送液配
管14にはアンモニアの流通状況を検出する液体
検出器18が臨設されている。第1補充容器8か
ら第1貯留容器7にアンモニアが供給される際に
は、第1補充容器8内が負圧となるため、図示し
ない通気フイルタが設けられた給気管19から第
1補充容器8内に清浄な空気が給気される一方、
給気用開閉弁20を閉じて排気用開閉弁21を開
くことにより、第1貯留容器7内のガスが前記第
1〜第3貯留ボツクス1〜3に夫々収容されてい
る第1〜第3の貯留容器7,22,23に共通の
排気管24を通して排出されるようになつてい
る。このように、第1貯留容器7及び第1補充容
器8を密閉式とすることにより、アンモニア内へ
のダストの混入を最小限に抑えることができる。
又、上記排気管24にはガスフイルタ25が介設
され、このガスフイルタ25によつて排ガス中の
液、蒸気が除去されるようになつている。
As shown in FIG. 1, the first replenishment container 8 and the first storage container 7 are both airtight, and the ammonia liquid level in the first storage container 7 is always at a preset upper limit level L1 . A liquid feeding pump 15 is supplied from the first replenishment container 8 through a liquid feeding pipe 14 in which an on-off valve 13 is interposed so as to be located between the lower limit level L2 and the lower limit level L2 .
Ammonia is supplied to the first storage container 7 by this. The first storage container 7 is provided with level detectors 16 and 17 that detect the above-mentioned upper limit level L1 and lower limit level L2 , and the liquid feed pipe 14 is provided with a liquid detector that detects the flow status of ammonia. 18 have been temporarily installed. When ammonia is supplied from the first replenishment container 8 to the first storage container 7, the inside of the first replenishment container 8 becomes negative pressure. While clean air is supplied into the
By closing the air supply on-off valve 20 and opening the exhaust on-off valve 21, the gas in the first storage container 7 is transferred to the first to third storage boxes 1 to 3, respectively. The storage containers 7, 22, 23 are discharged through a common exhaust pipe 24. In this way, by making the first storage container 7 and the first replenishment container 8 airtight, it is possible to minimize the mixing of dust into ammonia.
Further, a gas filter 25 is interposed in the exhaust pipe 24, and the gas filter 25 removes liquid and vapor from the exhaust gas.

上記第1貯留容器7の出口管26は、管継手2
7を介して開閉弁28を有する送液配管30に接
続され、送液配管30は、第2図に示す如く、固
定フレームF,F間に横架されたバーBによつて
支持される管継手31を介し螺旋管32に接続さ
れて、送液配管30及び螺旋管32の重量が台秤
11に作用しないように構成されている。上記螺
旋管32はテフロン等の伸縮可能な樹脂からな
り、この螺旋管32はパツキン29を介して本体
に装着された密閉式の第1混合容器10の蓋体3
3に固定される管継手34を介して入口管35に
接続され、第1貯留容器7からのアンモニアの供
給等に伴う台秤11上での第1混合容器10の上
下変位が上記螺旋管32の伸縮によつて吸収され
るようになつている。
The outlet pipe 26 of the first storage container 7 is connected to the pipe joint 2
7 to a liquid feeding pipe 30 having an on-off valve 28, and the liquid feeding pipe 30 is a pipe supported by a bar B horizontally suspended between fixed frames F, F, as shown in FIG. It is connected to a spiral pipe 32 via a joint 31 so that the weight of the liquid feeding pipe 30 and the spiral pipe 32 does not act on the platform scale 11 . The spiral tube 32 is made of a stretchable resin such as Teflon, and the spiral tube 32 is connected to the lid 3 of the closed type first mixing container 10 attached to the main body via the packing 29.
The vertical displacement of the first mixing container 10 on the platform scale 11 due to the supply of ammonia from the first storage container 7 is connected to the inlet pipe 35 through a pipe joint 34 fixed to the spiral pipe 32. It is designed to be absorbed by expansion and contraction.

