JPS63279070A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS63279070A
JPS63279070A JP11188087A JP11188087A JPS63279070A JP S63279070 A JPS63279070 A JP S63279070A JP 11188087 A JP11188087 A JP 11188087A JP 11188087 A JP11188087 A JP 11188087A JP S63279070 A JPS63279070 A JP S63279070A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
valve
heat storage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11188087A
Other languages
Japanese (ja)
Inventor
清 佐久間
佳昭 谷村
秀明 永友
和秀 勇内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11188087A priority Critical patent/JPS63279070A/en
Publication of JPS63279070A publication Critical patent/JPS63279070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプ装置、特に蓄熱槽を有するヒ
ートポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump device, and particularly to a heat pump device having a heat storage tank.

(従来の技術) 従来、この種の装置として第2図に示すものが知られて
いる。
(Prior Art) Conventionally, the device shown in FIG. 2 is known as this type of device.

第2図は、蓄熱槽の熱を除霜に利用したヒートポンプ装
置の冷媒回路構成図であり、サーモバンタ方式と呼ばわ
るものである。図において、1は圧縮機、2は凝縮器、
3および3aは膨張弁または毛細管のような減圧装置で
ある第1の減圧装置および同様な第2の減圧装置、4は
空冷式の蒸発器であり、以上の各部材を環状に接続しで
ある。
FIG. 2 is a refrigerant circuit configuration diagram of a heat pump device that uses heat from a heat storage tank for defrosting, and is called a Thermo Vanta system. In the figure, 1 is a compressor, 2 is a condenser,
3 and 3a are a first pressure reducing device that is a pressure reducing device such as an expansion valve or a capillary tube, and a similar second pressure reducing device; 4 is an air-cooled evaporator, and each of the above members is connected in a ring. .

7は前記圧縮機1の吐出口と凝縮#2の入口との間に設
けた蓄熱槽であり、この蓄熱NIT内には水などの蓄熱
材6と蓄熱用熱交換器8および吸熱用熱交換器9を設け
、これらによって蓄熱装置を構成している。蓄熱用熱交
換器8は一端が圧縮機1の吐出側に、他端が凝縮@2の
入口側にそれぞれ接続しである。吸熱用熱交換器9は一
端を圧縮機1の吸込側に、他端を第2の減圧装置3aを
介して蒸発器4の出口側にそれぞれ接続しである。
7 is a heat storage tank provided between the discharge port of the compressor 1 and the inlet of condenser #2, and this heat storage NIT includes a heat storage material 6 such as water, a heat storage heat exchanger 8, and a heat absorption heat exchanger. A heat storage device 9 is provided, and these constitute a heat storage device. One end of the heat storage heat exchanger 8 is connected to the discharge side of the compressor 1, and the other end is connected to the inlet side of the condensate@2. The endothermic heat exchanger 9 has one end connected to the suction side of the compressor 1, and the other end connected to the outlet side of the evaporator 4 via the second pressure reducing device 3a.

吸熱用熱交換器9および第2の減圧装置3aをバイパス
して蒸発器4の出口から圧縮機1の吸込口に至る回路に
は開閉弁13を設けである。さらに、凝縮器2の出口側
と蒸発器4の人口側とは、開閉弁11と第1の減圧装置
3を直列に接続した回路と、開閉弁11および第1の減
圧装置3をバイパスし開閉弁12を有する回路とで接続
しである。なお、第2図において、実線矢印は暖房運転
時、破線矢印は除霜運転時の冷媒の流れ方向をそわぞれ
示している。
An on-off valve 13 is provided in a circuit from the outlet of the evaporator 4 to the suction port of the compressor 1, bypassing the endothermic heat exchanger 9 and the second pressure reducing device 3a. Furthermore, the outlet side of the condenser 2 and the population side of the evaporator 4 are connected to a circuit in which the on-off valve 11 and the first pressure reducing device 3 are connected in series, and a circuit that bypasses the on-off valve 11 and the first pressure reducing device 3 to open and close the circuit. It is connected to a circuit having a valve 12. In FIG. 2, solid line arrows indicate the flow direction of the refrigerant during heating operation, and broken line arrows indicate the flow direction of the refrigerant during defrosting operation.

つぎに、上述した従来のヒートポンプ装置の動作につい
て説明する。
Next, the operation of the conventional heat pump device described above will be explained.

