JPH0577689B2 - - Google Patents

Info

Publication number
JPH0577689B2
JPH0577689B2 JP14581588A JP14581588A JPH0577689B2 JP H0577689 B2 JPH0577689 B2 JP H0577689B2 JP 14581588 A JP14581588 A JP 14581588A JP 14581588 A JP14581588 A JP 14581588A JP H0577689 B2 JPH0577689 B2 JP H0577689B2
Authority
JP
Japan
Prior art keywords
epoxy resin
hydrogen
polymerization
resin
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14581588A
Other languages
Japanese (ja)
Other versions
JPH023412A (en
Inventor
Nobutaka Takasu
Takeshi Hozumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP14581588A priority Critical patent/JPH023412A/en
Publication of JPH023412A publication Critical patent/JPH023412A/en
Publication of JPH0577689B2 publication Critical patent/JPH0577689B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Sealing Material Composition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

《産業上の利用分野》 本発明は、ガラス転移温度および機械性能を、
従来品に比較して低下させずに、低応力性,耐熱
衝撃性が改良された硬化物が得られる半導体封止
用エポキシ樹脂組成物に関する。 《従来の技術》 現在半導体素子を封止するエポキシ樹脂組成物
としてはオルソ・クレゾールノボラツクのエポキ
シ化物、フエノールノボラツク硬化剤、硬化促進
剤、無機充填剤を必須成分とする混練組成物が広
く用いられており、半導体産業の伸長に伴ないそ
の生産量が増大している。 然しながら半導体素子の高集積化,デバイスの
大型フラツト化、封止硬化物の薄肉化、基板への
搭載時の表面実装化等が進み、これに伴なう封止
成形材料に要求される性能も大幅に変化しつつあ
る。 即ち温度変化に伴なうIC基板、キヤリヤーフ
レームと硬化成形物との熱膨張係数の差に起因す
る応力の顕在化し、ICアルミ配線のスライド、
ボンデイング金線の断線、IC界面と封止硬化物
の剥離、封止硬化物のクラツク等の具体的問題が
生じている。 これ等問題に対処するための1つの手法として
封止樹脂硬化物の低応力化が挙げられ、単に硬化
物を低弾性率化するのみでは、同時にガラス転移
点(Tg)も低下し、従つて高温での熱膨張係数
が増大し、これに起因する応力が生じてしまい、
また同時に機械的強度も低下せざるを得ない。こ
れら低弾性率化(低応力化)と高Tg化という相
反する特性要求を両立化する手法として、エポキ
シ樹脂硬化物マトリツクス中に、ゴム状弾性微粒
子を均一分散させる謂ゆる樹脂のハイブリツド化
が提案され、広く採用されるに至つている。 具体的にはシリコンゴム粉末、エポキシ樹脂と
反応し得る官能基を有するオルガノポリシロキサ
ンオイルを、樹脂〜充填剤混練時に添加する方法
である。然しながら該方法は相溶性という見地か
ら粒子の均一分散性に難点があり自ずとその添加
量に限界が生じてしまい所望の高Tg且つ低弾性
率硬化体を得るには至つていない。またこの場合
オルガノポリシロキサンにより形成される謂ゆる
ドメイン粒径も非常に大となり、封止体にした場
合分離等を生じてしまい封止ICとしての種々の
難点が生じてしまう。 これら難点を改良する方法として、通常の硬化
性エポキシ樹脂および無機質充填剤からなる系に
芳香族系重合体とオルガノポリシロキサンとから
形成されるブロツク共重合体を添加する方法(特
公昭61−48544号公報,特開昭58−21417号公報)、
通常の硬化性エポキシ樹脂と硬化剤と無機充填剤
とを含有するエポキシ樹脂組成物に、アルケニル
基含有エポキシ樹脂とオルガノポリシロキサンと
の付加反応により得られる共重合体を配合する方
法(特開昭62−84147号公報)等の方法が提案さ
れてはいる。 然しながらこの様な組成物の場合は、使用され
るオルガノポリシロキサンの重合度は実質的に低
重合体にならざるを得ない。 即ち、高重合度ポリシロキサンを用いた場合、
1)芳香族系重合体またはアルケニル基含有エポ
キシ樹脂との相溶性が極端に悪く両者の完全なブ
ロツク共重合体反応は実質的に期待出来ず、未反
応オルガノポリシロキサンが混在してしまう。 従つてこれら組成物はロール混練時、成形時に
ブリード現象を生じ、ロール混練作業性、成形時
の型よごれ、成形体への捺印不良が生じる結果と
なる。2)組成物を構成するポリシロキサン〜芳
