JPH0573989B2 - - Google Patents

Info

Publication number
JPH0573989B2
JPH0573989B2 JP1880386A JP1880386A JPH0573989B2 JP H0573989 B2 JPH0573989 B2 JP H0573989B2 JP 1880386 A JP1880386 A JP 1880386A JP 1880386 A JP1880386 A JP 1880386A JP H0573989 B2 JPH0573989 B2 JP H0573989B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
valve
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1880386A
Other languages
Japanese (ja)
Other versions
JPS62175559A (en
Inventor
Masaki Ikeuchi
Naoki Tanaka
Hitoshi Iijima
Goro Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1880386A priority Critical patent/JPS62175559A/en
Publication of JPS62175559A publication Critical patent/JPS62175559A/en
Publication of JPH0573989B2 publication Critical patent/JPH0573989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は除霜について改良したヒートポンプ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a heat pump device with improved defrosting.

〔従来の技術〕[Conventional technology]

第3図および第4図は従来のホツトガスバイパ
ス方式およびサーモタンク(サーモバンク)方式
と呼ばれる除霜を行うヒートポンプ装置を示す冷
媒回路構成図である。第3図、第4図において、
1は圧縮機、2は凝縮器、3はおよび3aは膨張
弁または毛細管のような減圧装置および同様な第
2の減圧装置、4は空冷式の蒸発器であり、以上
の各部材は環状に接続されている。
FIGS. 3 and 4 are refrigerant circuit configuration diagrams showing conventional heat pump devices that perform defrosting, which are called hot gas bypass type and thermo tank (thermo bank) type. In Figures 3 and 4,
1 is a compressor, 2 is a condenser, 3 and 3a are a pressure reducing device such as an expansion valve or a capillary tube, and a similar second pressure reducing device, 4 is an air-cooled evaporator, and each of the above members is arranged in an annular shape. It is connected.

第3図において、5は圧縮機1の吐出側と蒸発
器4の入口側とを凝縮器2および減圧装置3をバ
イパスして接続するバイパス回路、6はバイパス
回路6に設けた開閉弁である。
In FIG. 3, 5 is a bypass circuit that connects the discharge side of the compressor 1 and the inlet side of the evaporator 4 by bypassing the condenser 2 and the pressure reducing device 3, and 6 is an on-off valve provided in the bypass circuit 6. .

また、第4図において、7は圧縮機1の吐出口
と凝縮器2の入口との間に間に設けられた蓄熱槽
であり、蓄熱槽7内には水などの蓄熱材8と蓄熱
熱交換器9および吸熱熱交換器10が設けられ、
これらによつて蓄熱装置が構成されている。蓄熱
熱交換器9は一端が圧縮機1の吐出側に、他端が
凝縮器2の入口側にそれぞれ接続されている。吸
熱熱交換器10は一端が圧縮機1の吸込側に、他
端が第2の減圧装置3aを介して蒸発器4の出口
側にそれぞれ接続されている。吸熱熱交換器10
および第2の減圧装置3aをバイパスして蒸発器
4の出口から圧縮機1の吸込口に至る回路には開
閉弁13が設けられている。さらに、凝縮器2の
出口側と蒸発器4の入口側とは開閉弁11と減圧
装置3が直列に接続された回路と、開閉弁11お
よび減圧装置3をバイパスし開閉弁12を有する
回路とで接続されている。なお、第4図におい
て、実線矢印は暖房運転時、破線矢印は除霜運転
時の冷媒の流れ方向をそれぞれ示している。
In addition, in FIG. 4, 7 is a heat storage tank provided between the discharge port of the compressor 1 and the inlet of the condenser 2, and the heat storage tank 7 contains a heat storage material 8 such as water and a heat storage material 8. An exchanger 9 and an endothermic heat exchanger 10 are provided,
These constitute a heat storage device. One end of the regenerative heat exchanger 9 is connected to the discharge side of the compressor 1, and the other end is connected to the inlet side of the condenser 2. One end of the endothermic heat exchanger 10 is connected to the suction side of the compressor 1, and the other end is connected to the outlet side of the evaporator 4 via the second pressure reducing device 3a. Endothermic heat exchanger 10
An on-off valve 13 is provided in a circuit that bypasses the second pressure reducing device 3a and extends from the outlet of the evaporator 4 to the suction port of the compressor 1. Furthermore, the outlet side of the condenser 2 and the inlet side of the evaporator 4 are connected to a circuit in which the on-off valve 11 and the pressure reducing device 3 are connected in series, and a circuit that bypasses the on-off valve 11 and the pressure reducing device 3 and has the on-off valve 12. connected with. In FIG. 4, solid line arrows indicate the flow direction of the refrigerant during heating operation, and broken line arrows indicate the flow direction of the refrigerant during defrosting operation.