暖房運転時、開閉弁11.13を開き開閉弁12を閉じ
、圧縮機1からの高温、高圧の冷媒ガスを、まず、蓄熱
槽7に送り、蓄熱用熱交換器8によって蓄熱材6に蓄熱
したのち、凝縮器2に送る。冷媒ガスは凝縮器2でさら
に放熱して暖房することで凝縮、液化し、この液化した
冷媒を開閉弁11、第1の減圧装置3を通って減圧し、
低温、低圧の冷媒液として蒸発・器4に送るようになっ
ている。冷媒液を蒸発器4で外気から吸熱することで蒸
発し、蒸発した冷媒ガスは開閉弁13を通って圧縮機1
に戻るサイクルを繰り返す。この運転において、外気温
度が低く冷媒の蒸発温度が0℃以下になる場合には、蒸
発器4の伝熱面に霜が付着する。この霜を取り除くため
の除霜運転時には、開閉弁12を開き開閉弁11゜13
を閉じる。この状態では、圧縮機lからの高温、高圧の
冷媒ガスを、蓄熱[7を通り蓄熱材6に放熱したのち、
凝縮器2で若干の暖房を行ない、開閉弁12を通ワて蒸
発器4に送る。ここで、冷媒を放熱し蒸発器4の霜を融
かしたのち、第2の減圧装置3aを通って低温、低圧と
し、吸熱用熱交換器9に送る。冷媒を吸熱用熱交換器9
で蓄熱材6から吸熱して冷媒ガスにして圧縮機1に戻す
。除霜を完了したのちには再び暖房運転に復帰するよう
にな)ている。
During heating operation, the on-off valves 11 and 13 are opened and the on-off valve 12 is closed, and the high-temperature, high-pressure refrigerant gas from the compressor 1 is first sent to the heat storage tank 7, where it is stored in the heat storage material 6 by the heat storage heat exchanger 8. After that, it is sent to condenser 2. The refrigerant gas is condensed and liquefied by further radiating heat and heating in the condenser 2, and the liquefied refrigerant passes through the on-off valve 11 and the first pressure reducing device 3 to reduce the pressure.
It is designed to be sent to the evaporator 4 as a low temperature, low pressure refrigerant liquid. The refrigerant liquid is evaporated by absorbing heat from the outside air in the evaporator 4, and the evaporated refrigerant gas passes through the on-off valve 13 to the compressor 1.
Return to repeat the cycle. In this operation, if the outside air temperature is low and the evaporation temperature of the refrigerant is 0° C. or lower, frost will adhere to the heat transfer surface of the evaporator 4. During defrosting operation to remove this frost, the on-off valve 12 is opened and the on-off valves 11 and 13 are opened.
Close. In this state, the high-temperature, high-pressure refrigerant gas from the compressor 1 passes through the heat storage [7] and radiates heat to the heat storage material 6.
The condenser 2 performs some heating, and the air is sent to the evaporator 4 through the on-off valve 12. Here, after the refrigerant radiates heat to melt the frost in the evaporator 4, it passes through the second pressure reducing device 3a to a low temperature and low pressure, and is sent to the endothermic heat exchanger 9. Heat exchanger 9 for absorbing heat from the refrigerant
It absorbs heat from the heat storage material 6 and returns it to the compressor 1 as a refrigerant gas. After defrosting is completed, heating operation is resumed).

(発明が解決しようとする問題点〕 しかしながら、従来のサーモバンタ方式のヒートポンプ
装置にあフては、圧縮機から吐出した冷媒ガスを、まず
、蓄熱槽に送って放熱するため、蓄熱完了まで暖房側に
利用する熱量を蓄熱に利用し、暖房能力を十分に確保で
きず、起動直後の能力不足を助長することになってしま
い、また、除霜においては弁12を開放することになる
ため、高圧圧力が下がり暖房能力はほとんど得ることが
できないばかりか、除霜熱として高温冷媒を使用するこ
とになり、蒸発器4からの放熱ロスも増え、さらに、効
率良く冷房を行ないにくいという問題点かあフた。
(Problems to be Solved by the Invention) However, in conventional ThermoVanta type heat pump devices, the refrigerant gas discharged from the compressor is first sent to the heat storage tank for heat dissipation. The amount of heat that would otherwise be used for heating is used for heat storage, making it impossible to secure sufficient heating capacity, which exacerbates the lack of capacity immediately after startup.Furthermore, since the valve 12 must be opened during defrosting, high pressure Not only does the pressure drop and heating capacity is hardly obtained, but high-temperature refrigerant is used as defrosting heat, which increases heat radiation loss from the evaporator 4, and furthermore, there is the problem that it is difficult to perform air conditioning efficiently. Futa.

