JP2004027254A - Titanium alloy having excellent corrosion resistance and method of producing the same - Google Patents

Titanium alloy having excellent corrosion resistance and method of producing the same Download PDF

Info

Publication number
JP2004027254A
JP2004027254A JP2002181912A JP2002181912A JP2004027254A JP 2004027254 A JP2004027254 A JP 2004027254A JP 2002181912 A JP2002181912 A JP 2002181912A JP 2002181912 A JP2002181912 A JP 2002181912A JP 2004027254 A JP2004027254 A JP 2004027254A
Authority
JP
Japan
Prior art keywords
corrosion resistance
titanium alloy
added
test
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002181912A
Other languages
Japanese (ja)
Other versions
JP4065146B2 (en
Inventor
Hideki Fujii
藤井 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002181912A priority Critical patent/JP4065146B2/en
Publication of JP2004027254A publication Critical patent/JP2004027254A/en
Application granted granted Critical
Publication of JP4065146B2 publication Critical patent/JP4065146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy which does not contain expensive platinum group elements and exhibits excellent corrosion resistance in the severe environment such as a gap part in which nonoxidizing acid or chlorine ions are present, and to provide a method of producing the same. <P>SOLUTION: The titanium alloy comprising, by mass, 0.1 to 1.5% Ni, 0.l to 2.1% Cu and 0.02 to 0.3% Fe is obtained. Alternatively, the titanium alloy comprising one or more of metals selected from Mo, Nb and Zr of 0.05 to 0.5% in total, or comprising one or more kinds of metals selected from Cr and Co of 0.05 to 0.3% in total in addition to the above composition is obtained. The alloys are subjected to hot or cold working, are annealed at 650 to 850°C, and are cooled at a cooling rate slower than air cooling so as to be an equiaxial recrystallized structure, so that the corrosion resistance thereof can further be enhanced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れたチタン合金に関するものであり、特に、非酸化性の酸や隙間部などの厳しい腐蝕環境にて使用されるチタン合金に関する。
【0002】
【従来の技術】
純チタンは耐食性に優れることから、様々な腐蝕環境下で広く工業用材料として使用されている。特に、硝酸、クロム酸などの酸化性の酸や、海水、塩化物イオン含有溶液に対しては優れた耐食性を示す。
【0003】
しかし、塩酸、硫酸などの非酸化性酸中では、上記の環境におけるほど高い耐食性が期待できず、また、塩素イオン等が存在する場合、隙間部においていわゆる隙間腐蝕を生じることがあり、この点を改良した合金として、Ti−0.2%Pd(ASTM規格のグレード7、11)などチタンに白金族元素(Ru、Rh、Pd、Os、Ir及びPt)を微量添加した合金(Corrosion、31(1975)、p.60)、Ti−0.5Ni−0.05Ru(米国特許4666666)のようにNiとRuを複合添加した合金(特開昭61−127844号公報)など、各種の合金が開発されてきた。
【0004】
しかしながら、これらの合金は耐食性が優れるものの、希少かつ極めて高価な白金族元素を添加していることから、チタン合金の製造コストが大幅に高くなる。
【0005】
これに対し安価で耐食性に優れた合金として、Ti−0.8%Ni−0.3%Mo(ASTM規格のグレード12)のようにNiとMoを複合添加した合金(例えば、特公昭54−8529号公報)及び、TiにCr、Cu、Si及びAlの1種以上とNiを複合添加した合金が特開平4−308051号公報に開示されているが、純チタンよりは耐食性が優れるものの、特に非酸化性酸中においてはその改善代が白金族元素添加合金より小さく、さらなる改善が望まれていた。
【0006】
【発明が解決しようとする課題】
以上のような現状に鑑み、本発明は、高価な白金属元素を添加することなく、酸化性の酸や海水はもとより、非酸化性の酸中のような厳しい環境下においても優れた耐食性を示し、また塩素イオンが存在するような環境下での隙間腐蝕に対しても優れた抵抗力を示すチタン合金を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明者は、チタンの耐食性に及ぼす合金元素及び組織の影響について鋭意研究を重ねた結果、Ni、Cu及びFeをチタンに複合添加すると、著しく耐食性が向上することを見出し、従来合金のように高価な白金属元素を含有させることなく、非酸化性の酸中の耐食性や耐隙間腐蝕に優れる合金を発明するに至った。その要旨とするところは以下の通りである。
(1) 質量%で、
