JPH0577736B2 - - Google Patents

Info

Publication number
JPH0577736B2
JPH0577736B2 JP60289304A JP28930485A JPH0577736B2 JP H0577736 B2 JPH0577736 B2 JP H0577736B2 JP 60289304 A JP60289304 A JP 60289304A JP 28930485 A JP28930485 A JP 28930485A JP H0577736 B2 JPH0577736 B2 JP H0577736B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
strength
alloy
titanium
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60289304A
Other languages
Japanese (ja)
Other versions
JPS62149836A (en
Inventor
Chihiro Taki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP28930485A priority Critical patent/JPS62149836A/en
Publication of JPS62149836A publication Critical patent/JPS62149836A/en
Publication of JPH0577736B2 publication Critical patent/JPH0577736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的) この発明は、高強度高耐食性を必要とす環境下
に適したチタン基合金に関するものである。 (従来技術) 純チタンは、その耐食性が優れていることによ
り、従来の耐食性金属に代つて広く工業用材料と
して使われるようになつてきた。しかしながら、
近年、科学プラント等のよりきびしい操業に伴
い、高温、高圧や腐食性の強い溶液にさらされる
ことが多く、純チタンより、より強度が高く、よ
り耐食性が優れた材料が要求されるようになつて
きた。このような状況下、材料面からチタンの改
良が進められた結果、例えば耐食性を改善した合
金としては、Ti−Pd合金、Ti−Ni合金、Ti−
Ni−Mo合金などがある。 Ti−Pd合金は、耐食性において純チタンより
かなり改善されているが、Pdという高価な金属
を添加するため、価格的に高いという欠点があ
る。 Ti−Ni合金、Ti−Ni−Mo合金は、いずれも
純チタンより耐食性は改善されてはいるが、Ti
−Pd合金ほどの耐食性はなく、又、腐食の強い
環境下では純チタンより耐食性が悪くなるという
欠点もある。 一方、高強度の点においては、Ti−6Al−4V、
Ti−15Mo等の合金があるが、Ti−6Al−4Vは純
チタンより耐食性が良くないという欠点があり、
又、Ti−15Moは純チタンに比べ製造が難しく、
価格が高いこと等の問題がある。 (発明の構成) 本発明は上記実情に鑑み、チタンの耐食性及び
強度面の両者の向上について鋭意研究を行つた結
果、本発明を見い出すに至つた。 すなわち本発明は、 ルテニウム 0.005wt%〜2.0wt%、 パラジウム 0.005wt%〜2.0wt%、 の一種又は二種と ニツケル 0.01wt%〜2.0wt%、 タングステン 0.005wt%〜0.5wt%、 モリブテン 0.01wt%〜1.0wt% の一種又は二種以上と 酸素 0.14wt%〜0.40wt%と 鉄 0.02wt%〜0.20wt%と を含有し、残部チタン及び不加避的不純物からな
る高強度高耐食性チタン基合金に関するものであ
る。 (発明の具体的説明) 本発明においてルテニウム、パラジウムを添加
するのは、これらの添加元素により著しく耐食性
を向上させることができ、添加量を増すことによ
つてその効果はより一層増す。しかしながら、
2.0wt%を越えると耐食性の効果はあまり上昇し
なくなり、又、ルテニウムとパラジウムは非常に
高価な金属であるので過度に添加することは経済
的でない。従つて、ルテニウム、パラジウムの上
限を2.0wt%とした。又、下限を0.005wt%とした
のは、これより少ない添加量では耐食性が向上し
ないためである。 ニツケル、タングステン、モリブデンを添加す
るのはルテニウム、パラジウムとの相互作用によ
り著しく耐食性を向上させる効果があるためであ
る。これらの元素を添加することにより高価なル
テニウムとパラジウムの使用量を減らすことがで
き、しかも、耐食性を向上させることができる。 ニツケルの上限を2.0wt%としたのは、これよ
り多い添加量では製造が著しく困難となるためで
あり、下限を0.01wt%としたのは、これより少な
い添加量では耐食性の向上が望めないためであ
る。 タングステンの上限を0.5wt%としたのは、こ
れより多い添加量では製造が著しく困難となるた
めであり、下限を0.005wt%としたのは、これよ
り少ない添加量では耐食性が向上しないためであ
る。 モリブデンの上限を1.0wt%としたのは、これ
より多い添加量では製造が著しく困難となるため
であり、下限を0.01wt%としたのは、これにより
少ない添加量では耐食性が向上しないためであ
る。 更に酸素、鉄を添加するのは、これらの元素に
より強度を著しく向上させることができるためで
あり、又、これらの元素を添加しても耐食性は低
下しない。 酸素の下限を0.14wt%としたのは、これより少
ない添加量では強度の上昇が少ないためであり、
上限を0.40wt%としたのは、これより多く添加し
てもあまり強度は上昇せず、逆に伸びが著しく低
下し、製造が困難となるためである。 鉄の下限を0.02wt%としたのは、これより少な
い添加量では強度の上昇が少ないためであり、上
限を0.20wt%としたのは、これより多く添加する
と耐食性が低下し始めるためである。 次に、本発明を具体的な実施例に基づいて説明
する。 (実施例) 本実施例に用いられた供試材は、スポンジチタ
ンと添加金属(酸素の場合はTiO2)を混合し、
真空もしくは不活性ガス雰囲気中でアーク溶解を
行なうことより得た。アーク溶解後のインゴツト
は面削した後、熱間圧延(900℃)にて3mmtの平
板を作製し、700℃にて熱処理した後酸洗により
酸化スチールを除去し、冷間圧延により2mmt
平板を作製し、脱脂・真空焼鈍(650℃×3H)
後、2×20mmの試験片を切り出しそれを600番に
て研磨したものを腐食試験片とした。引張り試験
片は、さら1mmtまで再び圧延し、脱脂・真空焼
鈍(650℃×3H)後、JIS13号B試験片を打抜き
でプレスにて打抜き作製した。 第1表に1%H2SO4、沸とうで24時間腐食試
験した結果を示す。 No.1〜No.4に純チタン、Ti−Ni合金、Ti−Ni
−Mo合金、Ti−Pd合金を比較材として示す。本
発明の合金例であるNo.5〜No.10は、ルテニウム又
はパラジウムとニツケル、タングズテン又はモリ
ブデンをチタンに添加した場合の結果が示されて