(目的) この発明は、以上のような問題点を解消するためになさ
れたもので、暖房運転における起動直後および蓄熱時に
おける暖房能力の低下を解消するとともに除霜時に、十
分に暖房能力を保持し、起動時に効率よく除霜を完了で
きる。さらに、冷房時においても問題なく運転を可能と
するヒートポンプ装置を提供することを目的としている
(Purpose) This invention was made to solve the above-mentioned problems, and it eliminates the decrease in heating capacity immediately after startup and during heat storage in heating operation, and also maintains sufficient heating capacity during defrosting. Defrosting can be completed efficiently at startup. Furthermore, it is an object of the present invention to provide a heat pump device that can be operated without problems even during cooling.

(問題点を解決するための手段〕 このため、この発明に係るヒートポンプ装置にあっては
、蓄熱槽内の蓄熱用熱交換器と第1の減圧装置を冷暖房
にかかわらず一方向より流れるようにブリッジ回路を形
成して構成し、必ず凝縮した冷媒液が流れるように、室
内外熱交換器の間に配し、さらに、圧縮機吸込配管に第
2の開閉弁を配し、この第2の開閉弁を迂回するように
第2の減圧装置および吸熱用熱交換器を介してバイパス
回路を形成するとともに蓄熱用熱交換器を迂回するバイ
パス回路を第1の開閉弁を介して形成することにより、
前記の目的を達成しようとするものである。
(Means for Solving the Problems) Therefore, in the heat pump device according to the present invention, the heat exchanger for heat storage in the heat storage tank and the first pressure reducing device are configured so that the flow flows from one direction regardless of heating or cooling. A bridge circuit is formed and arranged between the indoor and outdoor heat exchangers so that condensed refrigerant liquid flows without fail, and a second on-off valve is arranged in the compressor suction pipe. By forming a bypass circuit through the second pressure reducing device and the endothermic heat exchanger so as to bypass the on-off valve, and by forming a bypass circuit through the first on-off valve to bypass the heat storage heat exchanger. ,
This aims to achieve the above objectives.

〔作用〕[Effect]

以上のような構成により、この発明によるヒートポンプ
装置は、吸込配管の第2の開閉弁および蓄熱用熱交換器
のバイパス回路の第1の開閉弁を閉じることにより、冷
暖肩側運転時に、過冷却熱量を蓄熱槽へ蓄熱を行なうよ
うにしたので、暖房時には暖房能力の低下がなく蓄熱を
可能とし、冷房時には、放熱量を増加することになる。
With the above configuration, the heat pump device according to the present invention achieves supercooling during cooling/heating shoulder operation by closing the second on-off valve of the suction pipe and the first on-off valve of the bypass circuit of the heat storage heat exchanger. Since the amount of heat is stored in the heat storage tank, it is possible to store heat without reducing the heating capacity during heating, and increase the amount of heat radiated during cooling.

また、暖房起動時においては、前記両開閉弁を開くこと
により蓄熱熱量をとり出し、専た、蓄熱槽7内での熱交
換をなくして、立上り時の能力を出しながら定常状態に
早くもっていくことができる。さらに、除霜時において
は、第2の開閉弁を絞り、高圧圧力を保ち室外側熱交換
器へ中間温度10〜20℃の冷媒を流すことにより、室
外側熱交換器4からの放熱を小とした除霜を可能とする
In addition, at the time of heating start-up, the amount of stored heat is taken out by opening both the on-off valves, eliminating heat exchange exclusively within the heat storage tank 7, and quickly bringing the steady state to a steady state while maintaining the startup capacity. be able to. Furthermore, during defrosting, the second on-off valve is throttled to maintain high pressure and allow refrigerant with an intermediate temperature of 10 to 20°C to flow to the outdoor heat exchanger 4, thereby reducing heat radiation from the outdoor heat exchanger 4. This makes it possible to defrost at a low temperature.

冷房時においては、前記の通り放熱特性を良くするとと
もに急激な負荷変動時には、吸込配管の第2の開閉弁2
2を閉とすることにより、低圧部で蓄熱NI7の蓄熱材
6に蓄えた熱量を吸熱用熱交換器で吸収することにより
、液バツクを防ぎ装置の信頼性を向上する。
During cooling, the heat dissipation characteristics are improved as described above, and during sudden load changes, the second on-off valve 2 of the suction pipe is
2 is closed, the amount of heat stored in the heat storage material 6 of the heat storage NI 7 in the low pressure section is absorbed by the endothermic heat exchanger, thereby preventing liquid backflow and improving the reliability of the device.