香族系重合体のブロツク共重合体と硬化性エポキ
シ樹脂との相溶性が悪く、成形に際して両樹脂の
金型微細部で流動時の分離が生じバリの発生量が
増大する。3)形成されるドメイン粒径が比較的
大きなものになり低応力効果を低減し、且つマト
リツクスである樹脂層との密着が悪く機械的強度
を低下させることになる等にの問題点を有してい
る。 また高重合度ポリシロキサンを用いた場合の上
記欠点を避ける目的で低重度ポリシロキサンを用
いると、1)相溶性が向上するため完全なブロツ
ク共重合体が得られるものの逆に形成されるドメ
インが小さくなり過ぎるためTg、機械的性能が
低下する。2)耐クラツク性が低下する、といつ
た目的達成のための致命的欠陥が生じる。 《発明が解決しようとする課題》 本発明は、上記従来技術の欠点を改良し、未反
応シロキサン化合物が少なく成形材料化に際して
の混練作業性に優れ、成形時のバリの発生、金型
汚れが少なく、高Tgで機械強度が大であり、且
つ低応力化された、捺印性を有する硬化封止体の
得られるエポキシ樹脂IC封止用成形材料組成物
を提供する目的で成された発明である。 《課題を解決するための手段》 本発明者等は上記目的を達成するために鋭意検
討を重ねた結果、部分的にアルケニル基を含有す
るフエノール系ノボラツクエポキシ樹脂に、重合
度の異なる2種以上の両末端ハイドロジエンオル
ガノポリシロキサンの混合物を白金触媒下に反応
せしめて得られるブロツク付加体と硬化剤である
フエノールノ系ボラツク、硬化促進剤および無機
充填剤を必須成分として構成される樹脂組成物が
目的達成のために有効であるとの知見を得、本発
明を成すに到つた。 即ち重合度の異なるポリシロサンを併用するこ
とにより、1)低重合度ハイドロジエンポリシロ
キサンとアルケニル基を含むエポキシ樹脂の完全
なブロツク体が得られこのものが相溶化剤の役目
を果すため高重合度ハイドロジエンポリシロキサ
ンのエポキシ樹脂との反応が完結し未反応物が無
くなり、2)硬化によつて形成されるドメイン粒
径の分布が広がり(高重合体の場合は低重合体の
場合よりドメインは大きくなる)、耐衝撃性効果、
低応力化効果が大となることを見い出し本発明に
到達した。 以下に本発明の詳細につき述べる。 本発明に用いられる部分的にアルケニル基を含
有するノボラツク系エポキシ樹脂は、ノボラツク
系エポキシ樹脂とアリルフエノールとの反応によ
り得られ、次式()で表されるエポキシ樹脂で
あり、反応触媒としては第3級アミンおよびその
誘導体、シクロアミジン系誘導体等が用いられ
る。
<<Industrial Application Field>> The present invention improves glass transition temperature and mechanical performance by
The present invention relates to an epoxy resin composition for semiconductor encapsulation that provides a cured product with improved low stress properties and thermal shock resistance without lowering them compared to conventional products. <Prior Art> Currently, kneaded compositions containing an epoxide of ortho-cresol novolak, a phenol novolak curing agent, a curing accelerator, and an inorganic filler are widely used as epoxy resin compositions for encapsulating semiconductor devices. The production volume is increasing with the growth of the semiconductor industry. However, as semiconductor elements become more highly integrated, devices become larger and flatter, cured encapsulation materials become thinner, and mounting on substrates becomes more surface-mounted, the performance required of encapsulation molding materials increases. Things are changing dramatically. In other words, stress due to the difference in thermal expansion coefficient between the IC board, carrier frame, and cured molded product becomes apparent due to temperature changes, and the IC aluminum wiring slides.