Ni:0.1〜1.5%
Cu:0.1〜2.1%、
Fe:0.02〜0.3%、
を含有し、残部Tiと不純物元素からなることを特徴とする耐食性に優れたチタン合金。
(2) さらに、質量%で、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有することを特徴とする(1)に記載の耐食性に優れたチタン合金。
(3) さらに、質量%で、Cr、Coの中から1種以上を合計で、0.05〜0.3%含有することを特徴とする(1)又は(2)に記載の耐食性に優れたチタン合金。
(4) 微視組織が等軸再結晶組織からなることを特徴とする(1)〜(3)のいずれか1項に記載の耐食性に優れたチタン合金。
(5) 熱間又は冷間で加工後、650℃以上で850℃以下の温度にて焼鈍を行い、空冷又は炉冷することを特徴とする(4)に記載の耐食性に優れたチタン合金の製造方法。
【0008】
【発明の実施の形態】
本発明者は、Ni及びCuを複合添加したチタン合金の非酸化性酸中における耐食性に及ぼす合金元素の影響について詳細な検討を行った。その結果、適量のNi、Cu及びFeをチタンに複合添加することにより、極めて高価な白金族元素を添加した高耐食チタン合金に匹敵する特性を達成できることを見出した。
【0009】
その理由は次に述べるとおりである。すなわち、Niはチタン中にほとんど固溶しないため、高温からの冷却中にNiの濃化したβ相やTiNi相(以下、第2相と記す)を生成させる。さらにCuを添加するとCuが第2相に濃化し、Cuがα相中に均一にかつ希薄に分布しているCu単独添加合金の場合に比べて、チタン全体の耐食性が改善される。
【0010】
しかし、Ni及びCuを複合添加したチタン合金の場合、白金族元素を添加したチタン合金に匹敵する耐食性を得るには5%以上のCuを添加する必要があるが、加工性や偏析の問題を生じる。これに対して微量のFeを添加すると、Cu量が2.1%以下であっても第2相にCuが高濃度で濃化し、白金族元素を添加したチタン合金と同等の耐食性が得られる。
【0011】
以下、成分の限定理由を説明する。なお、以下の説明において特に断らない限り%は質量%を表わすものとする。
【0012】
Niは、水素過電圧を変化させることによりチタンの耐食性を向上させる元素であり、Cu及びFeとの複合添加によって極めて高い耐食性が得られる。この効果は、Niの添加量が0.1%未満では不十分であり、また1.5%を超えて添加してもその効果は飽和してしまい、加工性や偏析の問題を生じ返って悪影響を及ぼす。従って、Ni量を0.1〜1.5%の範囲とした。
【0013】
Cuもチタンの耐食性を向上させる元素であり、Ni及びFeとの複合添加によって極めて高い耐食性が得られる。その効果は0.1%未満では不十分であり、2.1%を超えて添加してもその効果は飽和してしまい、加工性や偏析の問題を生じかえって悪影響を及ぼす。従って、Cu量を0.1〜2.1%の範囲とした。
【0014】
Feは、Ni及びCuの複合添加によるCuの第2相への濃縮を促進させて耐食性を向上させる元素であり、この効果を得るには、Feが0.02%以上添加されていることが必須である。ただし、0.3%を超えてFeが添加されると、Feが本来有する耐食性劣化効果が顕著となり、材料の耐食性が損なわれる。従って、Feの添加量は0.02〜0.3%の範囲であることが必要である。
【0015】
さらに、Mo、Nb、Zrの中から1種以上を含有しても良い。これら元素は単独でチタンに添加しても耐食性改善効果は小さいが、Ni、Cu、Feを複合添加した合金に添加すると、さらに耐食性を高めることができる。ただし、Mo、Nb、Zrの1種以上を合計で0.05%以上添加しないとその効果は小さく、また、合計で0.5%を超えて添加してもその効果は飽和してしまい、加工性を損なうなどの問題を生じかえって悪影響を及ぼす。従って、Mo、Nb、Zrの1種以上の添加量を合計で、0.05〜0.5%の範囲とした。
【0016】
さらに、必要に応じてCr、Coの1種以上を含有させても良い。これらの元素は単独でチタンに添加すると耐食性はむしろ低下することがあるが、Ni、Cu、Feを複合添加した合金や、さらにMo、Nb、Zrを添加した合金に複合添加すると、耐食性をより高めることができる。ただし、Cr、Coの1種以上の合計が0.05%未満ではその効果は小さく、また、合計で0.3%を超えて添加してもその効果は飽和してしまい、加工性を損なうなどの問題を生じかえって悪影響を及ぼす。従って、Cr、Coの1種以上の添加量を合計で0.05〜0.5%の範囲とした。
【0017】
次に微視組織について説明する。チタン合金は一般に高温のβ単相域から低温のα域又はα+β二相域に冷却されると、冷却速度に応じて大小の針状組織を呈する。このときβ相からα相が生成する変態反応の不均一性に起因して、元素分布がやや不均一になる傾向がある。一方、これら針状組織を熱間又は冷間で加工し、さらに焼鈍により再結晶させ等軸組織化すると、等軸のα相の間(粒界や粒界三重点)に第2相が分布した均一組織が得られる。腐蝕反応は電気化学的な反応であり、このような均一組織の方が、電位が均一化し、耐食性がより高くなる。従って、合金の微視組織は等軸再結晶組織であることとした。
【0018】
ただし、この第2相の距離があまりにも離れると、その中間領域においてはこの第2相による耐食性向上効果が及ばなくなる。結晶粒径が200μmを超えると第2相の距離が離れすぎ、部分的に耐食性が低下するため、200μm以下であることが好ましい。また、結晶粒径は微細であるほど電位が均一化するため、より効果的な範囲は150μm以下であり、最適な範囲は100μm以下である。
【0019】
結晶粒径の下限は規定しないが、現状の技術では5μm程度である。
【0020】
次に製造方法について説明する。本発明のチタン合金は、熱間又は冷間で加工した後に、焼鈍を行い、冷却して製造する。焼鈍は熱間又は冷間加工組織をα+β二相の等軸組織とするために施す。焼鈍温度は650℃未満では、合金元素の拡散が不十分なため再結晶が進行しにくく、十分な等軸組織が得られないため、650℃を下限とする。一方、焼鈍温度が850℃を超えるとβ相の量が多くなりすぎ、冷却課程でβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になるため、850℃を上限とした。
【0021】
また、焼鈍後、水冷すると冷却過程でβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になる。等軸組織を室温まで冷却維持するため、冷却方法は空冷又は炉冷とした。なお、冷却方法は、結晶粒径が200μm以下の等軸組織が得られる条件であれば、強制空冷でも良く、雰囲気温度を変化させて特定の温度範囲の冷却速度を特定の冷却速度とする制御冷却でも良い。
【0022】
【実施例】
本発明を、実施例を用いてさらに詳しく説明する。
(実施例1)