次に、上述した従来のヒートポンプ装置の動作
について説明する。
Next, the operation of the conventional heat pump device described above will be explained.

第3図に示すものは、暖房運転時に開閉弁6が
閉じ、圧縮機1からの高温、高圧の冷媒ガスが凝
縮器2に送られ、ここで放熱して暖房すること
で、凝縮、液化する。液化した冷媒は、減圧装置
3を通つて減圧され、低温、低圧の冷媒液となつ
て蒸発器4に送られ、蒸発器4で外気から吸熱す
ることで蒸発し、蒸発した冷媒ガスが圧縮機1に
戻るサイクルを繰り返す。この運転において、外
気温度が低く冷媒の蒸発温度が0℃以下になる場
合には、蒸発器4の伝熱面に霜が付着する。この
霜を取り除くための除霜運転時には、開閉弁6が
開き、圧縮機1からの高温、高圧の冷媒ガスは、
バイパス回路5、開閉弁6を通つて蒸発器4に送
られ、これに付着している霜を融かし、圧縮機1
に戻される。除霜が完了した後には再び暖房運転
に復帰する。
In the system shown in Fig. 3, the on-off valve 6 closes during heating operation, and high-temperature, high-pressure refrigerant gas from the compressor 1 is sent to the condenser 2, where it is condensed and liquefied by radiating heat and heating. . The liquefied refrigerant is depressurized through the pressure reducing device 3, becomes a low-temperature, low-pressure refrigerant liquid, and is sent to the evaporator 4. The evaporator 4 absorbs heat from the outside air and evaporates, and the evaporated refrigerant gas is transferred to the compressor. Repeat the cycle back to 1. In this operation, if the outside air temperature is low and the evaporation temperature of the refrigerant is 0° C. or lower, frost will adhere to the heat transfer surface of the evaporator 4. During defrosting operation to remove this frost, the on-off valve 6 opens and the high temperature, high pressure refrigerant gas from the compressor 1 is
It is sent to the evaporator 4 through the bypass circuit 5 and the on-off valve 6, melts the frost attached to it, and then the compressor 1
will be returned to. After defrosting is completed, heating operation is resumed.