そして給気用開閉弁20(第1図)を開くと共
に排気用開閉弁21を閉じ、圧送用ガス供給口3
6と圧力計37,38とリリーフ弁40,41と
開閉弁42,43とガスフイルタ44等を備えた
高圧ガス(窒素ガス等)による圧送系Pのガス配
管45から第1貯留容器7に高圧ガスを送給する
ことにより、第1貯留容器7内のアンモニアを第
1混合容器10に供給することができる。第1混
合容器10へのアンモニアの供給量は、供給前と
供給後の第1混合容器10の重量変化量として台
秤11によつて計量され、アンモニアの供給量が
目標値に達した時点で開閉弁28を閉じることに
より、供給が停止される。このように、供給量を
重量によつて計量するようにすれば、供給量を無
段階的に調節することができ、しかもアンモニア
の液温(粘度)等に影響されず、常に正確な計量
が行なえる。
Then, the air supply on-off valve 20 (Fig. 1) is opened, the exhaust on-off valve 21 is closed, and the pressurized gas supply port 3 is opened.
6, pressure gauges 37, 38, relief valves 40, 41, on/off valves 42, 43, gas filter 44, etc. High pressure gas is transferred from the gas piping 45 of the pressure feeding system P (nitrogen gas, etc.) to the first storage container 7. By feeding the ammonia in the first storage container 7, the ammonia can be supplied to the first mixing container 10. The amount of ammonia supplied to the first mixing container 10 is measured by the platform scale 11 as the amount of change in the weight of the first mixing container 10 before and after the supply, and the ammonia is opened and closed when the amount of ammonia supplied reaches the target value. By closing valve 28, the supply is stopped. By measuring the supply amount by weight in this way, the supply amount can be adjusted steplessly, and it is not affected by the ammonia liquid temperature (viscosity), etc., and accurate measurement is always possible. I can do it.

なお、入口管35の下端35aは、該下端35
aが第1混合容器10内の液に常時浸漬されるよ
うに、台秤11の出力信号、つまり第1混合容器
10の重量によつて検出される第1混合容器10
内の液の下限レベルL3より下方に位置している。
それにより、開閉弁28を閉じると即座にアンモ
ニアの供給が停止されると共に、入口管35の下
端35aから第1混合容器10内へのアンモニア
の噴出によつて台秤11に作用する動圧(正荷
重)と、アンモニアの噴出に伴つて台秤11に作
用する入口管35の反力(負荷重)とが常時相殺
されてアンモニアの供給量が一層正確に計量でき
る。
Note that the lower end 35a of the inlet pipe 35 is
The first mixing container 10 is detected by the output signal of the platform scale 11, that is, the weight of the first mixing container 10, so that a is always immersed in the liquid in the first mixing container 10.
It is located below the lower limit level L3 of the liquid within.
As a result, when the on-off valve 28 is closed, the supply of ammonia is immediately stopped, and the dynamic pressure (positive The amount of ammonia supplied can be measured more accurately because the reaction force (load weight) of the inlet pipe 35 acting on the platform scale 11 as the ammonia is spouted out is always offset.

上記第2貯留容器22には、第2補充容器46
から開閉弁47を有する送液配管48を通して送
液ポンプ50により過酸化水素水が補充されるよ
うになつている。そして圧送系Pから第2貯留容
器22に高圧ガスを送給することにより、第2貯
留容器22から送液配管51の、開閉弁52を有
する側の分岐管51a、螺旋管53及び入口管5
4を通して過酸化水素水が供給される。又、上記
第1混合容器10には、純水供給口55から流量
制御弁56を有する純水配管57の、開閉弁58
が介設された分岐管57a、螺旋管60及び入口
管61を通して純水が供給される。このように、
第1混合容器10にアンモニアと過酸化水素水と
純水とが順次供給され、夫々の供給量が台秤11
によつて計量されて所定の混合比で混合される。
The second storage container 22 includes a second replenishment container 46
Hydrogen peroxide solution is replenished by a liquid feeding pump 50 through a liquid feeding pipe 48 having an on-off valve 47. Then, by feeding high pressure gas from the pressure feeding system P to the second storage container 22, the branch pipe 51a, the spiral pipe 53, and the inlet pipe 5 of the liquid feeding pipe 51 on the side having the on-off valve 52 from the second storage container 22
Hydrogen peroxide solution is supplied through 4. Further, in the first mixing container 10, an on-off valve 58 is connected to a pure water pipe 57 having a flow rate control valve 56 from the pure water supply port 55.
Pure water is supplied through the branch pipe 57a, the spiral pipe 60, and the inlet pipe 61, in which the deionized water is interposed. in this way,
Ammonia, hydrogen peroxide solution, and pure water are sequentially supplied to the first mixing container 10, and each supply amount is adjusted to the platform scale 11.
and mixed at a predetermined mixing ratio.