表1、表2(表1のつづき1)に示した成分からなるインゴットを、真空アーク2回溶解により準備し、これを熱間鍛造して厚さ150mmのスラブとした。このスラブを850℃に加熱し、厚さ10mmの板に熱間圧延し、750℃で1時間焼鈍後、空冷した。この製造方法は、本発明(5)に記載の方法に該当し、いずれの試料も等軸の再結晶粒からなり、表中本発明(1)〜(3)のいずれか1項に記載の成分を有する合金は、いずれも本発明(4)の実施例である。
【0023】
上記の厚板から5mm厚、30mm幅、40mm長の試験片を切り出し、1%及び5%の沸騰硫酸中に、また5%の沸騰塩酸中に各々48時間浸漬し、腐蝕減量を測定し、腐蝕速度を算出した。その結果を表1、表2(表1のつづき1)に合わせて示す。なお、備考欄には本発明の範囲であるものは該当する請求項の番号を示し、本発明の範囲外であるものは比較例とした。
【0024】
【表1】

Figure 2004027254
【0025】
【表2】
Figure 2004027254
【0026】
さて表1、表2(表1のつづき1)において、試験番号1は工業用純チタンに対して行った試験結果であり、いずれの環境においても大きな腐蝕速度にて腐蝕が進行している。これに対し、試験番号2のPd添加合金及び試験番号4のNi及びRu複合添加合金は、著しく耐食性が改善しており、いずれの環境においても腐蝕速度は1mm/年を大きく下回る値となっている。しかしながら、微量とはいえ高価な白金属元素を添加しており、幅広い用途に多量に使用するには多大なコストがかかってしまう。また、試験番号3のTi−Ni−Mo合金は、硫酸中においては純チタンより耐食性は改善しているが、依然として大きな腐蝕速度であり、塩酸中では耐食性改善効果もほとんど認められなかった。
【0027】
さて、試験番号5及び6は、各々チタンにNi及びCuを添加した実質的な2元系合金である。これらの耐食性も、環境によっては純チタンより多少良好であるがその改善しろは小さく、腐蝕環境によっては改善が認められない場合もあった。
【0028】
これに対し、本発明(1)の実施例で、Ni、Cu及びFeを複合添加した試験番号8、9、10、13、14、17及び18は、いずれの場合も、試験を行ったすべての環境において、純チタン(試験番号1)やTi−Ni−Mo合金(試験番号3)を大きく上回る耐食性を示しており、高価なPdやRuを添加した合金(試験番号2及び4)と同等の耐食性を示している。しかし、試験番号7、12及び16では優れた耐食性は得られなかった。その理由は、試験番号7では、Niの添加量が、試験番号12ではCuの添加量が、また試験番号16ではFeの添加量が、本発明(1)で規定された量に達していなかったためである。
【0029】
また、試験番号19でも、Feの添加量が本発明(1)で規定された量を超えたため、十分な耐食性が得られなかった。さらに、試験番号11及び15では、高耐食性が得られているが、これよりもNi又はCuの添加量の低い試験番号10及び14とほぼ同等の耐食性が得られており、Ni及びCuの効果が飽和している。そればかりか、NiやCuを多く添加しすぎて加工性を損なうなどの製造上の問題を生じた。
【0030】
以上のように適量のCu、Ni及びFeを複合添加することにより、高耐食性のチタン合金が得られるが、これに、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有させることにより、その耐食性をさらに高めることができる。例えば、表2(表1のつづき1)において、本発明(2)の実施例である試験番号20〜25では、ほぼ等量のNi、Cu及びFeを複合添加した試験番号9に比べて、腐蝕速度がさらに低下しており、耐食性が向上している。
【0031】
しかし、試験番号26〜29のように、その合計の添加量が本発明(2)で規定された0.05%に満たない場合、耐食性改善効果はほとんど認められない。また、試験番号30のように、0.5%を超えてこれらの元素を添加しても、Mo、Nb、Zrの添加量の合計がこれ以下である試験番号25と同等の耐食性しか得られていない。そればかりか、加工性を損なうなどの製造上の問題を生じた。
【0032】
このようなNi、Cu及びFeを複合添加した合金の耐食性改善効果は、本発明(3)の効果、すなわちCr、Coの中から1種以上を合計で、0.05〜0.3%含有することによって向上させることができる。例えば、表2(表1のつづき1)において、本発明(3)の実施例である試験番号31〜35では、ほぼ等量のNi、Cu及びFeを添加した試験番号9に比べて、腐蝕速度がさらに低下しており、耐食性が向上している。
【0033】
しかし、試験番号36〜38のように、その合計の添加量が本発明(3)で規定された0.05%に満たない場合、耐食性改善効果はほとんど認められない。
【0034】
また、試験番号39のように、0.3%を超えてこれらの元素を添加しても、Cr、Coの添加量の合計がこれ以下である試験番号35と同等の耐食性しか得られていない。そればかりか、加工性を損なうなどの製造上の問題を生じた。
【0035】
試験番号40〜42は、Nb、Mo、Zrを添加する本発明(2)の効果と、Co、Crを添加する本発明(3)の効果の両方が発現した例であり、いずれも、試験番号1〜42に記載された合金の中で最も低い腐蝕速度、すなわち最も高い耐食性を示している。
(実施例2)
表1および表2(表1のつづき1)の試験番号9、21及び34の成分のインゴットを実施例1と同様に熱間圧延し、表3に示した条件で熱処理を施した。この試料から切り出した試料を、5%沸騰塩酸中に48時間浸漬し、腐蝕減量を測定し、腐蝕速度を算出した。腐蝕試験結果を表3に合わせて示す。
【0036】
【表3】
Figure 2004027254
【0037】
表3において、本発明(5)に記載の方法により製造した本発明(4)の実施例は、いずれも0.5mm/年未満の腐蝕速度であり、高い耐食性を示したが、焼鈍温度や冷却条件が、本発明(5)に規定された条件を逸脱した試料は、0.75mm/年以下の比較的低い腐蝕速度ではあるが、0.5mm/年以上の腐蝕速度となっており、本発明(4)の実施例に比べるといずれも耐食性が低下していた。
【0038】
これは、焼鈍温度又は冷却方法が本発明の範囲外であったことが原因である。
【0039】
すなわち、試験番号43、50及び57は、焼鈍温度が本発明(5)で規定された650℃未満であったため、再結晶が十分進行せず所望の等軸組織が十分に得られず、本発明(4)の実施例に比べると耐食性が低下した。一方、試験番号48、49、55、56、62及び63は、焼鈍温度が850℃を超えたため、β相の量が多くなりすぎ、冷却中にβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になったため、本発明(4)の実施例に比べると耐食性が低下した。また、試験番号46、53及び60では、水冷したため、冷却速度が速すぎ、冷却課程において、β相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になり、本発明(4)の実施例に比べると耐食性が低下した。
(実施例3)