Specific problems have occurred, such as disconnection of the bonding gold wire, separation of the IC interface from the cured sealant, and cracks in the cured sealant. One way to deal with these problems is to lower the stress of the cured sealing resin. Simply lowering the elastic modulus of the cured product will also lower the glass transition point (Tg), and therefore The coefficient of thermal expansion increases at high temperatures, resulting in stress.
At the same time, the mechanical strength must also decrease. As a method to achieve both the contradictory property requirements of lower elastic modulus (lower stress) and higher Tg, we have proposed so-called resin hybridization, in which rubber-like elastic fine particles are uniformly dispersed in a cured epoxy resin matrix. has been widely adopted. Specifically, this is a method in which an organopolysiloxane oil having a functional group capable of reacting with silicone rubber powder and an epoxy resin is added at the time of kneading the resin and the filler. However, this method has a problem with the uniform dispersibility of particles from the viewpoint of compatibility, and there is a natural limit to the amount of the particles added, so that it has not been possible to obtain the desired high Tg and low elastic modulus cured product. In addition, in this case, the so-called domain particle size formed by the organopolysiloxane also becomes very large, and when it is made into a sealed body, separation etc. occur, resulting in various problems as a sealed IC. As a method to improve these drawbacks, a method of adding a block copolymer formed from an aromatic polymer and an organopolysiloxane to a system consisting of an ordinary curable epoxy resin and an inorganic filler (Japanese Patent Publication No. 61-48544 (Japanese Patent Application Laid-Open No. 58-21417),
A method of blending a copolymer obtained by an addition reaction between an alkenyl group-containing epoxy resin and an organopolysiloxane into an epoxy resin composition containing an ordinary curable epoxy resin, a curing agent, and an inorganic filler (Japanese Patent Application Laid-open No. 62-84147) and other methods have been proposed. However, in the case of such a composition, the degree of polymerization of the organopolysiloxane used must be substantially low. That is, when using a highly polymerized polysiloxane,
1) Compatibility with aromatic polymers or alkenyl group-containing epoxy resins is extremely poor, and a complete block copolymer reaction between the two cannot be expected, and unreacted organopolysiloxanes will be present. Therefore, these compositions cause a bleed phenomenon during roll kneading and molding, resulting in poor roll kneading workability, mold staining during molding, and poor marking on molded products. 2) The block copolymer of polysiloxane to aromatic polymer that makes up the composition has poor compatibility with the curable epoxy resin, and during molding, the two resins separate during flow, resulting in burrs. The amount generated increases. 3) The domain grain size formed is relatively large, which reduces the low stress effect, and has problems such as poor adhesion with the resin layer that is the matrix, resulting in a decrease in mechanical strength. ing. In addition, if a low polymerization degree polysiloxane is used to avoid the above-mentioned disadvantages when using a high polymerization degree polysiloxane, 1) compatibility is improved and a complete block copolymer can be obtained, but on the contrary, the domains formed are If it becomes too small, Tg and mechanical performance will decrease. 2) A fatal flaw occurs in achieving the objective, such as a decrease in crack resistance. <<Problems to be Solved by the Invention>> The present invention improves the above-mentioned drawbacks of the prior art, has less unreacted siloxane compounds, is superior in kneading workability when used as a molding material, and is free from burrs and mold stains during molding. This invention was made for the purpose of providing a molding material composition for encapsulating epoxy resin ICs, which provides a cured sealing body with low stress, high Tg, high mechanical strength, and low stress and stampability. be. <Means for Solving the Problems> As a result of intensive studies to achieve the above object, the present inventors have developed two types of phenolic novolac epoxy resins partially containing alkenyl groups with different degrees of polymerization. A resin composition comprising as essential components a block adduct obtained by reacting a mixture of the above-mentioned double-terminated hydrogen organopolysiloxanes under a platinum catalyst, a phenolic borax as a curing agent, a curing accelerator, and an inorganic filler. The present invention has been completed based on the knowledge that this is effective for achieving the objective. That is, by using polysilosanes with different degrees of polymerization together, 1) a complete block of a low polymerization degree hydrogen polysiloxane and an epoxy resin containing an alkenyl group can be obtained, and this material serves as a compatibilizer, so that a high polymerization degree can be obtained. The reaction of the hydrodiene polysiloxane with the epoxy resin is completed and there are no unreacted substances, and 2) the distribution of domain particle sizes formed by curing becomes wider (in the case of high polymers, the domains are smaller than in the case of low polymers). larger), impact resistance effect,
The present invention was achieved by discovering that the stress reduction effect is significant. The details of the present invention will be described below. The novolak epoxy resin partially containing an alkenyl group used in the present invention is obtained by the reaction of a novolak epoxy resin and allylphenol, and is represented by the following formula (), and the reaction catalyst is Tertiary amines and their derivatives, cycloamidine derivatives, etc. are used.