いる(O、Feの含有量は一定)。いずれの合金も
比較例材と比べ腐食速度が小さく耐食性にすぐれ
ていることがわかる。 供試材No.11〜No.18は、酸素の添加量を変化させ
た場合の腐食速度の違いを見たものであるが、い
ずれの合金とも大きな腐食速度の違いは見うけら
れず、酸素の添加量を増しても耐食性の悪い影響
を与えることがわかる。 本発明合金例であるNo.19〜No.26は、鉄の添加量
を変化させた場合の腐食速度の違いを見たもので
あるが、No.22、No.26のように鉄の添加量が0.3wt
の場合、腐食速度が大きくなるのがわかる。これ
より、鉄の濃度を上限は0.2wt%とした。 次に、酸素及び鉄の含有量を変化させた場合の
強度を変化について第1図、第2図に示す。 第1図は、Ti−0.05Ru−0.5Ni−0.03Fe中の酸
素の含有量を変化させた場合の引張強さの変化を
示したものである。この図からわかるように、酸
素濃度をわずか0.2wt%程度増加させるだけで、
10Kgf/mm2の引張り強さの上昇があることがわか
り、酸素添加することがいかに有効であるかがわ
かる。ただし、酸素農度を0.4wt%より多くても
強度はあまり上昇せず、伸びに著しい低下をまね
き製造が困難となるため上限を0.4wt%とした。
又、下限を0.14wt%としたのは、それより下の濃
度では強度の上昇が少ないためである。 第2図は、Ti−0.05Ru−0.5Ni−0.2O中の鉄の
含有量を変化させた場合の引張り強さの変化を示
したものである。この図よりわかるように、鉄の
含有量を増すことにより引張り強さも増すことが
わかる。ただし、前記の耐食性の試験結果より鉄
の含有量の上限は0.2wt%とした。下限を0.02wt
%としたのは、これより低い鉄含有量では強度の
上昇が少ないためである。 以上、本発明合金は、耐食性に優れていると同
時に高強度をも有しておい、これより本発明合金
は、既にチタン基合金にない特徴をもつたまつた
く新しいチタン基合金であることがわかる。
(Objective) The present invention relates to a titanium-based alloy suitable for environments requiring high strength and high corrosion resistance. (Prior Art) Due to its excellent corrosion resistance, pure titanium has come to be widely used as an industrial material in place of conventional corrosion-resistant metals. however,
In recent years, with the increasingly demanding operations of scientific plants, etc., which are often exposed to high temperatures, high pressures, and highly corrosive solutions, materials with higher strength and better corrosion resistance than pure titanium have become required. It's here. Under these circumstances, progress has been made to improve titanium from the material standpoint. For example, alloys with improved corrosion resistance include Ti-Pd alloy, Ti-Ni alloy, and Ti-
Examples include Ni-Mo alloys. Although Ti-Pd alloy has considerably improved corrosion resistance over pure titanium, it has the disadvantage of being expensive because it contains an expensive metal called Pd. Both Ti-Ni alloy and Ti-Ni-Mo alloy have improved corrosion resistance than pure titanium, but Ti
-It does not have the same corrosion resistance as Pd alloys, and also has the disadvantage that it has worse corrosion resistance than pure titanium in highly corrosive environments. On the other hand, in terms of high strength, Ti-6Al-4V,
There are alloys such as Ti-15Mo, but Ti-6Al-4V has the disadvantage that it has less corrosion resistance than pure titanium.
Additionally, Ti-15Mo is more difficult to manufacture than pure titanium.
There are problems such as high prices. (Structure of the Invention) In view of the above circumstances, the present invention was discovered as a result of intensive research into improving both the corrosion resistance and strength of titanium. That is, the present invention includes one or two of Ruthenium 0.005wt% to 2.0wt%, Palladium 0.005wt% to 2.0wt%, Nickel 0.01wt% to 2.0wt%, Tungsten 0.005wt% to 0.5wt%, and Molybdenum 0.01wt. %~1.0wt% of one or more types, oxygen 0.14wt%~0.40wt%, and iron 0.02wt%~0.20wt%, with the balance being titanium and unavoidable impurities. It concerns alloys. (Detailed Description of the Invention) In the present invention, the addition of ruthenium and palladium allows the corrosion resistance to be significantly improved by these additive elements, and the effect is further enhanced by increasing the amount added. however,