第4図に示すものは、暖房運転時に開閉弁1
1,13が開き開閉弁12が閉じ、圧縮機1から
の高温、高圧の冷媒ガスが、まず蓄熱槽7に送ら
れ蓄熱熱交換器9によつて蓄熱材8に蓄熱した
後、凝縮器2に送られる。冷媒ガスは凝縮器2で
さらに放熱して暖房することで凝縮、液化し、液
化した冷媒は開閉弁11、減圧装置3を通つて減
圧され、低温、低圧の冷媒液となつて蒸発器4に
送られる。冷媒液は蒸発器4で外気から吸熱する
ことで蒸発し、蒸発した冷媒ガスは開閉弁13を
通つて圧縮機1に戻るサイクルを繰り返す。この
運転において、外気温度が低く冷媒の蒸発温度が
0℃以下になる場合には、蒸発器4の伝熱面に霜
が付着する。この霜を取り除くための除霜運転時
には、開閉弁12が開き開閉弁11,13が閉じ
る。この状態では、圧縮機1からの高温、高圧の
冷媒ガスは、蓄熱槽7を通り蓄熱材8に放熱した
後、凝縮器2で若干の暖房を行い、開閉弁12を
通つて蒸発器4に送られる。ここで、冷媒は放熱
し蒸発器4の霜を融かした後、第2の減圧装置3
aを通つて低温、低圧となり、吸熱熱交換器10
に送られる。冷媒は吸熱熱交換器10で蓄熱材8
から吸熱して冷媒ガスになつて圧縮機1に戻され
る。除霜が完了した後には再び暖房運転に復帰す
る。
The one shown in Figure 4 is the on-off valve 1 during heating operation.
1 and 13 open and the on-off valve 12 closes, and the high temperature, high pressure refrigerant gas from the compressor 1 is first sent to the heat storage tank 7 and stored in the heat storage material 8 by the heat storage heat exchanger 9, and then transferred to the condenser 2. sent to. The refrigerant gas is condensed and liquefied by further dissipating heat and heating in the condenser 2, and the liquefied refrigerant is depressurized through the on-off valve 11 and the pressure reducing device 3, and becomes a low-temperature, low-pressure refrigerant liquid and is sent to the evaporator 4. Sent. The refrigerant liquid is evaporated by absorbing heat from the outside air in the evaporator 4, and the evaporated refrigerant gas passes through the on-off valve 13 and returns to the compressor 1, repeating the cycle. In this operation, if the outside air temperature is low and the evaporation temperature of the refrigerant is 0° C. or lower, frost will adhere to the heat transfer surface of the evaporator 4. During a defrosting operation to remove this frost, the on-off valve 12 opens and the on-off valves 11 and 13 close. In this state, the high-temperature, high-pressure refrigerant gas from the compressor 1 passes through the heat storage tank 7 and radiates heat to the heat storage material 8, then is slightly heated in the condenser 2, and passes through the on-off valve 12 to the evaporator 4. Sent. Here, after the refrigerant radiates heat and melts the frost in the evaporator 4, it is transferred to the second pressure reducing device 3.
It becomes low temperature and low pressure through a, and the endothermic heat exchanger 10
sent to. The refrigerant is used as a heat storage material 8 in an endothermic heat exchanger 10.
It absorbs heat from the refrigerant gas, becomes refrigerant gas, and is returned to the compressor 1. After defrosting is completed, heating operation is resumed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように構成されている第3図に示す従来
のホツトガスバイパス方式のヒートポンプ装置で
は、除霜運転時には暖房ができず、また除霜の熱
源が圧縮機入力のみであるため、除霜能力が小さ
く運転時間が長くなり、暖房できない時間が長く
なるという問題点があつた。第4図に示す従来の
サーモタンク方式のヒートポンプ装置では、圧縮
機から吐出した冷媒ガスがまず蓄熱槽に送られて
放熱するため、蓄熱完了まで暖房側に利用する熱
量が蓄熱に利用され、暖房能力が十分に確保でき
ないという問題点があつた。
In the conventional hot gas bypass type heat pump device shown in Fig. 3, which is configured as described above, heating cannot be performed during defrosting operation, and the heat source for defrosting is only compressor input, so the defrosting capacity is limited. There was a problem that the heating time was small and the operation time was long, which meant that heating was not possible for a long time. In the conventional thermotank type heat pump device shown in Figure 4, the refrigerant gas discharged from the compressor is first sent to the heat storage tank and radiated, so the amount of heat used for heating is used for heat storage until heat storage is completed. There was a problem that sufficient capacity could not be secured.

この発明は、上記のような問題点を解決するた
めになされたもので、蓄熱中も暖房能力の低下が
なく、また除霜運転中も暖房が停止することな
く、さらに短時間のうちに除霜運転を完了するこ
とができるヒートポンプ装置を提供することを目
的としている。
This invention was made to solve the above-mentioned problems.The heating capacity does not decrease during heat storage, and the heating does not stop during defrosting operation, and it can be removed in a short time. The purpose is to provide a heat pump device that can complete frost operation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るヒートポンプ装置は、第1の開
閉弁、蓄熱槽に内蔵された熱交換器、減圧装置お
よび蒸発器をこの順で備えた第1の冷媒回路と、
第2の開閉弁を備えた第2の冷媒回路とを、凝縮
器の出口側と蒸発器の出口側との間に並列に接続
し、第1、第2の冷媒回路が蒸発器の出口側で合
流した部分を第3の開閉弁を介して圧縮機の吸込
側に接続し、さらに第1の冷媒回路の第1の開閉
弁と熱交換器との間を第3の開閉弁と圧縮機の吸
込側との間に第4の開閉弁を介して接続したもの
である。
The heat pump device according to the present invention includes a first refrigerant circuit including a first on-off valve, a heat exchanger built in a heat storage tank, a pressure reducing device, and an evaporator in this order;
A second refrigerant circuit equipped with a second on-off valve is connected in parallel between the outlet side of the condenser and the outlet side of the evaporator, and the first and second refrigerant circuits are connected to the outlet side of the evaporator. The merged portion is connected to the suction side of the compressor via a third on-off valve, and the third on-off valve and the compressor are connected between the first on-off valve of the first refrigerant circuit and the heat exchanger. It is connected to the suction side of the valve via a fourth on-off valve.

〔作用〕[Effect]

この発明におけるヒートポンプ装置は、暖房運
転中には第1、第3の開閉弁が開き第2、第4の
開閉弁が閉じ、第1の冷媒回路によつて凝縮器を
出た冷媒が蓄熱槽を通り減圧装置から蒸発器に行
き、第3の開閉弁を介して圧縮機に戻ることによ
り、暖房効果を十分に発揮した後の冷媒によつて
蓄熱材に蓄熱でき、また除霜運転中には、第2、
第4の開閉弁が開き第1、第3の開閉弁が閉じ、
第2の冷媒回路から凝縮器を出た冷媒が蒸発器を
通り蓄熱槽に行き、第4の開閉弁を介して圧縮機
に戻ることにより、蓄熱材を熱源として暖房と蒸
発器の除霜とを同時に行うことができる。
In the heat pump device according to the present invention, during heating operation, the first and third on-off valves open and the second and fourth on-off valves close, and the refrigerant exiting the condenser is transferred to the heat storage tank through the first refrigerant circuit. By passing through the refrigerant from the pressure reducing device to the evaporator and returning to the compressor via the third on-off valve, heat can be stored in the heat storage material by the refrigerant after it has fully exerted its heating effect, and also during defrosting operation. is the second,
The fourth on-off valve opens and the first and third on-off valves close,
The refrigerant that leaves the condenser from the second refrigerant circuit passes through the evaporator, goes to the heat storage tank, and returns to the compressor via the fourth on-off valve, which uses the heat storage material as a heat source to perform heating and defrost the evaporator. can be done at the same time.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図に
よつて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は暖房運転時、第2図は徐霜運転時をそ
れぞれ示し、これらの図において、符号1〜4、
7,8及び3aは第3図、第4図に示す従来のヒ
ートポンプ装置のものと同一または相当部分であ
り、14は蓄熱槽7に蓄熱材8とともに内蔵され
た蓄熱、吸熱兼用の熱交換器、15〜18は第1
〜第4開閉弁、19,20は第1、第2の冷媒回
路、21は除霜時用冷媒回路である。そして、第
1、第2の冷媒回路、19,20は凝縮器2の出
口側と蒸発器4の出口側との間に並列に接続され
ている。第1の冷媒回路19には第1の開閉弁1
5、熱交換器14、減圧装置3および蒸発器4が
この順に暖房運転時に冷媒が流れるように設けら
れている。第2の冷媒回路20には第2の開閉弁
16および第2の減圧装置3aがこの順に除霜運
転時に冷媒が流れるように設けられている。ま
た、圧縮機1の吐出側が凝縮器2に接続されてい
るとともに、第1、第2の冷媒回路19,20が
蒸発器4の出口側で合流した部分は第3の開閉弁
17を介して圧縮機1の吸込側に接続されてい
る。さらに除霜時用冷媒回路21は、第1の冷媒
回路19の第1の開閉弁15と熱交換器14との
間、および第3の開閉弁17と圧縮機1の吸込側
の間の回路に両端が接続されているとともに、第
4の開閉弁18が設けられている。なお、蓄熱材
8としては相変化温度が0℃〜30℃間にある水や
各種パラフイン、塩化カルシウム系混合塩などの
潜熱利用蓄熱材が用いられ、この蓄熱材が蓄熱槽
7内に充填されている。
Figure 1 shows the heating operation, and Figure 2 shows the defrosting operation. In these figures, numbers 1 to 4,
7, 8 and 3a are the same or equivalent parts as those of the conventional heat pump device shown in FIGS. 3 and 4, and 14 is a heat exchanger for both heat storage and heat absorption built in the heat storage tank 7 together with the heat storage material 8. , 15-18 are the first
~4th on-off valve, 19 and 20 are first and second refrigerant circuits, and 21 is a refrigerant circuit for defrosting. The first and second refrigerant circuits 19 and 20 are connected in parallel between the outlet side of the condenser 2 and the outlet side of the evaporator 4. A first on-off valve 1 is provided in the first refrigerant circuit 19.
5. A heat exchanger 14, a pressure reducing device 3, and an evaporator 4 are provided in this order so that refrigerant flows during heating operation. The second refrigerant circuit 20 is provided with a second on-off valve 16 and a second pressure reducing device 3a in this order so that the refrigerant flows during the defrosting operation. Further, the discharge side of the compressor 1 is connected to the condenser 2, and the part where the first and second refrigerant circuits 19, 20 merge at the outlet side of the evaporator 4 is connected to the condenser 2 via a third on-off valve 17. It is connected to the suction side of the compressor 1. Further, the defrosting refrigerant circuit 21 is a circuit between the first on-off valve 15 of the first refrigerant circuit 19 and the heat exchanger 14 and between the third on-off valve 17 and the suction side of the compressor 1. Both ends are connected to , and a fourth on-off valve 18 is provided. As the heat storage material 8, a latent heat storage material such as water, various paraffins, and calcium chloride mixed salts having a phase change temperature between 0° C. and 30° C. is used, and the heat storage tank 7 is filled with this heat storage material. ing.

また、第1図、第2図において矢印は冷媒の流
れ方向を示し、開閉弁のうち白抜きは開いている
もの、黒塗りは閉じているものをそれぞれ示して
いる。
Further, in FIGS. 1 and 2, arrows indicate the flow direction of the refrigerant, and among the on-off valves, the white ones indicate open ones, and the black ones indicate closed ones, respectively.

次に、この実施例のヒートポンプ装置の動作に
ついて説明する。
Next, the operation of the heat pump device of this embodiment will be explained.

暖房運転時は、第1図に示すように、第1、第
3の開閉弁15,17が開き、第2、第4の開閉
弁16,18が閉じている。そして、圧縮機1か
ら出た高温、高圧の冷媒ガスは、凝縮器2に送ら
れ、ここで放熱して暖房することで凝縮、液化す
る。この時の温度変化の一例について述べると、
冷媒の暖房作用によつて室内空気は20℃から40℃
程度に加熱され暖房に供せられるとともに、冷媒
は空気への放熱によつて40℃前後の冷媒液となつ
て凝縮器2を出る。暖房効果を発揮し終つて凝縮
器2を出た冷媒液は、第1の冷媒回路19によつ
て第1の開閉弁15を通り蓄熱槽7内の熱交換器
14に送られ、蓄熱槽7内には相変化温度が0℃
〜30℃間にある蓄熱材8が充填されているため、
熱交換器14内を通る冷媒液により蓄熱材18が
加熱され蓄熱される。熱交換器14を出た冷媒液
は、減圧装置3を通つて減圧され、低温、低圧と
なつた後、蒸発器4に送られ、ここで外気から吸
熱することで蒸発する。蒸発した冷媒ガスは第3
の開閉弁17を通つて圧縮機1に戻るサイクルを
繰り返えす。この運転において、外気温度が低く
冷媒の蒸発温度が0℃以下になる場合には蒸発器
4の伝熱面に霜が付着し、外気からの吸熱を阻害
する。このため、霜を取り除く除霜運転が次に行
われる。
During heating operation, as shown in FIG. 1, the first and third on-off valves 15 and 17 are open, and the second and fourth on-off valves 16 and 18 are closed. The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is sent to the condenser 2, where it is condensed and liquefied by dissipating heat and heating the gas. To describe an example of temperature change at this time,
Due to the heating effect of the refrigerant, indoor air temperature ranges from 20℃ to 40℃.
At the same time, the refrigerant is heated to a certain degree and used for heating, and the refrigerant exits the condenser 2 as a refrigerant liquid with a temperature of about 40° C. due to heat radiation to the air. The refrigerant liquid that has finished exerting its heating effect and exits the condenser 2 is sent by the first refrigerant circuit 19 through the first on-off valve 15 to the heat exchanger 14 in the heat storage tank 7 . The phase change temperature is 0℃
Since the heat storage material 8 is filled between ~30℃,
The heat storage material 18 is heated by the refrigerant liquid passing through the heat exchanger 14 and stores heat therein. The refrigerant liquid that has exited the heat exchanger 14 is depressurized through the pressure reducing device 3 to have a low temperature and low pressure, and then is sent to the evaporator 4, where it is evaporated by absorbing heat from the outside air. The evaporated refrigerant gas is
The cycle of returning to the compressor 1 through the on-off valve 17 is repeated. In this operation, if the outside air temperature is low and the evaporation temperature of the refrigerant is 0° C. or lower, frost will adhere to the heat transfer surface of the evaporator 4, inhibiting heat absorption from the outside air. Therefore, a defrosting operation to remove frost is performed next.

除霜運転時は、第2図に示すように、第2、第
4の開閉弁16,18が開き、第1、第3の開閉
弁15,17が閉じるようにする。圧縮機1から
出た高温、高圧の冷媒ガスが凝縮器2に送られ、
ここで放熱して暖房が行われるが、冷媒ガスはそ
の暖房効果をすべて発揮せず、一部に冷媒ガスを
残した気液混合状態で、第2の冷媒回路20によ
つて、第2の開閉弁16を通り第2の減圧装置3
aに送られる。ここで、ガス、液2相の冷媒は、
中間圧力まで減圧され、例えば凝縮温度が10℃〜
20℃程度の状態になつて蒸発器4に送られ、ここ
で放熱することで全体が凝縮し冷媒液となる。上
記の放熱によつて、蒸発器4に付着していた霜が
融かされ除霜が行われる。蒸発器4を出た冷媒液
は、第1の冷媒回路19の減圧装置3を通り、低
温、低圧となつて蓄熱槽7内の熱交換器14に送
られる。ここで、冷媒液は蓄熱材8から吸熱して
蒸発し冷媒ガスとなり、除霜時用冷媒回路21に
よつて第4の開閉弁18を通り圧縮機1に戻る。
この運転は除霜が完了するまで行われ、その後第
1図に示す回路状態に復帰し、暖房運転が再開さ
れる。上述した除霜運転は、0℃〜30℃の間に相
変化温度をもつ蓄熱材8を熱源として行われるた
め、外気を熱源として暖房運転をしている第1図
に示す場合に比べ、冷媒の蒸発温度が高く維持さ
れ、放熱能力が大きく増加する。このため、暖房
と除霜に冷媒の放熱能力を振り分けても、外気熱
源の場合とほぼ同等の暖房能力が維持されるとと
もに、除霜時間も短縮される。
During defrosting operation, as shown in FIG. 2, the second and fourth on-off valves 16 and 18 are opened and the first and third on-off valves 15 and 17 are closed. The high temperature, high pressure refrigerant gas coming out of the compressor 1 is sent to the condenser 2.
Here, heating is performed by dissipating heat, but the refrigerant gas does not exert all its heating effect, and in a gas-liquid mixture state with some refrigerant gas remaining, the second refrigerant circuit 20 The second pressure reducing device 3 passes through the on-off valve 16
Sent to a. Here, the gas and liquid two-phase refrigerant is
The pressure is reduced to an intermediate pressure, for example, the condensation temperature is 10℃~
When the temperature reaches about 20°C, it is sent to the evaporator 4, where it radiates heat and condenses as a whole to become a refrigerant liquid. The above heat radiation melts the frost adhering to the evaporator 4 and defrosts it. The refrigerant liquid exiting the evaporator 4 passes through the pressure reducing device 3 of the first refrigerant circuit 19, becomes low temperature and low pressure, and is sent to the heat exchanger 14 in the heat storage tank 7. Here, the refrigerant liquid absorbs heat from the heat storage material 8, evaporates, becomes refrigerant gas, and returns to the compressor 1 through the fourth on-off valve 18 via the defrosting refrigerant circuit 21.
This operation is continued until defrosting is completed, after which the circuit state shown in FIG. 1 is restored and heating operation is resumed. The above-mentioned defrosting operation is performed using the heat storage material 8 having a phase change temperature between 0°C and 30°C as a heat source. evaporation temperature is maintained high, and heat dissipation capacity is greatly increased. Therefore, even if the heat dissipation capacity of the refrigerant is divided between heating and defrosting, the heating capacity is maintained almost the same as in the case of an outside air heat source, and the defrosting time is also shortened.

この実施例では、除霜運転中に蒸発器4を流れ
る冷媒の圧力を第2の減圧装置3aによつて減圧
して中間圧力とし、除霜のための冷媒放熱温度を
10℃〜20℃に調整している。この調整は、第2の
減圧装置3aを用いずに暖房運転時と同程度の40
℃〜50℃の冷媒を蒸発器4に流すと、冷媒のもつ
凝縮熱が除霜に使用される以外に、外気への放熱
となる熱損失分が増加するのを防ぐためである。
また、この実施例において、除霜運転中は、凝縮
器2からの放熱量を制限するため、凝縮器への送
風量を少なくするようにそのフアンを制御しても
よい。
In this embodiment, during defrosting operation, the pressure of the refrigerant flowing through the evaporator 4 is reduced by the second pressure reducing device 3a to an intermediate pressure, and the refrigerant radiation temperature for defrosting is adjusted.
The temperature is adjusted to 10℃~20℃. This adjustment is performed without using the second pressure reducing device 3a, at the same level as during heating operation.
When a refrigerant at a temperature of .degree. C. to 50.degree. C. is flowed into the evaporator 4, the condensation heat of the refrigerant is used for defrosting, and the purpose is to prevent an increase in heat loss due to heat radiation to the outside air.
Further, in this embodiment, during the defrosting operation, in order to limit the amount of heat released from the condenser 2, the fan may be controlled to reduce the amount of air blown to the condenser.

この実施例では、蓄熱材として潜熱利用材料を
示したが、この発明は水などの顕熱利用材料の蓄
熱材を用いてもよい。また、この実施例では、冷
媒回路について暖房回路のみを説明したが、この
発明は、四方弁などを用いて冷、暖房回路として
もく、さらに受液器やアキユームレータを冷媒回
路に適宜付属させてもよい。
In this embodiment, a latent heat utilization material is shown as the heat storage material, but the present invention may also use a heat storage material of a sensible heat utilization material such as water. In addition, in this embodiment, only the heating circuit was explained with respect to the refrigerant circuit, but the present invention can be used as a cooling and heating circuit using a four-way valve, etc., and furthermore, a liquid receiver and an accumulator can be attached to the refrigerant circuit as appropriate. You may let them.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、暖房
運転時には、冷媒が凝縮器を出た後、蓄熱槽内の
熱交換器を通つて蒸発器に送られるようにし、蓄
熱槽内の蓄熱材に蓄熱し、除霜運転時には蒸発器
を除霜した後の冷媒を上記蓄熱材で加熱しつつ蓄
熱槽内の熱交換器で蒸発する冷媒回路構成にした
ので、暖房運転中に暖房能力を減じることなく、
除霜運転時の熱源を蓄熱でき、また除霜運転中は
蓄熱材を熱源とする運転であるため、冷媒の蒸発
温度を高く維持でき、除霜と同時に通常の暖房運
転時と同程度の能力で暖房が行えるという効果が
得られる。
As explained above, according to the present invention, during heating operation, after the refrigerant leaves the condenser, it is sent to the evaporator through the heat exchanger in the heat storage tank, and the refrigerant is transferred to the heat storage material in the heat storage tank. The refrigerant circuit has a configuration in which heat is stored and, during defrosting operation, the refrigerant after defrosting the evaporator is heated by the heat storage material and evaporated by the heat exchanger in the heat storage tank, so the heating capacity is reduced during heating operation. Without,
Since the heat source during defrosting operation can be stored, and since the heat storage material is used as the heat source during defrosting operation, the evaporation temperature of the refrigerant can be maintained at a high level. This has the effect of heating the room.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるヒートポン
プ装置の暖房運転時の冷媒回路構成図、第2図は
同除霜運転時の冷媒回路構成図であり、第3図お
よび第4図は従来の一例および他例によるヒート
ポンプ装置の冷媒回路構成図である。 1……圧縮機、2……凝縮器、3……減圧装
置、3a……第2の減圧装置、4……蒸発器、7
……蓄熱槽、8……蓄熱材、14……熱交換器、
15〜18……第1〜第4の開閉弁、19,20
……第1、第2の冷媒回路。なお、図中同一符号
は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit configuration diagram during heating operation of a heat pump device according to an embodiment of the present invention, FIG. 2 is a refrigerant circuit configuration diagram during defrosting operation, and FIGS. It is a refrigerant circuit block diagram of the heat pump apparatus by an example and another example. 1... Compressor, 2... Condenser, 3... Pressure reducing device, 3a... Second pressure reducing device, 4... Evaporator, 7
... heat storage tank, 8 ... heat storage material, 14 ... heat exchanger,
15-18...first to fourth on-off valves, 19,20
...first and second refrigerant circuits. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 圧縮機と凝縮器と減圧装置と蒸発器とを環状
に接続して構成されるヒートポンプ装置におい
て、上記凝縮器の出口側と蒸発器の出口側との間
に、第1の開閉弁、蓄熱材とともに蓄熱槽に内蔵
させた熱交換器、上記減圧装置および蒸発器をこ
の順で備えた第1の冷媒回路と、第2の開閉弁を
備えた第2の冷媒回路とを並列に接続し、第1、
第2の冷媒回路が蒸発器の出口側で合流した部分
を第3の開閉弁を介して圧縮機の吸込側に接続
し、さらに第1の冷媒回路の第1の開閉弁と熱交
換器との間を第3の開閉弁と圧縮機の吸込側との
間に第4の開閉弁を介して接続したことを特徴と
するヒートポンプ装置。 2 第2の冷媒回路は、第2の減圧装置を備えて
いる特許請求の範囲第1項記載のヒートポンプ装
置。 3 凝縮器は、除霜運転時にこの凝縮器を通る暖
房用流体の量を減じる制御をするようにしてある
特許請求の範囲第1項または第2項記載のヒート
ポンプ装置。
[Scope of Claims] 1. In a heat pump device configured by connecting a compressor, a condenser, a pressure reducing device, and an evaporator in an annular manner, a heat pump device is provided with a A first refrigerant circuit comprising a first on-off valve, a heat exchanger built into a heat storage tank together with a heat storage material, the pressure reducing device and an evaporator in this order, and a second refrigerant circuit including a second on-off valve. are connected in parallel, the first,
The part where the second refrigerant circuit joins on the outlet side of the evaporator is connected to the suction side of the compressor via a third on-off valve, and the first on-off valve of the first refrigerant circuit and the heat exchanger are connected to each other through a third on-off valve. A heat pump device characterized in that a fourth on-off valve is connected between the third on-off valve and the suction side of the compressor. 2. The heat pump device according to claim 1, wherein the second refrigerant circuit includes a second pressure reducing device. 3. The heat pump device according to claim 1 or 2, wherein the condenser is controlled to reduce the amount of heating fluid passing through the condenser during defrosting operation.
JP1880386A 1986-01-30 1986-01-30 Heat pump device Granted JPS62175559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1880386A JPS62175559A (en) 1986-01-30 1986-01-30 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1880386A JPS62175559A (en) 1986-01-30 1986-01-30 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62175559A JPS62175559A (en) 1987-08-01
JPH0573989B2 true JPH0573989B2 (en) 1993-10-15

Family

ID=11981747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1880386A Granted JPS62175559A (en) 1986-01-30 1986-01-30 Heat pump device

Country Status (1)

Country Link
JP (1) JPS62175559A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025904A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Heat pump device

Also Published As

Publication number Publication date
JPS62175559A (en) 1987-08-01

Similar Documents

Publication Publication Date Title
JPH03117866A (en) Heat pump type refrigerating cycle
JPH0432669A (en) Heat pump system controlling method therefor
JP2667741B2 (en) Air conditioner
JPH0573989B2 (en)
JP3004773B2 (en) Air conditioner
JPH09318178A (en) Air conditioner
US20230028896A1 (en) Water heating system
JPH05106943A (en) Heat pump
JPH0794927B2 (en) Air conditioner
JPS5926203Y2 (en) Heat pump type refrigeration equipment
JPS63279070A (en) Heat pump device
JP2001033126A (en) Air conditioner
JPS63273770A (en) Heat pump device
JPS61184366A (en) Heat pump type hot-water supply device
JPH0730978B2 (en) Heat pump device
JPS6243249Y2 (en)
JPH0221731Y2 (en)
JPS6143194Y2 (en)
JPS63306378A (en) Heat pump device
JPH0354375Y2 (en)
JPH10141815A (en) Air conditioner
JPS6117873A (en) Air-conditioning hot-water supply device
JPS583011Y2 (en) heat pump equipment
JPH03144236A (en) Cooling and heating device for multi rooms
JPH01222173A (en) Heat pump system