実施例1で使用した材料の一部を用いて隙間腐蝕の実験を行った。試験片は、2枚の試料の中央に穴を空け、これらを付き合わせ、さらにテフロン(登録商標)コーティングしたチタン製ボルトを差し込み、片側をナットで固定し、さらにこれを締め付けたものを用いた。そして、この突き合わせ試料を、pH 6.0の沸騰10%NaCl水溶液中に1〜3日間浸漬し、隙間腐蝕の有無を調べた。その結果を表4に示す。
【0040】
【表4】
Figure 2004027254
【0041】
表4において、試験番号1の工業用純チタンでは、1日の浸漬ですでに隙間腐蝕が発生している。これに対し、試験番号2のPd添加合金及び試験番号4のNi及びRu複合添加合金は、著しく耐隙間腐蝕性が改善しており、いずれの環境においても3日間の浸漬でも隙間腐蝕は発生しなかった。しかしながら、微量とはいえ高価な白金属元素が添加されており、幅広い用途に多量に使用するには、高コストとなってしまう。また、試験番号3のTi−Ni−Mo合金は、純チタンより耐隙間腐蝕性は改善しているが、3日目には隙間腐蝕が発生しており、本試験条件では必ずしも十分な耐隙間腐蝕性を示さなかった。
【0042】
以上の比較例に対し、本発明の実施例である試験番号9、24、34及び41のチタン合金では、いずれも3日間の浸漬で隙間腐蝕は発生しておらず、極めて高い耐隙間耐食性が確認された。
【0043】
【発明の効果】
以上説明したように、本発明により、高価な白金属元素を含有せず、非酸化性の酸や、塩素イオンが存在する隙間部のような厳しい環境下において優れた耐食性を示すチタン合金、及びその製造方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a titanium alloy having excellent corrosion resistance, and more particularly to a titanium alloy used in a severe corrosive environment such as a non-oxidizing acid or a gap.
[0002]
[Prior art]
Pure titanium is widely used as an industrial material under various corrosive environments because of its excellent corrosion resistance. In particular, it exhibits excellent corrosion resistance to oxidizing acids such as nitric acid and chromic acid, seawater, and chloride ion-containing solutions.
[0003]
However, in non-oxidizing acids such as hydrochloric acid and sulfuric acid, high corrosion resistance cannot be expected as in the above-mentioned environment, and when chlorine ions or the like are present, so-called crevice corrosion may occur in gaps. (Ti, 0.2% Pd (ASTM grades 7 and 11)) and an alloy (Corrosion, 31) containing a small amount of a platinum group element (Ru, Rh, Pd, Os, Ir and Pt) added to titanium. (1975), p.60), and various alloys such as Ti-0.5Ni-0.05Ru (U.S. Pat. No. 4,666,666) to which Ni and Ru are added in combination (Japanese Patent Application Laid-Open No. 61-127844). Has been developed.
[0004]
However, these alloys have excellent corrosion resistance, but the addition of rare and extremely expensive platinum group elements greatly increases the cost of producing titanium alloys.
[0005]
On the other hand, as an alloy which is inexpensive and has excellent corrosion resistance, an alloy containing a combination of Ni and Mo, such as Ti-0.8% Ni-0.3% Mo (ASTM grade 12) (for example, Japanese Patent Publication No. No. 8529) and an alloy in which one or more of Cr, Cu, Si and Al are added to Ti in combination with Ni is disclosed in Japanese Patent Application Laid-Open No. Hei 4-308051, but the corrosion resistance is superior to that of pure titanium. Particularly in non-oxidizing acids, the improvement is smaller than that of the alloy containing a platinum group element, and further improvement has been desired.
[0006]
[Problems to be solved by the invention]
In view of the above situation, the present invention provides excellent corrosion resistance not only in oxidizing acids and seawater but also in severe environments such as in non-oxidizing acids without adding expensive white metal elements. Another object of the present invention is to provide a titanium alloy which exhibits excellent resistance to crevice corrosion in an environment where chlorine ions are present.