〔実施例〕〔Example〕

以下に、この発明に係る一実施例に係るヒートポンプ装
置を、第1図に基づいて説明する。
EMBODIMENT OF THE INVENTION Below, the heat pump apparatus based on one Example based on this invention is demonstrated based on FIG.

前出従来例第1図におけると同一(相当)構成要素は同
一符号で表わし、説明の重複をさける。
The same (equivalent) components as in FIG. 1 of the prior art example are indicated by the same reference numerals to avoid duplication of explanation.

図において、20は切り換え手段である四方弁、21は
後出蓄熱用8を迂回するバイパス回路に設けた第1の開
閉弁、22は圧縮機吸込配管に設けた第2の開閉弁、2
3は蓄熱用8、第1の減圧装置とともに形成したブリッ
ジ回路、23a〜23dはこのブリッジ回路23を形成
する逆止弁である。
In the figure, 20 is a four-way valve that is a switching means, 21 is a first on-off valve provided in a bypass circuit that bypasses the post-output heat storage 8, 22 is a second on-off valve provided on the compressor suction pipe, 2
3 is a bridge circuit formed together with the heat storage 8 and the first pressure reducing device, and 23a to 23d are check valves forming this bridge circuit 23.

圧縮機!、四方弁20、室内側熱交換器(暖房時凝縮器
)2、蓄熱用熱交換器8、第1の減圧装置3、ブリッジ
回路23を構成する逆止弁23a〜23d、室外側熱交
換器(暖房時凝縮器)4、第2の開閉弁21を順次接続
し、冷媒回路を構成している。
Compressor! , four-way valve 20, indoor heat exchanger (heating condenser) 2, heat storage heat exchanger 8, first pressure reducing device 3, check valves 23a to 23d constituting the bridge circuit 23, outdoor heat exchanger (Heating condenser) 4 and a second on-off valve 21 are connected in sequence to form a refrigerant circuit.

前記第2の開閉弁22の前後を迂回する第2の減圧装置
3aおよび吸熱用熱交換器9により形成するバイパス回
路を設け、さらに、蓄熱用熱交換器8を迂回するバイパ
ス回路に第1の開閉弁21を設けである。なお、蓄熱材
6としては相変化温度が0〜30℃間にある水や各種パ
ラフィン、塩化カルシウム系混合塩などの潜熱利用蓄熱
材を用い、この蓄熱材を蓄熱槽7内に充填しである。
A bypass circuit formed by a second pressure reducing device 3a and an endothermic heat exchanger 9 that bypasses the front and back of the second on-off valve 22 is provided, and a first bypass circuit that bypasses the heat storage heat exchanger 8 is provided. An on-off valve 21 is provided. In addition, as the heat storage material 6, a heat storage material utilizing latent heat such as water, various paraffins, and mixed salts based on calcium chloride having a phase change temperature between 0 and 30° C. is used, and the heat storage tank 7 is filled with this heat storage material. .

つざに、この発明の一実施例のヒートポンプ装置の動作
について説明する。通常、暖房運転時は、第1図に示す
ように、第1の開閉弁21を閉じ、第2の開閉弁22を
開き、圧縮機1から出た高温、高圧の冷媒ガスを、室内
熱交換器2に送り、ここで放熱して室内空気を暖房する
ことで凝縮、液化する。
First, the operation of a heat pump device according to an embodiment of the present invention will be explained. Normally, during heating operation, the first on-off valve 21 is closed and the second on-off valve 22 is opened, as shown in FIG. It is sent to vessel 2, where it is condensed and liquefied by radiating heat and heating the indoor air.