If it exceeds 2.0 wt%, the corrosion resistance effect will not increase much, and since ruthenium and palladium are very expensive metals, it is not economical to add them in excess. Therefore, the upper limit of ruthenium and palladium was set at 2.0wt%. The reason why the lower limit is set to 0.005 wt% is that the corrosion resistance will not improve if the amount added is smaller than this. The reason for adding nickel, tungsten, and molybdenum is that they have the effect of significantly improving corrosion resistance through interaction with ruthenium and palladium. By adding these elements, the amount of expensive ruthenium and palladium used can be reduced, and corrosion resistance can be improved. The upper limit of nickel was set at 2.0wt% because manufacturing would be extremely difficult if the amount added was greater than this, and the reason why the lower limit was set at 0.01wt% is that no improvement in corrosion resistance could be expected with a smaller amount added. It's for a reason. The upper limit of tungsten was set at 0.5wt% because manufacturing would be extremely difficult if the amount added was larger than this, and the lower limit was set at 0.005wt% because corrosion resistance would not improve if the amount added was smaller than this. be. The reason why the upper limit of molybdenum was set at 1.0wt% was because manufacturing would be extremely difficult if the amount added was larger than this, and the reason why the lower limit was set at 0.01wt% was because corrosion resistance would not improve with a smaller amount added. be. The reason why oxygen and iron are further added is that these elements can significantly improve strength, and addition of these elements does not reduce corrosion resistance. The lower limit of oxygen was set at 0.14wt% because if the amount added is smaller than this, the increase in strength will be small.
The reason why the upper limit was set at 0.40 wt% is that adding more than this does not significantly increase the strength, but on the contrary, the elongation decreases significantly, making manufacturing difficult. The reason why the lower limit of iron was set at 0.02wt% is that if the amount added is smaller than this, the increase in strength is small.The reason why the upper limit was set at 0.20wt% is because if more than this is added, the corrosion resistance starts to deteriorate. . Next, the present invention will be explained based on specific examples. (Example) The test material used in this example was a mixture of titanium sponge and an additive metal (TiO 2 in the case of oxygen).
Obtained by arc melting in vacuum or inert gas atmosphere. After arc melting, the ingot was faced, hot rolled (900℃) to produce a 3mm t flat plate, heat treated at 700℃, oxidized steel removed by pickling, and cold rolled to 2mm t. A flat plate was prepared and degreased and vacuum annealed (650℃ x 3H).