【化】 〔但し式中R1は水素原子又はアルキル基を、
n,mは1以上の整数をそれぞれ表す。〕 なお本反応は公知の反応でありこの他、アルケ
ニル基を部分的にエポキシ樹脂に導入する方法は
すべて使用可能である。 次いで得られたアルケニル基含有エポキシ樹脂
をトルエン、ベンゼン、キシレン等の芳香族系溶
媒に溶解し少くとも2ケ以上のハイドロジエンシ
リル基を有するオルガノポリシロキサンを添加し
て反応せしめる。 この際ハイドロジエンポリシロキサンの重合度
の異なる2種以上のオルガノポリシロキサンを添
加することが肝要であり、好ましくは重合度20〜
150の両末端ハイドロジエンオルガノポリシロキ
サンと重合度150〜500の両末端ハイドロジエンオ
ルガノポリシロキサンとの組合せが目的達成のた
めに有効な組合せでありその比率は適宜選定され
る。 また本ハイドロシリル化反応の触媒としては通
常、塩素酸白金等の白金系触媒が用いられる。反
応終了後は溶媒を完全に除去し、乾燥することに
より固型のハイドロシリル化エポキシ樹脂が得ら
れる。 本発明において硬化剤として用いるノボラツク
型フエノール樹脂としてはフエノール、アルキル
フエノール等のフエノール類とホルムアルデヒ
ド、パラホルムアルデヒドを反応させて得られる
ノボラツク型フエノール樹脂およびキシレン変性
フエノールノボラツク等の変性樹脂が用いられ
る。 更に本発明において用いられる硬化促進剤とし
ては一般にエポキシ樹脂とフエノールノボラツク
の反応促進剤はすべて使用可能であり、例えばイ
ミダゾールあるいはその誘導体、第3級アミン系
誘導体、ホスフイン系誘導体、シクロアミジン系
誘導体等が挙げられる。 本発明に用いられる無機充填剤としては一般に
シリカ粉末が用いられるがその他、アルミナ、三
酸化アンチモン、水酸化アルミニウム、酸化チタ
ン、タルク等のフイラーも使用目的により使用す
ることが出来る。なお無機充填剤の配合量は配合
物全体の50%〜80%であり、50%以下では成形品
にした場合の性能が不足となり80%以上では成形
性に難点が生じる。 なお本願発明の骨子であるブロツク体のポリシ
ロキサンユニツトの凝集に伴ない形成されるドメ
インサイズの観察を行う場合は充填剤を含まない
成形体での観察が有効である。 本発明の封止用樹脂成形材料を得るための一般
的な方法としては前述の配合組成物をミキサー等
により充分混合した後熱ロール又はニーダーによ
り溶融混練処理を行ない、次いで冷却固化させた
後、粉砕することにより得られる。 《発明の効果》 本発明の封止用組成物は、ハイドロシリル化反
応時に低重合体と高重合体のハイドロジエンポリ
シロキサンを組合せることにより、均一且つ完全
にブロツク体が形成されているエポキシ樹脂を用
いているため、ロール混練時のスリツプ等の現象
が全くなく均一に混練された組成物である。 また同様の理由により未反応ポリシロキサン成
分が無いため、成形に際してのバリの発生、金型
汚れ等が無く、更に成形体表面への印刷性も優れ
ているものである。 更に、重合度の異なるハイドロジエンポリシロ
キサン単位から構成されるドメイン粒径はその分
布が広く、従つて低応力化とTgのキープといつ
た相反する特性が両立化され、優れた封止成形体
の得られる成形材料組成物であつた。 《参考例》 エポキシ当量200、軟化点65℃のオルソクレゾ
ールノボラツクエポキシ樹脂1000部を150℃にて
加熱し、溶融状態にて撹拌した。 これに、オルソアリルフエノール25部、1,8
−ジアザビシクロ〔5,4,0〕−7−ウンデセ
ン5部の混合物を1時間にわたつて滴下し、その
後2時間反応を続けた。 こうして得られたアリル基含有エポキシ樹脂の
エポキシ当量は214で、軟化点は67℃であつた。 《実施例》 参考例のアリル基含有エポキシ樹脂1000部、ト
ルエン2000部を80℃に加熱、撹拌して均一の溶液
とした。これに1重量%の塩化白金酸イソプロパ
ノール溶液6部を添加した後、平均重合度300の
両末端にのみ水素基をもつハイドロジエンジメチ
ルポリシロキサン(以下オイルAと称す)120部
と平均重合度40の両末端にのみ水素基をもつハイ
ドロジエンジメチルポリシロキサン(以下オイル
Bと称す)180部との混合物を1時間にわたつて
滴下し、その後系を100℃に昇温して反応を3時
間続けた。 冷却後減圧下トルエンを溜去することで、エポ
キシ当量278、軟化点71℃のブロツク付加体Cを
得た。 得られた付加体と硬化剤としてOH当量103の
フエノールノボラツク樹脂、硬化促進剤としてト
リフエニルホスフイン、結晶性シリカ、3−グリ
シドキシプロピルトリメトキシシラン、カルナバ
ワツクス、カーボンブラツクを第1表に示した量
で配合し、加熱ロールにて混練することで成形材
料を得た。 材料化の際のロール作業性、得られた成形材料
のトランスフアー成形での成形性、硬化物特性を
第2表に示す。 比較例 1 実施々に於いて、オイルA120部、オイルB180
部を用いる代わりにオイルA300部を用いた以外
は実施例と全く同様にしてブロツク付加体Dを得
た。この樹脂のエポキシ当量は278、軟化点は69
℃であつた。 付加体Dを第1表の如き配合により、材料化し
たもののロール作業性、成形性、軟化物特性を第
2表に示す。 比較例 2 実施例の反応に於いて、オイルA120部、オイ
ルB180部を用いる代わりにオイルB300部を用い
た以外は実施例と全く同様にしてブロツク付加体
Eを得た。この樹脂のエポキシ当量は278、軟化
点は70℃であつた。 付加体Eを第1表の如き配合により、材料化し
たもののロール作業性、成形性、軟化物特性を第
2表に示す。 比較例 3 実施例に於いて、付加体Cの代わりにエポキシ
当量200、軟化点65℃のオルソクレゾールノボラ
ツクエポキシ樹脂を用いて、第1表の如き配合に
より材料化したもののロール作業性、成形性、硬
化物特性を第2表に示す。
[In the formula, R 1 is a hydrogen atom or an alkyl group,
n and m each represent an integer of 1 or more. ] Note that this reaction is a known reaction, and any method for partially introducing an alkenyl group into an epoxy resin can be used. Next, the obtained alkenyl group-containing epoxy resin is dissolved in an aromatic solvent such as toluene, benzene, xylene, etc., and an organopolysiloxane having at least two or more hydrogen silyl groups is added and reacted. At this time, it is important to add two or more types of organopolysiloxanes with different degrees of polymerization of hydrogen polysiloxane, preferably 20 to 20.
A combination of a hydrogen-terminated organopolysiloxane having a polymerization degree of 150 and a hydrogen-terminated organopolysiloxane having a polymerization degree of 150 to 500 is an effective combination for achieving the purpose, and the ratio thereof is appropriately selected. Further, as a catalyst for this hydrosilylation reaction, a platinum-based catalyst such as platinum chlorate is usually used. After the reaction is completed, the solvent is completely removed and the resin is dried to obtain a solid hydrosilylated epoxy resin. As the novolak type phenolic resin used as a curing agent in the present invention, there are used novolak type phenolic resins obtained by reacting phenols such as phenols and alkylphenols with formaldehyde and paraformaldehyde, and modified resins such as xylene-modified phenol novolaks. Further, as the curing accelerator used in the present invention, all reaction accelerators for epoxy resins and phenol novolaks can be used, such as imidazole or its derivatives, tertiary amine derivatives, phosphine derivatives, and cycloamidine derivatives. etc. Silica powder is generally used as the inorganic filler used in the present invention, but fillers such as alumina, antimony trioxide, aluminum hydroxide, titanium oxide, and talc can also be used depending on the purpose of use. The blending amount of the inorganic filler is 50% to 80% of the entire compound; if it is less than 50%, the performance of the molded product will be insufficient, and if it is more than 80%, there will be problems in moldability. Note that when observing the size of domains formed as a result of aggregation of polysiloxane units in a block body, which is the gist of the present invention, it is effective to observe a molded body that does not contain a filler. A general method for obtaining the encapsulating resin molding material of the present invention is to thoroughly mix the above-mentioned compounded composition using a mixer or the like, then perform a melt-kneading process using a heated roll or kneader, and then cool and solidify. Obtained by grinding. <<Effects of the Invention>> The sealing composition of the present invention is an epoxy resin in which a uniform and complete block is formed by combining a low polymer and a high polymer hydrodiene polysiloxane during a hydrosilylation reaction. Since a resin is used, the composition is uniformly kneaded without any phenomena such as slips during roll kneading. Furthermore, for the same reason, since there is no unreacted polysiloxane component, there is no occurrence of burrs, mold stains, etc. during molding, and the printability on the surface of the molded product is also excellent. Furthermore, the particle size of domains composed of hydrogen polysiloxane units with different degrees of polymerization has a wide distribution, which makes it possible to achieve both contradictory properties such as low stress and maintenance of Tg, resulting in an excellent encapsulated molded product. The molding material composition obtained was as follows. <<Reference Example>> 1000 parts of an orthocresol novolac epoxy resin having an epoxy equivalent of 200 and a softening point of 65°C was heated at 150°C and stirred in a molten state. To this, 25 parts of orthoallylphenol, 1,8
A mixture of 5 parts of -diazabicyclo[5,4,0]-7-undecene was added dropwise over 1 hour, and the reaction was then continued for 2 hours. The allyl group-containing epoxy resin thus obtained had an epoxy equivalent of 214 and a softening point of 67°C. <<Example>> 1000 parts of the allyl group-containing epoxy resin of the reference example and 2000 parts of toluene were heated to 80°C and stirred to form a uniform solution. After adding 6 parts of 1% by weight chloroplatinic acid isopropanol solution to this, 120 parts of hydrodiene dimethyl polysiloxane (hereinafter referred to as oil A) having hydrogen groups only at both ends with an average degree of polymerization of 300 and an average degree of polymerization of 40 A mixture of 180 parts of hydrodiene dimethylpolysiloxane (hereinafter referred to as oil B) having hydrogen groups only at both ends was added dropwise over 1 hour, and then the system was heated to 100°C and the reaction was continued for 3 hours. Ta. After cooling, toluene was distilled off under reduced pressure to obtain a block adduct C having an epoxy equivalent of 278 and a softening point of 71°C. The obtained adduct, a phenol novolac resin with an OH equivalent of 103 as a curing agent, triphenylphosphine, crystalline silica, 3-glycidoxypropyltrimethoxysilane, carnauba wax, and carbon black as a curing accelerator were used as the first. A molding material was obtained by blending the ingredients in the amounts shown in the table and kneading them using heated rolls. Table 2 shows the roll workability during material preparation, the moldability of the obtained molding material in transfer molding, and the properties of the cured product. Comparative Example 1 In practice, 120 parts of oil A, 180 parts of oil
Block adduct D was obtained in exactly the same manner as in Example except that 300 parts of oil A was used instead of 1 part. This resin has an epoxy equivalent weight of 278 and a softening point of 69.
It was warm at ℃. Table 2 shows the roll workability, moldability, and softened material properties of materials made from Adduct D according to the formulations shown in Table 1. Comparative Example 2 Block adduct E was obtained in exactly the same manner as in Example except that 300 parts of oil B was used instead of 120 parts of oil A and 180 parts of oil B. This resin had an epoxy equivalent weight of 278 and a softening point of 70°C. Table 2 shows the roll workability, moldability, and softened material properties of materials made from Adduct E according to the formulations shown in Table 1. Comparative Example 3 In the example, an orthocresol novolac epoxy resin with an epoxy equivalent of 200 and a softening point of 65°C was used in place of the adduct C, and the roll workability and molding of the material were made using the formulation shown in Table 1. The properties and properties of the cured product are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 部分的にアルケニル基を含有する、フエノー
ルノボラツク系エポキシ樹脂に、重合度20〜150
の両末端ハイドロジエンオルガノポリシロキサン
と重合度150〜500の両末端ハイドロジエンオルガ
ノポリシロキサン混合物を、白金系接触存在下に
付加反応せしめて得られるブロツク付加体と、硬
化剤であるフエノール系ノボラツク、硬化促進剤
および無機充填剤を必須成分とし、該組成物を熱
溶融混練して得られることを特徴とするエポキシ
樹脂組成物。
1 Phenol novolak epoxy resin partially containing alkenyl groups with a polymerization degree of 20 to 150
A block adduct obtained by addition-reacting a mixture of a hydrogen-terminated organopolysiloxane with both ends and a hydrogen-terminated organopolysiloxane with a degree of polymerization of 150 to 500 in the presence of a platinum contact, a phenolic novolac as a curing agent, An epoxy resin composition comprising a curing accelerator and an inorganic filler as essential components and obtained by hot melt-kneading the composition.
JP14581588A 1988-06-15 1988-06-15 Epoxy resin composition Granted JPH023412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14581588A JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14581588A JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH023412A JPH023412A (en) 1990-01-09
JPH0577689B2 true JPH0577689B2 (en) 1993-10-27

Family

ID=15393782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14581588A Granted JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH023412A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082943B2 (en) * 1990-04-17 1996-01-17 信越化学工業株式会社 Epoxy resin composition
JPH04173830A (en) * 1990-11-05 1992-06-22 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device therefor
JP2541015B2 (en) * 1990-12-11 1996-10-09 信越化学工業株式会社 Epoxy resin composition for semiconductor device encapsulation and semiconductor device

Also Published As

Publication number Publication date
JPH023412A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
JPS6355532B2 (en)
US5190995A (en) Naphthalene ring containing epoxy resin composition and semiconductor device encapsulated therewith
JPS62212417A (en) Epoxy resin composition
TWI814868B (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
JPH0747622B2 (en) Epoxy resin composition and cured product thereof
JPH0577689B2 (en)
JPH0450925B2 (en)
JPH0346486B2 (en)
JPS63226951A (en) Resin sealed semiconductor device
JPH0477013B2 (en)
JP3821218B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH06256364A (en) Organic silicon compound, its production and resin composition containing the same
JP2874090B2 (en) Epoxy resin composition and semiconductor device
JPH05175369A (en) Epoxy resin molding material for sealing electronic component
JP2559626B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH023411A (en) Epoxy resin composition
JP2576701B2 (en) Epoxy resin composition and semiconductor device
JPH01113455A (en) Resin composition for sealing semiconductor
JPH04266928A (en) Amino group-containing silicone elastomer fine powder and epoxy resin composition containing the same fine powder
JPH0310664B2 (en)
JP2680351B2 (en) Resin composition for sealing
JP2703045B2 (en) Epoxy resin composition
JP2703043B2 (en) Epoxy resin composition
JP2938158B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH03167250A (en) Epoxy resin composition