第1混合容器10の出口管62は、螺旋管6
3、調合装置6内の第1吐出配管64、管継手6
5及び調合装置6外の第2吐出配管66を介して
内槽67と外槽68からなる2重構造の処理槽7
0に連通されている。上記螺旋管63と、第1吐
出配管64と、該第1吐出配管64に接続される
復流配管71と、該復流配管71に接続される螺
旋管72とは、第1混合容器10内の液を吸引す
る循環・吐出ポンプ73と、前記流体フイルタ1
2と、熱交換器74とを含む循環路75を形成し
ている。そしてアンモニアと過酸化水素水と純水
との混合後に、入口弁76及び循環用開閉弁77
を開くと共に吐出用開閉弁78を閉じ、循環・吐
出ポンプ73で第1混合容器10内の混合液を吸
引して循環路75中を循環させることにより、上
記混合液を攪拌して均一な組成の第1の洗浄用化
学薬品を調製することができる。又、循環中に流
体フイルタ12により混合液中の異物を除去する
と共に、熱交換器74によつて混合液の液温を調
整することができる。
The outlet pipe 62 of the first mixing container 10 is a spiral pipe 6
3. First discharge piping 64 in blending device 6, pipe fitting 6
5 and a second discharge pipe 66 outside the blending device 6 to a processing tank 7 with a double structure consisting of an inner tank 67 and an outer tank 68.
It is connected to 0. The spiral pipe 63, the first discharge pipe 64, the return flow pipe 71 connected to the first discharge pipe 64, and the spiral pipe 72 connected to the return flow pipe 71 are arranged inside the first mixing container 10. a circulation/discharge pump 73 that sucks the liquid; and the fluid filter 1.
2 and a heat exchanger 74. After mixing ammonia, hydrogen peroxide, and pure water, the inlet valve 76 and the circulation on/off valve 77
At the same time, the discharge on-off valve 78 is closed, and the mixed liquid in the first mixing container 10 is sucked by the circulation/discharge pump 73 and circulated through the circulation path 75, thereby stirring the mixed liquid and making the composition uniform. A first cleaning chemical can be prepared. Also, during circulation, the fluid filter 12 can remove foreign substances from the mixed liquid, and the heat exchanger 74 can adjust the temperature of the mixed liquid.

循環路75内での循環によつて均一な組成の第
1の洗浄用化学薬品が調製された後に、循環用開
閉弁77を閉じて吐出用開閉弁78を開くことに
より、第1混合容器10内の第1の洗浄用化学薬
品を第1及び第2吐出配管64,66を通して処
理槽70に供給し、内槽67内でシリコン等のウ
エハーを洗浄することができる。このように、本
実施例では、単一のポンプ73により、混合液の
循環と吐出が行なえる。なお、第1混合容器10
から処理槽70への第1の洗浄用化学薬品の供給
量は、台秤11によつて計量される。
After the first cleaning chemical having a uniform composition is prepared by circulating in the circulation path 75, the first mixing container 10 is prepared by closing the circulation on-off valve 77 and opening the discharge on-off valve 78. A first cleaning chemical in the inner tank 67 can be supplied to the processing tank 70 through the first and second discharge pipes 64 and 66 to clean wafers such as silicon in the inner tank 67. In this way, in this embodiment, the mixed liquid can be circulated and discharged using the single pump 73. Note that the first mixing container 10
The amount of the first cleaning chemical supplied from the first cleaning chemical to the processing tank 70 is measured by a platform scale 11.