Thereafter, a 2 x 20 mm test piece was cut out and polished with No. 600 to provide a corrosion test piece. The tensile test piece was further rolled to 1 mm t , degreased and vacuum annealed (650°C x 3 hours), and then a JIS No. 13 B test piece was punched out using a press. Table 1 shows the results of a 24-hour corrosion test in 1% H 2 SO 4 and boiling water. Pure titanium, Ti-Ni alloy, Ti-Ni for No.1 to No.4
-Mo alloy and Ti-Pd alloy are shown as comparative materials. No. 5 to No. 10, which are alloy examples of the present invention, show the results when ruthenium or palladium and nickel, tungsten or molybdenum are added to titanium (O and Fe contents are constant). It can be seen that both alloys have lower corrosion rates and superior corrosion resistance than the comparative example materials. Test materials No. 11 to No. 18 were examined to see the difference in corrosion rate when the amount of oxygen added was changed, but no large difference in corrosion rate was observed for any of the alloys. It can be seen that even if the amount of addition is increased, corrosion resistance is adversely affected. No. 19 to No. 26, which are examples of alloys of the present invention, were examined to see the difference in corrosion rate when the amount of iron added was changed; The amount is 0.3wt
It can be seen that the corrosion rate increases in the case of . From this, the upper limit of iron concentration was set at 0.2wt%. Next, FIGS. 1 and 2 show the changes in strength when the oxygen and iron contents are changed. FIG. 1 shows the change in tensile strength when the oxygen content in Ti-0.05Ru-0.5Ni-0.03Fe was changed. As you can see from this figure, by increasing the oxygen concentration by only about 0.2wt%,
It was found that the tensile strength increased by 10 Kgf/mm 2 , which shows how effective the addition of oxygen is. However, even if the oxygen content is higher than 0.4wt%, the strength does not increase much and the elongation significantly decreases, making manufacturing difficult, so the upper limit was set at 0.4wt%.
Furthermore, the reason why the lower limit is set to 0.14 wt% is that the increase in strength is small at concentrations lower than that. FIG. 2 shows the change in tensile strength when the iron content in Ti-0.05Ru-0.5Ni-0.2O is changed. As can be seen from this figure, increasing the iron content also increases the tensile strength. However, based on the above corrosion resistance test results, the upper limit of the iron content was set at 0.2 wt%. Lower limit 0.02wt
% because an iron content lower than this results in little increase in strength. As described above, the alloy of the present invention has excellent corrosion resistance and high strength at the same time. From this, the alloy of the present invention is a strikingly new titanium-based alloy with characteristics not already found in titanium-based alloys. Recognize.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、酸素の含有量を変化させた場合の引
張強さの変化を示し、第2図は鉄の含有量を変化
させたは場合の引張強さの変化を示したものであ
る。
FIG. 1 shows the change in tensile strength when the oxygen content is changed, and FIG. 2 shows the change in the tensile strength when the iron content is changed.