[0007]
[Means for Solving the Problems]
The present inventor has conducted intensive studies on the effects of alloy elements and structures on the corrosion resistance of titanium, and as a result, found that when Ni, Cu and Fe are added to titanium in a complex manner, the corrosion resistance is significantly improved. The inventors have invented an alloy which is excellent in corrosion resistance in non-oxidizing acid and crevice corrosion resistance without containing an expensive white metal element. The summary is as follows.
(1) In mass%,
Ni: 0.1 to 1.5%
Cu: 0.1 to 2.1%,
Fe: 0.02 to 0.3%,
A titanium alloy having excellent corrosion resistance, characterized by containing Ti and the balance of Ti and impurity elements.
(2) Titanium excellent in corrosion resistance according to (1), further comprising 0.05 to 0.5% by mass of at least one of Mo, Nb and Zr in mass%. alloy.
(3) Further, it is excellent in corrosion resistance according to (1) or (2), characterized in that it contains 0.05 to 0.3% in total of at least one of Cr and Co in mass%. Titanium alloy.
(4) The titanium alloy excellent in corrosion resistance according to any one of (1) to (3), wherein the microstructure comprises an equiaxed recrystallized structure.
(5) Titanium alloy excellent in corrosion resistance according to (4), characterized in that after working in a hot or cold state, annealing is performed at a temperature of 650 ° C. or more and 850 ° C. or less, and air or furnace cooling is performed. Production method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted detailed studies on the effect of alloying elements on the corrosion resistance of a titanium alloy to which Ni and Cu are added in a non-oxidizing acid. As a result, they have found that by adding a suitable amount of Ni, Cu and Fe to titanium in combination, it is possible to achieve characteristics comparable to a highly corrosion-resistant titanium alloy to which an extremely expensive platinum group element is added.
[0009]
The reason is as follows. That is, since Ni hardly forms a solid solution in titanium, a β phase or a Ti 2 Ni phase (hereinafter, referred to as a second phase) in which Ni is concentrated is formed during cooling from a high temperature. Further, when Cu is added, Cu is concentrated in the second phase, and the corrosion resistance of the entire titanium is improved as compared with the case of a Cu-only alloy in which Cu is uniformly and dilutely distributed in the α phase.
[0010]
However, in the case of a titanium alloy to which Ni and Cu are added in combination, it is necessary to add 5% or more of Cu in order to obtain corrosion resistance comparable to that of a titanium alloy to which a platinum group element is added. Occurs. On the other hand, when a small amount of Fe is added, Cu is concentrated at a high concentration in the second phase even if the Cu content is 2.1% or less, and the same corrosion resistance as a titanium alloy to which a platinum group element is added can be obtained. .
[0011]
Hereinafter, the reasons for limiting the components will be described. In the following description,% means mass% unless otherwise specified.
[0012]
Ni is an element that improves the corrosion resistance of titanium by changing the hydrogen overvoltage, and extremely high corrosion resistance can be obtained by adding it in combination with Cu and Fe. This effect is insufficient if the amount of Ni added is less than 0.1%, and the effect is saturated even if it is added more than 1.5%, causing problems of workability and segregation. Adversely affect. Therefore, the Ni content is set in the range of 0.1 to 1.5%.
[0013]
Cu is also an element for improving the corrosion resistance of titanium, and extremely high corrosion resistance can be obtained by adding Ni and Fe in combination. If the effect is less than 0.1%, the effect is not sufficient, and if it exceeds 2.1%, the effect is saturated, and the problems of workability and segregation are caused and adversely affected. Therefore, the Cu content is set in the range of 0.1 to 2.1%.
[0014]
Fe is an element that promotes the concentration of Cu into the second phase by the combined addition of Ni and Cu to improve the corrosion resistance. To obtain this effect, Fe must be added in an amount of 0.02% or more. Required. However, when Fe is added in excess of 0.3%, the corrosion resistance deterioration effect inherent to Fe becomes remarkable, and the corrosion resistance of the material is impaired. Therefore, the amount of Fe added needs to be in the range of 0.02 to 0.3%.
[0015]
Further, one or more of Mo, Nb and Zr may be contained. Even if these elements are independently added to titanium, the effect of improving corrosion resistance is small, but if they are added to an alloy to which Ni, Cu, and Fe are added in combination, the corrosion resistance can be further increased. However, the effect is small unless at least one of Mo, Nb, and Zr is added in a total amount of 0.05% or more, and the effect is saturated even if the total amount exceeds 0.5%. Problems such as impairment of workability are caused and adverse effects are caused. Therefore, the total amount of one or more of Mo, Nb, and Zr is set in the range of 0.05 to 0.5%.
[0016]
Further, if necessary, one or more of Cr and Co may be contained. When these elements are added alone to titanium, the corrosion resistance may be rather reduced. However, when these elements are added to an alloy to which Ni, Cu, and Fe are added in a combined manner, and further added to an alloy to which Mo, Nb, and Zr are added, the corrosion resistance is improved. Can be enhanced. However, if the total of at least one of Cr and Co is less than 0.05%, the effect is small, and if the total exceeds 0.3%, the effect is saturated and the workability is impaired. Such problems are adversely affected. Therefore, the addition amount of at least one of Cr and Co is set in the range of 0.05 to 0.5% in total.