第1混合容器10の底部、復流配管71、洗浄
槽70の内槽67及び外槽68からは夫々ドレン
管80〜83が引き出されている。84は第1混
合容器10への液の給排に際して第1混合容器1
0に給気又は排気するための、図示しない通気フ
イルタが設けられた給排気管である。
Drain pipes 80 to 83 are drawn out from the bottom of the first mixing container 10, the return flow pipe 71, and the inner tank 67 and outer tank 68 of the cleaning tank 70, respectively. 84 refers to the first mixing container 1 when supplying and discharging liquid to the first mixing container 10.
This is an air supply/exhaust pipe provided with a ventilation filter (not shown) for supplying or exhausting air.

前記第3貯留容器23には、第3補充容器85
から送液ポンプ86により硫酸が補充されるよう
になつている。そして前記第2調合ボツクス5に
収容されている第2混合容器87には、第2貯留
容器22から高圧ガスを駆動源として送液配管5
1の、開閉弁88を有する側の分岐管51b及び
螺旋管、入口管を介して過酸化水素水が供給され
ると共に、第3貯留容器23から開閉弁90を有
する送液配管91を介して硫酸が供給され、夫々
の供給量が台秤92により計量されて所定の混合
比で混合される。この混合液は循環・吐出ポンプ
93、流体フイルタ94及び熱交換器95を含む
循環路96内で循環されて攪拌、過及び調温を
施され、このようにして調製された第2の洗浄用
化学薬品が吐出配管97を介して処理槽98に吐
出される。なお、第2混合容器87には、純水配
管57の、開閉弁99が設けられた分岐管57b
を介して純水が供給されうるようになつている。
The third storage container 23 includes a third replenishment container 85.
From there, sulfuric acid is replenished by a liquid feed pump 86. The second mixing container 87 housed in the second mixing box 5 is supplied with a liquid feeding pipe 5 using high pressure gas from the second storage container 22 as a driving source.
1, the hydrogen peroxide solution is supplied through the branch pipe 51b on the side having the on-off valve 88, the spiral pipe, and the inlet pipe, and is also supplied from the third storage container 23 through the liquid feeding pipe 91 having the on-off valve 90. Sulfuric acid is supplied, and the amount of each supply is measured by a platform scale 92 and mixed at a predetermined mixing ratio. This mixed liquid is circulated in a circulation path 96 that includes a circulation/discharge pump 93, a fluid filter 94, and a heat exchanger 95, and is subjected to stirring, filtration, and temperature control, and the thus prepared second cleaning liquid is Chemicals are discharged into a processing tank 98 via discharge piping 97 . Note that the second mixing container 87 includes a branch pipe 57b of the pure water pipe 57 provided with an on-off valve 99.
Pure water can be supplied via the

次に、第6図に基づいて第2実施例を説明す
る。
Next, a second embodiment will be described based on FIG.

この第2実施例は、フツ化水素酸等の腐食性の
高い原液を流量によつて計量する場合に、汎用の
流量計を使用して計量できるように工夫したもの
である。
This second embodiment is devised so that a general-purpose flowmeter can be used to measure a highly corrosive stock solution such as hydrofluoric acid based on the flow rate.

すなわち、第2実施例による調合装置は、フツ
化水素酸等の原液を貯留容器7から混合容器10
に供給すると共に、腐食性の低い計量液(水、油
等)を後述の循環路172内で原液の流量に対し
一定の流量比で反時計回りに循環させるベローズ
ポンプ163を設け、汎用の流量計174で計量
液の流量を計量することにより、原液の流量を求
めるようにしたものである。
That is, the blending device according to the second embodiment transfers the stock solution such as hydrofluoric acid from the storage container 7 to the mixing container 10.
A bellows pump 163 is provided to circulate a less corrosive metering liquid (water, oil, etc.) counterclockwise in a circulation path 172 (described later) at a constant flow rate with respect to the flow rate of the stock solution. The flow rate of the stock solution is determined by measuring the flow rate of the measuring liquid at a meter 174.

上記ベローズポンプ163は、本体164の両
側に固定した第1、第2シリンダ165,166
内に第1、第2ペローズ167,168を収容
し、両ベローズ167,168の底部を連結シヤ
フト170で連結してなり、空気配管160から
開閉弁161、絞り弁162を介して供給される
圧縮空気を第1、第2ベローズ167,168内
に交互に供給することにより、両ベローズ16
7,168を交互に膨張及び収縮させうるように
構成されている。そして第1シリンダ165は、
上記計量液が貯留された貯留容器171を含む循
環路172内に位置する一方、第2シリンダ16
6は第1貯留容器7と第1混合容器10を連絡す
る送液配管173の途中に位置している。
The bellows pump 163 has first and second cylinders 165 and 166 fixed on both sides of the main body 164.
First and second bellows 167, 168 are housed in the interior, and the bottoms of both bellows 167, 168 are connected by a connecting shaft 170. By alternately supplying air into the first and second bellows 167 and 168, both bellows 16
7,168 can be inflated and deflated alternately. And the first cylinder 165 is
The second cylinder 16 is located in a circulation path 172 including a storage container 171 in which the measured liquid is stored.
6 is located in the middle of a liquid feeding pipe 173 that connects the first storage container 7 and the first mixing container 10.

上記ベローズポンプ163においては、連結シ
ヤフト170が右行する際に第1シリンダ165
内に計量液が吸入されると共に、第2シリンダ1
66内の原液が第1混合容器10側へ送出される
ので、連結シヤフト170の1回の右行行程中の
両シリンダ165,166の内容積の変化量で比
を予め求めておけば、流量計174で第1シリン
ダ165への計量液の吸入量を検出することによ
り、第1混合容器10への原液の供給量を知るこ
とができる。このようにすれば、汎用の流量計等
安価で高精度の計量装置を用いて、フツ化水素酸
等の腐食性の高い原液の計量が可能になる。
In the bellows pump 163, when the connecting shaft 170 moves to the right, the first cylinder 165
The measuring liquid is sucked into the second cylinder 1.
Since the stock solution in 66 is sent to the first mixing container 10 side, if the ratio is determined in advance by the amount of change in the internal volume of both cylinders 165 and 166 during one rightward stroke of the connecting shaft 170, the flow rate can be adjusted. By detecting the amount of metered liquid sucked into the first cylinder 165 by the meter 174, the amount of the stock solution supplied to the first mixing container 10 can be known. In this way, it becomes possible to measure a highly corrosive stock solution such as hydrofluoric acid using an inexpensive and highly accurate measuring device such as a general-purpose flowmeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した半導体材料の洗浄用
化学薬品の調合装置の展開説明図、第2図は第1
図の部分拡大図、第3図は第1図の調合装置の斜
視図、第4図は第3図中A−A線に沿う内部機構
を一部省略した断面略図、第5図は第3図中B−
B線に沿う内部機構を一部省略した断面略図、第
6図は別の実施例の部分説明図である。 7,22,23……貯留容器、10,87……
混合容器、11,92……台秤(計量手段)、1
2,94……流体フイルタ(フイルタ手段)、7
3,93……循環・吐出ポンプ(吸引手段)、7
5,96……循環路、P……圧送系(供給手段)。
Fig. 1 is a developed explanatory diagram of a compounding device for cleaning chemicals for semiconductor materials to which the present invention is applied;
FIG. 3 is a perspective view of the blending device shown in FIG. 1, FIG. 4 is a schematic cross-sectional view taken along line A-A in FIG. B- in the diagram
FIG. 6 is a schematic cross-sectional view taken along line B with the internal mechanism partially omitted, and is a partial explanatory view of another embodiment. 7, 22, 23... Storage container, 10, 87...
Mixing container, 11, 92... Platform scale (measuring means), 1
2,94...Fluid filter (filter means), 7
3,93... Circulation/discharge pump (suction means), 7
5,96... Circulation path, P... Pressure feeding system (supply means).

Claims (1)

【特許請求の範囲】[Claims] 1 半導体用化学薬品を調合するための複数の原
液を夫々貯留する複数の貯留容器と、各貯留容器
の原液を混合する密閉式の混合容器と、複数の貯
留容器の原液を混合容器に個別に供給する複数の
供給手段と、混合容器に供給される各原液の供給
量を計量する計量手段と、混合容器内の液を吸引
する吸引手段と液中の異物を除去するフイルタ手
段とを含み、上記吸引手段及びフイルタ手段を介
して混合容器内の液を循環させる循環路とを備え
たことを特徴とする半導体用化学薬品の調合装
置。
1. A plurality of storage containers each storing a plurality of stock solutions for preparing chemicals for semiconductors, a closed mixing container for mixing the stock solutions in each storage container, and a mixing container for separately storing the stock solutions in the plurality of storage containers. It includes a plurality of supply means for supplying, a measuring means for measuring the supply amount of each stock solution supplied to the mixing container, a suction means for sucking the liquid in the mixing container, and a filter means for removing foreign substances in the liquid, A compounding device for chemicals for semiconductors, comprising a circulation path for circulating the liquid in the mixing container via the suction means and filter means.
JP59239644A 1984-11-13 1984-11-13 Mixing apparatus of chemical for semiconductor Granted JPS61118127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239644A JPS61118127A (en) 1984-11-13 1984-11-13 Mixing apparatus of chemical for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239644A JPS61118127A (en) 1984-11-13 1984-11-13 Mixing apparatus of chemical for semiconductor

Publications (2)

Publication Number Publication Date
JPS61118127A JPS61118127A (en) 1986-06-05
JPH0579372B2 true JPH0579372B2 (en) 1993-11-02

Family

ID=17047775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239644A Granted JPS61118127A (en) 1984-11-13 1984-11-13 Mixing apparatus of chemical for semiconductor

Country Status (1)

Country Link
JP (1) JPS61118127A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409310A (en) * 1993-09-30 1995-04-25 Semitool, Inc. Semiconductor processor liquid spray system with additive blending
AU4849499A (en) * 1998-06-30 2000-01-17 Adcs, Ltd. System for supply of multiple chemicals to a process tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122031A (en) * 1983-12-02 1985-06-29 Takeda Chem Ind Ltd Apparatus for automatically preparing solution such as chemical liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122031A (en) * 1983-12-02 1985-06-29 Takeda Chem Ind Ltd Apparatus for automatically preparing solution such as chemical liquid

Also Published As

Publication number Publication date
JPS61118127A (en) 1986-06-05

Similar Documents

Publication Publication Date Title
JP3586776B2 (en) Method and apparatus for accurate volumetric dilution / mixing of chemicals
TW322605B (en)
TWI445577B (en) Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system
JP6151810B2 (en) Fluid processing system and method
TWI428975B (en) Systems and methods for reclaiming process fluids in a processing environment
TWI418398B (en) Liquid ring pumping and reclamation systems in a processing environment
US6146008A (en) System for diluting ultrapure chemicals which is intended for the microelectronics industry
TWI454682B (en) Systems and methods for managing fluids using a liquid ring pump
US6623183B2 (en) Developer producing equipment and method
JP3719375B2 (en) Solution preparation equipment
CN107808833B (en) Treatment liquid supply device
TW201825164A (en) Apparatus for supplying treatment liquid
JPH10180076A (en) Diluting method of acid or alkali original liquid and diluting device
JPH0579372B2 (en)
US6253775B1 (en) Cleaning apparatus
JP6984875B2 (en) Chemical supply device
US20050146982A1 (en) Quick blend module
JP3120817B2 (en) Automatic developer dilution system
JP3610044B2 (en) Developer manufacturing apparatus and developer manufacturing method
JPH0661136A (en) Continuous automatic dilution device of developer
CN216800878U (en) Fluid infusion calibrating device and fluid infusion system
JP2003532286A (en) Apparatus and method for processing semiconductor wafer
JPS61159116A (en) Weighing equipment for liquid
JPH04196535A (en) Cleaning equipment
KR100301999B1 (en) Automatic Wax Mixing Liquid Dispenser