Claims (1)

【特許請求の範囲】 1 ルテニウム 0.005wt%〜2.0wt%、 パラジウム 0.005wt%〜2.0wt%、 の一種又は二種と ニツケル 0.01wt%〜2.0wt%、 タングステン 0.005wt%〜0.5wt%、 モリブテン 0.01wt%〜1.0wt% の一種又は二種以上と 酸素 0.14wt%〜0.40wt%と 鉄 0.02wt%〜0.20wt%と を含有し、残部チタン及び不可避的不純物からな
る高強度高耐食性チタン基合金。
[Claims] 1 Ruthenium 0.005wt% to 2.0wt%, Palladium 0.005wt% to 2.0wt%, one or two of the following, Nickel 0.01wt% to 2.0wt%, Tungsten 0.005wt% to 0.5wt%, Molybdenum A high-strength, highly corrosion-resistant titanium group containing one or more of 0.01wt% to 1.0wt%, oxygen 0.14wt% to 0.40wt%, and iron 0.02wt% to 0.20wt%, with the remainder being titanium and inevitable impurities. alloy.
JP28930485A 1985-12-24 1985-12-24 Titanium base alloy having high strength and high corrosion resistance Granted JPS62149836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28930485A JPS62149836A (en) 1985-12-24 1985-12-24 Titanium base alloy having high strength and high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28930485A JPS62149836A (en) 1985-12-24 1985-12-24 Titanium base alloy having high strength and high corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62149836A JPS62149836A (en) 1987-07-03
JPH0577736B2 true JPH0577736B2 (en) 1993-10-27

Family

ID=17741445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28930485A Granted JPS62149836A (en) 1985-12-24 1985-12-24 Titanium base alloy having high strength and high corrosion resistance

Country Status (1)

Country Link
JP (1) JPS62149836A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436445A (en) * 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd Production of corrosion resisting seamless titanium alloy tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548529A (en) * 1977-06-21 1979-01-22 Nec Corp Production of sintered type electrophotographic photoreceptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548529A (en) * 1977-06-21 1979-01-22 Nec Corp Production of sintered type electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS62149836A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
US11713495B2 (en) Tantalum based alloy that is resistant to aqueous corrosion
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
US9187802B2 (en) Niobium based alloy that is resistant to aqueous corrosion
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH0257136B2 (en)
EP0379798B1 (en) Titanium base alloy for superplastic forming
EP3891313B1 (en) Titanium alloys having improved corrosion resistance, strength, ductility, and toughness
JP2871867B2 (en) Corrosion resistant Ti-based alloy
JP3274142B2 (en) Aluminum-manganese-silicon-nitrogen austenitic stainless acid-resistant steel
JPH0577736B2 (en)
US4526749A (en) Tantalum-columbium-molybdenum-tungsten alloy
JPH06108187A (en) Nitrogen-added high strength titanium alloy
JPH0577733B2 (en)
JPS642662B2 (en)
RU2039113C1 (en) Titanium-base alloy
GB2423089A (en) Beta titanium eutectoid alloys
JPH06228685A (en) High strength and high ductility tial intermetallic compound and its production
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPS62133036A (en) Titanium alloy material having superior corrosion resistance
JPS62103330A (en) High-strength titanium alloy excellent in cold workability
JPS63144892A (en) Welding rod
JPH03197631A (en) Intermetallic compound tial-cr base alloy
JPH0366388B2 (en)
JPH05230570A (en) Tial-base alloy with high ductility

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term