[0017]
Next, the microstructure will be described. Generally, when a titanium alloy is cooled from a high-temperature β single-phase region to a low-temperature α region or α + β two-phase region, it exhibits a large or small acicular structure according to the cooling rate. At this time, the element distribution tends to be slightly non-uniform due to the non-uniformity of the transformation reaction in which the α phase is generated from the β phase. On the other hand, when these needle-like structures are worked hot or cold, and then recrystallized by annealing to form an equiaxed structure, the second phase is distributed between equiaxed α phases (grain boundaries and triple points of grain boundaries). The obtained uniform structure is obtained. The corrosion reaction is an electrochemical reaction, and such a uniform structure has a more uniform potential and higher corrosion resistance. Therefore, the microstructure of the alloy was determined to be an equiaxed recrystallization structure.
[0018]
However, if the distance of the second phase is too large, the effect of improving the corrosion resistance by the second phase does not reach the intermediate region. When the crystal grain size exceeds 200 μm, the distance between the second phases is too large, and the corrosion resistance is partially reduced. Therefore, it is preferably 200 μm or less. Further, since the potential becomes more uniform as the crystal grain size becomes finer, the more effective range is 150 μm or less, and the optimal range is 100 μm or less.
[0019]
The lower limit of the crystal grain size is not specified, but is about 5 μm in the current technology.
[0020]
Next, a manufacturing method will be described. The titanium alloy of the present invention is produced by working hot or cold, then annealing and cooling. Annealing is performed to make the hot or cold worked structure an α + β two-phase equiaxed structure. If the annealing temperature is lower than 650 ° C., the diffusion of alloying elements is insufficient, so that recrystallization hardly proceeds and a sufficient equiaxed structure cannot be obtained. On the other hand, if the annealing temperature exceeds 850 ° C., the amount of the β phase becomes too large, needle-like α phases are generated in the β phase in the cooling process, the equiaxed structure cannot be maintained, and the element distribution becomes uneven. Therefore, 850 ° C. was set as the upper limit.
[0021]
Further, if water cooling is performed after annealing, needle-like α-phase is generated in β-phase in the cooling process, so that an equiaxed structure cannot be maintained and the distribution of elements becomes non-uniform. In order to keep the equiaxed structure cooled to room temperature, the cooling method was air cooling or furnace cooling. The cooling method may be forced air cooling as long as an equiaxed structure with a crystal grain size of 200 μm or less can be obtained, and the cooling rate in a specific temperature range is controlled by changing the ambient temperature to a specific cooling rate. Cooling may be used.
[0022]
【Example】
The present invention will be described in more detail with reference to examples.
(Example 1)
An ingot composed of the components shown in Tables 1 and 2 (continuation 1 in Table 1) was prepared by melting twice with a vacuum arc, and was hot forged into a slab having a thickness of 150 mm. The slab was heated to 850 ° C., hot-rolled into a 10 mm thick plate, annealed at 750 ° C. for 1 hour, and air-cooled. This production method corresponds to the method described in the present invention (5), and all the samples consist of equiaxed recrystallized grains, and are described in the table according to any one of the present inventions (1) to (3). All the alloys having the components are examples of the present invention (4).
[0023]
A test piece having a thickness of 5 mm, a width of 30 mm and a length of 40 mm was cut out from the above-mentioned thick plate, immersed in 1% and 5% boiling sulfuric acid, and immersed in 5% boiling hydrochloric acid for 48 hours, and the corrosion loss was measured. The corrosion rate was calculated. The results are shown in Tables 1 and 2 (continuation 1 in Table 1). In the remarks column, those that fall within the scope of the present invention indicate the numbers of the corresponding claims, and those that fall outside the scope of the present invention are comparative examples.
[0024]
[Table 1]
Figure 2004027254
[0025]
[Table 2]
Figure 2004027254
[0026]
In Tables 1 and 2 (continuation 1 in Table 1), Test No. 1 is a test result performed on pure titanium for industrial use, and corrosion progresses at a high corrosion rate in any environment. On the other hand, the Pd-added alloy of Test No. 2 and the Ni- and Ru-combined additive alloys of Test No. 4 have remarkably improved corrosion resistance, and the corrosion rate is much lower than 1 mm / year in any environment. I have. However, since a small amount of an expensive white metal element is added, a large amount of cost is required to use a large amount in a wide range of applications. Further, the Ti—Ni—Mo alloy of Test No. 3 had improved corrosion resistance in pure sulfuric acid compared to pure titanium, but still had a high corrosion rate, and hardly had any effect in improving corrosion resistance in hydrochloric acid.
[0027]
Test Nos. 5 and 6 are substantial binary alloys obtained by adding Ni and Cu to titanium, respectively. The corrosion resistance is slightly better than pure titanium depending on the environment, but the margin of improvement is small, and depending on the corrosive environment, no improvement is observed in some cases.
[0028]
On the other hand, in Examples of the present invention (1), Test Nos. 8, 9, 10, 13, 14, 17 and 18 in which Ni, Cu and Fe were added in combination were all tested. In this environment, it shows much higher corrosion resistance than pure titanium (Test No. 1) or Ti-Ni-Mo alloy (Test No. 3), and is equivalent to alloys containing expensive Pd or Ru (Test Nos. 2 and 4). Shows corrosion resistance. However, in Test Nos. 7, 12, and 16, excellent corrosion resistance was not obtained. The reason is that in Test No. 7, the amount of Ni added does not reach the amount specified in the present invention (1), the amount of Cu added in Test No. 12, and the amount of Fe added in Test No. 16 does not reach the amount specified in the present invention (1). It is because.