このときの温度変化の一例について述べると、冷媒の暖
房作用により室内空気を20℃〜40℃程度に加熱し、
冷媒を空気への放熱によって40℃前後の冷媒液として
室内側熱交換器2から出す。暖房効果を発揮し終って、
室内側熱交換器2から出た冷媒液を、ブリッジ回路23
を形成している逆止弁23aを通過し、蓄熱槽7内の蓄
熱用熱交換器8に送り、蓄熱槽7内に充填している相変
化温度0℃〜30℃間の蓄熱材6を蓄熱用熱交換器8を
介して加熱し、熱量を蓄熱する。蓄熱用熱交換器8から
出た冷媒液を、第1の減圧装置3を通して減圧し、低温
、低圧としてブリッジ回路23を形成する逆止弁23b
を通過し、室外側熱交換器4に送り、ここで外気から吸
熱して蒸発しガス冷媒とし、四方弁20、第2の開閉弁
22を通して圧縮機1に戻るサイクルを繰り返す。また
第2の開閉弁22を開いているため、バイパス回路上の
第2の減圧装置3aの抵抗の方が、第2の開閉弁22の
抵抗より大であるので、バイパス回路は閉じていないが
、冷媒の流れは微少であり、回路への影響はないといえ
る。
To describe an example of the temperature change at this time, indoor air is heated to about 20°C to 40°C by the heating effect of the refrigerant,
The refrigerant is released from the indoor heat exchanger 2 as a refrigerant liquid at around 40° C. by dissipating heat to the air. After the heating effect has been achieved,
The refrigerant liquid discharged from the indoor heat exchanger 2 is transferred to the bridge circuit 23.
The heat storage material 6 with a phase change temperature of 0°C to 30°C filled in the heat storage tank 7 is sent to the heat storage heat exchanger 8 in the heat storage tank 7 through the check valve 23a forming the heat storage tank 7. It is heated through the heat storage heat exchanger 8 and stores the amount of heat. A check valve 23b that reduces the pressure of the refrigerant liquid discharged from the heat exchanger 8 for heat storage through the first pressure reducing device 3 and forms a bridge circuit 23 as a low temperature and low pressure.
The refrigerant is passed through the air and sent to the outdoor heat exchanger 4, where it absorbs heat from the outside air, evaporates, becomes a gas refrigerant, and returns to the compressor 1 through the four-way valve 20 and the second on-off valve 22, repeating the cycle. Also, since the second on-off valve 22 is open, the resistance of the second pressure reducing device 3a on the bypass circuit is greater than the resistance of the second on-off valve 22, so the bypass circuit is not closed. , the flow of refrigerant is minute and it can be said that it has no effect on the circuit.

通常、冷房時においては、四方弁20を切り換えること
により、前述した暖房時の逆サイクルを描くことになる
。室外側熱交換器4で液化した冷媒を、ブリッジ回路2
3を構成する逆止弁23cを経て、暖房と同−流れ方向
で蓄熱用熱交換器8の通過時に、蓄熱を行ない、以後、
第1の減圧装置3、室内側熱交換器2、四方弁20、開
閉弁22を通過し圧縮機へ戻るサイクルを繰り返す。
Normally, during cooling, by switching the four-way valve 20, the reverse cycle during heating described above is drawn. The refrigerant liquefied in the outdoor heat exchanger 4 is transferred to the bridge circuit 2.
3, heat is stored when passing through the heat storage heat exchanger 8 in the same flow direction as heating, and thereafter,
The cycle of passing through the first pressure reducing device 3, the indoor heat exchanger 2, the four-way valve 20, and the on-off valve 22 and returning to the compressor is repeated.

通常、暖房時に、蓄熱槽に蓄熱した状態での初期起動時
には第1の開閉弁21を開、第2の開閉弁z2を閉とす
ることにより、蓄#J!7の熱量を、吸熱用熱交換器9
により冷媒回路に吸収することにより低圧圧力を上げ、
かつ、蓄熱!fi7を迂回しているので、高圧側の放熱
もおさえるので、高圧の低下も防ぐ運転となる。
Normally, during heating, at initial startup with heat stored in the heat storage tank, the first on-off valve 21 is opened and the second on-off valve z2 is closed, thereby storing #J! 7 is transferred to the heat absorbing heat exchanger 9.
increases the low pressure by absorbing it into the refrigerant circuit,
And heat storage! Since fi7 is bypassed, heat radiation on the high pressure side is also suppressed, resulting in an operation that prevents a drop in high pressure.

したがフて、冷媒回路の過渡状態においても、すみやか
に暖房能力を出すことができるとともに早急に、高圧に
上昇できるので、安定した通常運転に早く到達する。
Therefore, even in a transient state of the refrigerant circuit, the heating capacity can be immediately produced and the pressure can be quickly increased to a high pressure, so that stable normal operation can be reached quickly.

つぎに、除霜運転時には、第1の開閉弁21を開とし、
第2の開閉弁22を閉じる。このとき、圧縮機1からの
高温、高圧の冷媒ガスは、室内側熱交換器で放熱して暖
房を行ないながら気液2相状態とし、逆止弁23aを通
過し、一部蓄熱用熱交換器8を通すが、はとんどは第1
の開閉弁21を通り、第1の減圧装置3にて中間圧に減
圧され10〜20℃位の冷媒温度となり、逆止弁23b
を通過し室外側熱交換器4に送られ、ここで放熱するこ
とで液化する。この放熱によって室外側熱交換器4に付
着していた霜を融かし、除霜を行ない、室外側熱交換器
4を出た液冷媒を、第2の開閉弁22が閉じているため
、バイパス回路を経て、第2の減圧装置3aで低温、低
圧として蓄熱MI7内の吸熱用熱交換器9に送る。ここ
で、冷媒を蓄熱材6から吸熱して冷媒ガスとなり、圧縮
機1に戻る。この運転を、除霜が完了するまて行なうが
、除霜直前あるいは着霜量が多いときに、第1の開閉弁
21を閏とし、室外側熱交換器4への冷媒量を増加し高
圧を下げ、暖房能力を小とし除霜を進めることもできる
Next, during defrosting operation, the first on-off valve 21 is opened,
Close the second on-off valve 22. At this time, the high-temperature, high-pressure refrigerant gas from the compressor 1 radiates heat in the indoor heat exchanger and becomes a gas-liquid two-phase state while performing heating, passes through the check valve 23a, and partially passes through the heat exchanger for heat storage. Pass through the vessel 8, but mostly through the first
The refrigerant passes through the on-off valve 21, is depressurized to intermediate pressure in the first pressure reducing device 3, and has a temperature of about 10 to 20°C, and then the refrigerant passes through the check valve 23b.
It passes through and is sent to the outdoor heat exchanger 4, where it liquefies by dissipating heat. The frost adhering to the outdoor heat exchanger 4 is melted by this heat radiation, defrosting is performed, and the liquid refrigerant exiting the outdoor heat exchanger 4 is closed by the second on-off valve 22. After passing through the bypass circuit, the second pressure reducing device 3a sends the heat at low temperature and pressure to the endothermic heat exchanger 9 in the heat storage MI7. Here, the refrigerant absorbs heat from the heat storage material 6, becomes refrigerant gas, and returns to the compressor 1. This operation is continued until defrosting is completed, but just before defrosting or when there is a large amount of frost, the first on-off valve 21 is used as a lever to increase the amount of refrigerant to the outdoor heat exchanger 4 and supply high pressure. It is also possible to lower the heating capacity and defrost the air.

前述した除霜運転を、0℃〜30℃の間に相変化温度を
もつ蓄熱材6を熱源として行なうため、外気を熱源とし
ている通常暖房運転に比べ、冷媒の蒸発温度を高く維持
し、放熱能力を大きく増加する。このため、暖房と除霜
に冷媒の放熱能力を掘りわけても、外気熱源の場合とほ
ぼ同等の暖房能力を維持するとともに、除霜時間も短縮
できる。
Since the above-mentioned defrosting operation is performed using the heat storage material 6 having a phase change temperature between 0°C and 30°C as a heat source, the evaporation temperature of the refrigerant is maintained higher than in normal heating operation where the outside air is used as the heat source, and heat radiation is improved. Greatly increases abilities. Therefore, even if the heat dissipation capacity of the refrigerant is divided into heating and defrosting, the heating capacity can be maintained almost the same as in the case of an outside air heat source, and the defrosting time can also be shortened.

上記実施例で除霜運転中に蒸発器の冷媒の圧力を減圧し
て中間圧力としたのは、あまり高温の冷媒を流すと外気
への放熱損失分が増加し、無駄に熱を消費することにな
るからであることはいうまでもない。
The reason why the pressure of the refrigerant in the evaporator was reduced to an intermediate pressure during defrosting operation in the above example is that if too high-temperature refrigerant is allowed to flow, the amount of heat dissipated to the outside air will increase, and heat will be wasted. Needless to say, this is because

つぎに冷房運転について説明する。Next, cooling operation will be explained.

通常冷房運転については、四方弁20を切り換えること
により、蓄熱槽7へ蓄熱し、冷媒回路を構成することは
前述の通りである。このとき、蓄熱槽を有効に使い、蓄
熱用熱交換器8から放熱を行なうため、冷媒サイクルは
効率よい運転が可能となる。また、負荷の急変時には、
吸込配管1aに設けた第2の開閉弁22を閉とし、冷媒
を吸熱用熱交換器9へながし、蓄熱材より吸熱し、ガス
化して圧縮機1へ戻すため、液バツクを防止した信頼性
の高い運転ができる。
As described above, during normal cooling operation, heat is stored in the heat storage tank 7 by switching the four-way valve 20 to form a refrigerant circuit. At this time, the heat storage tank is used effectively and heat is radiated from the heat storage heat exchanger 8, so that the refrigerant cycle can be operated efficiently. In addition, when the load suddenly changes,
The second on-off valve 22 provided in the suction pipe 1a is closed, and the refrigerant is passed to the heat exchanger 9 for heat absorption, where it absorbs heat from the heat storage material, gasifies it, and returns it to the compressor 1. This ensures reliability by preventing liquid back up. Able to drive at high speed.

以上のように、この発明の一実施例によれば、蓄熱用熱
交換器8、第1の減圧装置3、逆止弁23a〜23dに
よりブリッジ回路23を形成′      し、かつ、
室内側熱交換器2と室外側熱交換器4の間に配し、蓄熱
用熱交換器8を迂回するバイパス回路に第1の開閉弁2
1を設け、さらに、吸込配管1aに第2の開閉弁22を
設け、その第2の開閉弁22を迂回するバイパス回路に
第2の減圧装置3aと吸熱用熱交換器9を配したので、
暖房時においては、起動の立上りを早め、早急に定常運
転でき、効率のよい運転をできるとともに、暖房能力を
維持しながら蓄熱でき、かつ、熱ロスをおさえ、短時間
に効率良く除霜できる。
As described above, according to one embodiment of the present invention, the bridge circuit 23 is formed by the heat storage heat exchanger 8, the first pressure reducing device 3, and the check valves 23a to 23d, and
A first on-off valve 2 is disposed between the indoor heat exchanger 2 and the outdoor heat exchanger 4, and is provided in a bypass circuit that bypasses the heat storage heat exchanger 8.
1, a second on-off valve 22 is provided in the suction pipe 1a, and a second pressure reducing device 3a and an endothermic heat exchanger 9 are arranged in a bypass circuit that bypasses the second on-off valve 22.
During heating, startup is accelerated, steady operation is quickly possible, and efficient operation is possible, heat can be stored while maintaining heating capacity, heat loss is suppressed, and defrosting can be performed efficiently in a short period of time.

また、冷房時においても、効率的な運転を可能とし、か
つ、液バツクを防止し、信頼性の高い運転ができる。
Furthermore, even during cooling, efficient operation is possible, liquid back-up is prevented, and highly reliable operation is possible.

以上のように逆止弁を用いたブリッジ回路を安価に構成
することにより、蓄熱を有効に使用できるという効果が
ある。
By configuring a bridge circuit using a check valve at a low cost as described above, there is an effect that heat storage can be used effectively.

(発明の効果) 以上に説明してきたように、この発明によれば、蓄熱用
熱交換器、第1の減圧装置を含むブリッジ回路を形成し
、かつ、室内側熱交換器と室外側熱交換器の間に配し、
蓄熱用熱交換器を迂回するバイパス回路に第1の開閉弁
を設け、さらに、吸込配管に第2の開閉弁を設け、この
第2の開閉弁を迂回するバイパス回路に第2の減圧装置
と吸熱用熱交換器を配したことにより、暖房運転におけ
る起動直後および蓄熱時における暖房能力の低下を解消
するとともに、除霜時に暖房能力を十分に保持し、短時
間に効率良く除霜を完了でき、さらに、冷房時において
も効率的な運転ができ、液バツクを防止し信頼性の高い
ヒートポンプ装置を提供しつるという効果を有する。
(Effects of the Invention) As described above, according to the present invention, a bridge circuit including a heat storage heat exchanger and a first pressure reducing device is formed, and an indoor heat exchanger and an outdoor heat exchanger are formed. Arranged between the bowls,
A first on-off valve is provided in a bypass circuit that bypasses the heat storage heat exchanger, a second on-off valve is further provided on the suction pipe, and a second pressure reducing device is provided on the bypass circuit that bypasses the second on-off valve. By installing an endothermic heat exchanger, it eliminates the decrease in heating capacity immediately after startup and during heat storage during heating operation, and also maintains sufficient heating capacity during defrosting, allowing defrosting to be completed efficiently in a short time. Furthermore, it has the effect of providing a highly reliable heat pump device that can operate efficiently even during cooling, prevents liquid back-up, and is highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係るヒートポンプ装置の
冷媒回路図、第2図は従来の実施例による暖房時の冷房
回路図である。 1−−−−圧縮機 1 a ・−”吸込配管 2・−一室内側熱交換器 3−−−−−第1の減圧装置 3 a =−−第2の減圧装置 4・−一・室外側熱交換器 6−−−−一蓄熱材 7−−−−−蓄熱槽 8−−−−−−蓄熱用熱交換器 9・−一吸熱用熱交換器 20−−−−−四方弁 21−−−−−第1の開閉弁 22−−−−第2の開閉弁 23−−ブリッジ回路 各図中、同一符号は同一部分または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a cooling circuit diagram during heating according to a conventional embodiment. 1----Compressor 1a ・-"Suction piping 2.-1 Room side heat exchanger 3-----First pressure reducing device 3 a =--Second pressure reducing device 4.-1. Room Outer heat exchanger 6-----1 Heat storage material 7-----Thermal storage tank 8------Thermal storage heat exchanger 9.--1 Heat absorption heat exchanger 20----4-way valve 21 -----First on-off valve 22---Second on-off valve 23--Bridge circuit In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 圧縮機、切り換え手段、室内側熱交換器、 第1の減圧装置、室外側熱交換器を順次接続して構成す
るヒートポンプ装置において、蓄熱材と蓄熱用熱交換器
と吸熱用熱交換器で構成する蓄熱槽の蓄熱用熱交換器と
前記第1の減圧装置を、冷暖房にかかわらず冷媒が一方
向に流れるようにブリッジ回路を形成して、前記室内側
熱交換器と室外側熱交換器の間に配し、さらに前記蓄熱
用熱交換器を迂回するバイパス回路に、第1の開閉弁、
圧縮機の吸込配管に第2の開閉弁を設け、この第2の開
閉弁を迂回するバイパス回路に第2の減圧装置、吸熱用
熱交換器を設けたことを特徴とするヒートポンプ装置。
[Scope of Claims] A heat pump device configured by sequentially connecting a compressor, a switching means, an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger, which includes a heat storage material, a heat storage heat exchanger, and a heat absorbing device. A bridge circuit is formed between the heat storage heat exchanger of the heat storage tank constituted by the indoor heat exchanger and the first pressure reducing device so that the refrigerant flows in one direction regardless of whether it is air-conditioned or heated. A first on-off valve disposed between the outdoor heat exchangers and further provided in a bypass circuit that bypasses the heat storage heat exchanger;
A heat pump device characterized in that a second on-off valve is provided in a suction pipe of a compressor, and a second pressure reducing device and an endothermic heat exchanger are provided in a bypass circuit that bypasses the second on-off valve.
JP11188087A 1987-05-08 1987-05-08 Heat pump device Pending JPS63279070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188087A JPS63279070A (en) 1987-05-08 1987-05-08 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188087A JPS63279070A (en) 1987-05-08 1987-05-08 Heat pump device

Publications (1)

Publication Number Publication Date
JPS63279070A true JPS63279070A (en) 1988-11-16

Family

ID=14572467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188087A Pending JPS63279070A (en) 1987-05-08 1987-05-08 Heat pump device

Country Status (1)

Country Link
JP (1) JPS63279070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177063A (en) * 1990-11-08 1992-06-24 Mitsubishi Electric Corp Air conditioning plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177063A (en) * 1990-11-08 1992-06-24 Mitsubishi Electric Corp Air conditioning plant

Similar Documents

Publication Publication Date Title
JP2008196798A (en) Air conditioner
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP2667741B2 (en) Air conditioner
JP4608303B2 (en) Vapor compression heat pump
WO2010041453A1 (en) Refrigeration device
JP3071328B2 (en) Heat storage type cooling device
JPS63279070A (en) Heat pump device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JPS63273770A (en) Heat pump device
JP3783153B2 (en) Air conditioner
JPH0794927B2 (en) Air conditioner
JP3004773B2 (en) Air conditioner
JP2000234771A (en) Secondary refrigerant heat-storing air-conditioning system
JP2002061897A (en) Heat storage type air conditioner
JPH0573989B2 (en)
JPH0730978B2 (en) Heat pump device
JPH0429345Y2 (en)
JPS6143194Y2 (en)
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH10141815A (en) Air conditioner
JPH0354375Y2 (en)
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPH10267329A (en) Ice heat storage device
JPH10339512A (en) Attachment unit for air conditioner
JP2002206815A (en) Freezer device