[0029]
Also in Test No. 19, sufficient corrosion resistance could not be obtained because the amount of Fe added exceeded the amount specified in the present invention (1). Further, in Test Nos. 11 and 15, high corrosion resistance was obtained, but corrosion resistance almost equivalent to Test Nos. 10 and 14 in which the amount of Ni or Cu added was lower than that of Test Nos. 11 and 15, was obtained. Is saturated. Not only that, too much Ni or Cu was added, resulting in manufacturing problems such as impairment of workability.
[0030]
As described above, a titanium alloy having high corrosion resistance can be obtained by adding an appropriate amount of Cu, Ni, and Fe in combination, and one or more of Mo, Nb, and Zr are added to the alloy in a total amount of 0.05 to 500%. By containing 0.5%, the corrosion resistance can be further enhanced. For example, in Table 2 (continuation 1 in Table 1), in Test Nos. 20 to 25, which are examples of the present invention (2), compared to Test No. 9 in which substantially equal amounts of Ni, Cu and Fe were added in combination. The corrosion rate is further reduced and the corrosion resistance is improved.
[0031]
However, as in Test Nos. 26 to 29, when the total amount of addition is less than 0.05% specified in the present invention (2), the effect of improving corrosion resistance is hardly recognized. Further, even when these elements are added in excess of 0.5% as in Test No. 30, only the same corrosion resistance as in Test No. 25 in which the total amount of Mo, Nb and Zr is less than this is obtained. Not. In addition, there were problems in manufacturing such as impairment of workability.
[0032]
The effect of the present invention (3), that is, the effect of improving the corrosion resistance of the alloy to which Ni, Cu, and Fe are added in a combined manner, that is, containing at least one of Cr and Co in a total amount of 0.05 to 0.3%. Can improve it. For example, in Table 2 (continuation 1 in Table 1), in Test Nos. 31 to 35, which are examples of the present invention (3), corrosion was smaller than Test No. 9 in which almost equal amounts of Ni, Cu and Fe were added. The speed is further reduced and the corrosion resistance is improved.
[0033]
However, when the total amount of addition is less than 0.05% as specified in the present invention (3) as in Test Nos. 36 to 38, the effect of improving corrosion resistance is hardly recognized.
[0034]
Also, as in Test No. 39, even when these elements are added in excess of 0.3%, only the same corrosion resistance as in Test No. 35, in which the total amount of Cr and Co added is less than this, is obtained. . In addition, there were problems in manufacturing such as impairment of workability.
[0035]
Test Nos. 40 to 42 are examples in which both the effect of the present invention (2) adding Nb, Mo, and Zr and the effect of the present invention (3) adding Co and Cr were exhibited. It shows the lowest corrosion rate, that is, the highest corrosion resistance among the alloys described in Nos. 1-42.
(Example 2)
The ingots having the components of Test Nos. 9, 21 and 34 in Tables 1 and 2 (continuation 1 in Table 1) were hot-rolled in the same manner as in Example 1 and heat-treated under the conditions shown in Table 3. A sample cut out from this sample was immersed in 5% boiling hydrochloric acid for 48 hours, the corrosion loss was measured, and the corrosion rate was calculated. The results of the corrosion test are shown in Table 3.
[0036]
[Table 3]
Figure 2004027254
[0037]
In Table 3, the examples of the present invention (4) produced by the method described in the present invention (5) all had a corrosion rate of less than 0.5 mm / year and showed high corrosion resistance. Samples whose cooling conditions deviated from the conditions defined in the present invention (5) had a relatively low corrosion rate of 0.75 mm / year or less, but had a corrosion rate of 0.5 mm / year or more. In all cases, the corrosion resistance was lower than the examples of the present invention (4).
[0038]
This is because the annealing temperature or cooling method was outside the scope of the present invention.
[0039]
That is, in Test Nos. 43, 50 and 57, since the annealing temperature was lower than 650 ° C. specified in the present invention (5), recrystallization did not proceed sufficiently and the desired equiaxed structure was not sufficiently obtained. The corrosion resistance was lower than that of the example of the invention (4). On the other hand, in Test Nos. 48, 49, 55, 56, 62 and 63, since the annealing temperature exceeded 850 ° C., the amount of β phase became too large, and acicular α phase was generated in β phase during cooling, Since the equiaxed structure could not be maintained and the distribution of elements became non-uniform, the corrosion resistance was reduced as compared with the example of the present invention (4). In Test Nos. 46, 53 and 60, the water was cooled with water, so the cooling rate was too high, and in the cooling process, needle-like α-phase was generated in β-phase, the equiaxed structure could not be maintained, and the distribution of elements was uneven. And the corrosion resistance was lower than that of the example of the present invention (4).
(Example 3)
An experiment of crevice corrosion was performed using a part of the materials used in Example 1. A test piece was prepared by making a hole in the center of two samples, joining them together, inserting a Teflon (registered trademark) -coated titanium bolt, fixing one side with a nut, and further tightening this. . Then, this butted sample was immersed in a boiling 10% aqueous NaCl solution having a pH of 6.0 for 1 to 3 days, and the presence or absence of crevice corrosion was examined. Table 4 shows the results.
[0040]
[Table 4]
Figure 2004027254
[0041]
In Table 4, in the case of industrial pure titanium of Test No. 1, crevice corrosion has already occurred after one day of immersion. On the other hand, the Pd-added alloy of Test No. 2 and the Ni- and Ru-combined additive alloys of Test No. 4 have remarkably improved crevice corrosion resistance, and crevice corrosion occurs even after immersion for 3 days in any environment. Did not. However, since a small amount of an expensive white metal element is added, the cost is high if used in a large amount in a wide range of applications. Further, the Ti—Ni—Mo alloy of Test No. 3 has improved crevice corrosion resistance compared to pure titanium, but crevice corrosion occurs on the third day. It was not corrosive.
[0042]
In contrast to the comparative examples described above, in the titanium alloys of Test Nos. 9, 24, 34, and 41, which are examples of the present invention, crevice corrosion did not occur after immersion for 3 days, and extremely high crevice corrosion resistance was achieved. confirmed.
[0043]
【The invention's effect】
As described above, according to the present invention, a titanium alloy which does not contain an expensive white metal element, and which exhibits excellent corrosion resistance in a severe environment such as a non-oxidizing acid or a gap where chloride ions are present, and The manufacturing method can be provided.

Claims (5)

質量%で、
Ni:0.1〜1.5%
Cu:0.1〜2.1%、
Fe:0.02〜0.3%、
を含有し、残部Ti及び不可避的不純物元素からなることを特徴とする耐食性に優れたチタン合金。
In mass%,
Ni: 0.1 to 1.5%
Cu: 0.1 to 2.1%,
Fe: 0.02 to 0.3%,
And a balance of Ti and inevitable impurity elements, the titanium alloy having excellent corrosion resistance.
さらに、質量%で、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有することを特徴とする請求項1に記載の耐食性に優れたチタン合金。2. The titanium alloy according to claim 1, further comprising 0.05 to 0.5% by mass of at least one of Mo, Nb, and Zr in mass%. 3. さらに、質量%で、Cr、Coの中から1種以上を合計で、0.05〜0.3%含有することを特徴とする請求項1又は2に記載の耐食性に優れたチタン合金。The corrosion-resistant titanium alloy according to claim 1 or 2, further comprising 0.05 to 0.3% by mass of at least one of Cr and Co in mass%. 微視組織が等軸再結晶組織からなることを特徴とする請求項1〜3のいずれか1項に記載の耐食性に優れたチタン合金。The titanium alloy excellent in corrosion resistance according to any one of claims 1 to 3, wherein the microstructure has an equiaxed recrystallized structure. 熱間又は冷間で加工後、650℃以上で850℃以下の温度にて焼鈍を行い、空冷又は炉冷することを特徴とする請求項4に記載の耐食性に優れたチタン合金の製造方法。The method for producing a titanium alloy having excellent corrosion resistance according to claim 4, characterized in that after hot or cold working, annealing is performed at a temperature of 650 ° C or more and 850 ° C or less, and air or furnace cooling is performed.
JP2002181912A 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same Expired - Fee Related JP4065146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181912A JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181912A JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004027254A true JP2004027254A (en) 2004-01-29
JP4065146B2 JP4065146B2 (en) 2008-03-19

Family

ID=31178628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181912A Expired - Fee Related JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4065146B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147998A1 (en) * 2011-04-27 2012-11-01 東邦チタニウム株式会社 α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME
JP2015036148A (en) * 2013-08-12 2015-02-23 三菱重工業株式会社 TiAl CONJUGATE AND PRODUCTION METHOD OF TiAl CONJUGATE
CN109097623A (en) * 2018-08-03 2018-12-28 中鼎特金秦皇岛科技股份有限公司 A kind of erosion resistant titanium alloy and preparation method thereof
CN115896540A (en) * 2022-11-16 2023-04-04 哈尔滨工业大学 Ti-Mo-Ni-Al-Zr corrosion-resistant titanium alloy and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147998A1 (en) * 2011-04-27 2012-11-01 東邦チタニウム株式会社 α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME
JP5692940B2 (en) * 2011-04-27 2015-04-01 東邦チタニウム株式会社 α + β-type or β-type titanium alloy and method for producing the same
JP2015036148A (en) * 2013-08-12 2015-02-23 三菱重工業株式会社 TiAl CONJUGATE AND PRODUCTION METHOD OF TiAl CONJUGATE
CN109097623A (en) * 2018-08-03 2018-12-28 中鼎特金秦皇岛科技股份有限公司 A kind of erosion resistant titanium alloy and preparation method thereof
CN115896540A (en) * 2022-11-16 2023-04-04 哈尔滨工业大学 Ti-Mo-Ni-Al-Zr corrosion-resistant titanium alloy and preparation method thereof
CN115896540B (en) * 2022-11-16 2024-01-30 哈尔滨工业大学 Ti-Mo-Ni-Al-Zr corrosion-resistant titanium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4065146B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
CN1506476A (en) Copper alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
EP3891313B1 (en) Titanium alloys having improved corrosion resistance, strength, ductility, and toughness
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP7087861B2 (en) Titanium alloy and its manufacturing method
CN111902550B (en) Titanium alloy and method for producing same
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
CN114555842B (en) Titanium alloy
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JPS62228459A (en) Manufacture of titanium alloy material having superior corrosion resistance and workability
JP2005298853A (en) TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JP4133688B2 (en) Copper alloy with high strength and high bending workability
JPH09143597A (en) Copper alloy for lead frame and its production
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP2009007679A (en) Titanium alloy, and method for producing titanium alloy material
JPH083668A (en) Nickel-base alloy excellent in strength and corrosion resistance
JPS634885B2 (en)
JP2022024243A (en) β TITANIUM ALLOY
JPH07316700A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH07300641A (en) Corrosion resistant nitride-dispersion reinforced nickel-base alloy having high hardness and high strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R151 Written notification of patent or utility model registration

Ref document number: 4065146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees