JPH0432669A - Heat pump system controlling method therefor - Google Patents

Heat pump system controlling method therefor

Info

Publication number
JPH0432669A
JPH0432669A JP13594790A JP13594790A JPH0432669A JP H0432669 A JPH0432669 A JP H0432669A JP 13594790 A JP13594790 A JP 13594790A JP 13594790 A JP13594790 A JP 13594790A JP H0432669 A JPH0432669 A JP H0432669A
Authority
JP
Japan
Prior art keywords
temperature
control valve
output
low
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13594790A
Other languages
Japanese (ja)
Other versions
JP2553738B2 (en
Inventor
Minoru Tagashira
実 田頭
Kazuo Nakatani
和生 中谷
Shozo Funakura
正三 船倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2135947A priority Critical patent/JP2553738B2/en
Publication of JPH0432669A publication Critical patent/JPH0432669A/en
Application granted granted Critical
Publication of JP2553738B2 publication Critical patent/JP2553738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To efficiently obtain high-temperature by forming a second intermediate-temperature cycle in which the discharge line of a low-stage compressor branches between the discharge side thereof and a first control valve, and is led to an intermediate condenser and a heat- exchanger on the side of a heat source, through a second control valve, and is connected to the suction side thereof. CONSTITUTION:When priority is given to the output of low-temp. and the output of high-temp. is not required, a 1st. control valve 21 is fully opened and a 2nd. control valve 28 is fully closed. A vaporized refrigerant discharged from a low-stage compressor 20 is passed through the 1st. control valve 21 and a four-way valve 22, and is condensed and liquefied in a heat- exchange 26 on the side of a heat source, following which the refrigerant liquefied is passed through expansion valves 25, 24 and is decompressed and evaporated in an evaporator 23, which is also used for an intermediate condenser, and thus the low temp. is obtained. At the same time, when the output of high-temp. is required, the 2nd. control valve 28 is fully opened, and the vaporized refrigerant discharged from the low-stage compressor 20 is condensed and liquefied in an intermediate condenser 29 and the refrigerant liquefied becomes the heat source in a high-temp. cycle 32. When the output of the high-temp. is not required, operation is done in a 1st. intermediate-temp. cycle 27, and when the output of the high-temp. is simultaneously required, the operation is also done in a 2nd. intermediate temp. cycle 31, and thus compression ratio with which the operation can be most efficiently done in the intermediate-temp. cycle 31 and the high-temp. cycle 36, can be obtained. As a result of it, the operation can be safely done.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は ヒートポンプによる高温から低温まで目的に
応じた温度が利用できるシステムに関するものであム 従来の技術 従来より、ヒートポンプで高温または低温を得る方法と
して、複数個の冷凍サイクル装置をカスケード式に連結
した多元の冷凍サイクル装置を用いたシステムが知られ
ている。第5図はこれを冷暖給湯システムとして適用し
た例であり、圧縮機1、常に凝縮器として作用する給湯
用熱交換器2、膨張弁3、常に蒸発器として作用する水
側熱交換器4等を連結して給湯用サイクル5を構成して
いも 次に圧縮機6、四方弁7の切換えにより凝縮器叉
は蒸発器として作用する水側熱交換器8、膨張弁9、四
方弁7の切換えにより蒸発器叉は凝縮器として作用する
空気側熱交換器10等を連結して冷暖ヒートポンプサイ
クル11を構成していもここで給湯用サイクル5にはフ
ロン系の単一冷媒R12が封入され 冷暖ヒートポンプ
サイクル11にはフロン系の単一冷媒R22が封入され
 その水側熱交換器4及び8は同一の蓄熱槽12の中に
配置され 熱交換された水等を循環回路(図示せず)を
通して冷暖房を行なう如く構成していも本システムにお
いて夏期には、 主たる運転を給湯用サイクル5で行1
.%  水側熱交換器4で冷水を作りなが収 その排熱
を利用して給湯用熱交換器2で給湯水を作も また冷房
負荷が増大した時にζよ 冷暖ヒートポンプサイクル1
1も運転し 水側熱交換器8を蒸発器として作用させ冷
水を補助し その排熱を凝縮器として作用する空気側熱
交換器10から排出する。また給湯負荷があり冷房負荷
が減少し冷水温度が極端に下る時に(友 冷暖ヒートポ
ンプサイクル11を切換え 水側熱交換器8を凝縮器と
して作用させ加熱すも 次に中間期においては一般的に給湯モードのみであるの
で冷暖ヒートポンプサイクル11を適宜運転して水側熱
交換器8で加温しなが収 給湯用サイクル5により給湯
運転を行う。さらに冬期において3表 冷暖ヒートポン
プサイクル11を連続運転して加温しながら給湯用サイ
クル5により給湯運転を行し\ さらに暖房負荷が増大
した時には給湯用サイクル5を停止して暖房モードを優
先させも 発明が解決しようとする課題 上記従来例では、 冷房時、冷暖ヒートポンプサイクル
11を運転した場合の廃熱は 空気側熱交換器10から
排出するた敦 冷房の廃熱を給湯に利用することが出来
なく、不経済な運転となもまた 2元冷凍サイクルの高
段側になる給湯サイクル51ヨ  水側熱交換器4の温
度が冷房条件の7〜10℃程度の水を熱源として運転さ
れるたム高温給湯を行う上で圧縮比の増大により効率の
低下が避けられなl、X、などの課題があム本発明は、
 高温または低温を得るための不具合点を解消し 特に
高温を効率よく実現できる多温度利用ヒートポンプシス
テムの提案を目的とするものであも 課題を解決するための手段 本発明になる多温度利用ヒートポンプシステムは、 高
温凝縮器 高温蒸発器 高温用圧縮機、 高温膨張弁を
環状に接続して高温サイクルを構成し低段圧縮機、 第
一制御弁、四方弁、中間凝縮器兼蒸発a 第一膨張弁、
熱源側熱交換器を環状に接続して第一中温サイクルを構
成し 前記低段圧縮機の吐出側と前記第一制御弁との間
から分岐上第二制御弁を介し中間凝縮銖 熱源側熱交換
器を経て四方弁を介して低段圧縮機の吸入側に接続して
第二中温サイクルを構成し 前記高温サイクルには、 
高沸点冷媒を、前記第一および第二中温サイクルにcヨ
  前記高温サイクルの冷媒より低沸点冷媒を用いるこ
とを特徴としたものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a system in which a heat pump can be used to obtain temperatures from high to low temperatures depending on the purpose.Conventional TechnologyAs a method of obtaining high or low temperatures using a heat pump, 2. Description of the Related Art Systems using multiple refrigeration cycle devices in which a plurality of refrigeration cycle devices are connected in a cascade manner are known. Figure 5 shows an example in which this is applied as a cooling/heating hot water supply system, including a compressor 1, a hot water heat exchanger 2 that always functions as a condenser, an expansion valve 3, a water side heat exchanger 4 that always functions as an evaporator, etc. Even if the hot water supply cycle 5 is configured by connecting the compressor 6 and the four-way valve 7, the water-side heat exchanger 8, expansion valve 9, and four-way valve 7, which act as a condenser or evaporator, are then switched. Even if the cooling/heating heat pump cycle 11 is configured by connecting the air-side heat exchanger 10, etc., which acts as an evaporator or condenser, the hot water supply cycle 5 is filled with a single fluorocarbon-based refrigerant R12. A single fluorocarbon-based refrigerant R22 is sealed in the cycle 11, and the water-side heat exchangers 4 and 8 are placed in the same heat storage tank 12, and the heat-exchanged water is passed through a circulation circuit (not shown) for air conditioning and heating. Even if the system is configured to perform water heating cycle 5, the main operation in summer is cycle 1 for hot water supply.
.. % The water side heat exchanger 4 produces chilled water, and the waste heat is used to produce hot water in the hot water heat exchanger 2. Also, when the cooling load increases, ζ is used.Cooling/heating heat pump cycle 1
1 is also operated, the water side heat exchanger 8 acts as an evaporator to supplement the cold water, and its waste heat is discharged from the air side heat exchanger 10 which acts as a condenser. Also, when there is a hot water supply load, the cooling load decreases, and the chilled water temperature drops extremely, the cooling/heating heat pump cycle 11 is switched and the water side heat exchanger 8 acts as a condenser to heat the water. Since the heating/cooling heat pump cycle 11 is operated as needed, the water side heat exchanger 8 is used to heat the water, while the hot water supply cycle 5 is used to supply hot water.Furthermore, in the winter, the cooling/heating heat pump cycle 11 is operated continuously. The hot water supply operation is performed by the hot water supply cycle 5 while the hot water is being heated by the hot water supply cycle 5. When the heating load increases, the hot water supply cycle 5 is stopped and the heating mode is prioritized. When the cooling/heating heat pump cycle 11 is operated, the waste heat is discharged from the air-side heat exchanger 10.The waste heat from cooling cannot be used for hot water supply, resulting in uneconomical operation. The hot water supply cycle 51, which is on the higher stage side of the cycle, is operated using water as a heat source when the temperature of the water side heat exchanger 4 is about 7 to 10 degrees Celsius under cooling conditions. The present invention has problems such as unavoidable decrease of l and X.
The purpose of the present invention is to propose a multi-temperature heat pump system that can effectively achieve high temperatures by eliminating the problems associated with obtaining high or low temperatures. A high-temperature condenser, a high-temperature evaporator, a high-temperature compressor, and a high-temperature expansion valve are connected in a ring to form a high-temperature cycle, including a low-stage compressor, a first control valve, a four-way valve, an intermediate condenser and evaporator, and a first expansion valve. ,
Heat source side heat exchangers are connected in a ring to form a first intermediate temperature cycle, and the heat source side heat is transferred from between the discharge side of the low stage compressor and the first control valve to the intermediate condensing furnace via the second control valve on the branch. A second intermediate temperature cycle is configured by connecting to the suction side of the low stage compressor via an exchanger and a four-way valve, and the high temperature cycle includes:
A high boiling point refrigerant is used in the first and second medium temperature cycles, and a lower boiling point refrigerant than the refrigerant in the high temperature cycle is used.

また 高温凝縮器からの高温出力 中間凝縮器兼蒸発器
からの中温出力 中間凝縮器兼蒸発器からの低温出力の
優先選択機能を設け、高温出力優先の場合(友 第二制
御弁を全開とし 同時に中間出力の要求が無ければ 第
一制御弁開度は閉じ、要求が有れば低段圧縮機の出力を
最大とし 吐出圧力が設定値になるように前記第−制御
弁開度を制御すム 中間出力優先の場合は 第一制御弁
を全開とし 同時に高温出力の要求が無ければ 第二制
御弁開度は閉ま 要求が有れば低段圧縮機の出力を最大
とし 吐出圧力が設定値になるように前記第二制御弁開
度を制御すも 低温出力優先の場合は 同時に高温出力
要求があれば第二制御弁を全脂 第一制御弁を全閉とし
 低段圧縮機の吐出圧力が設定値を越えないように第一
制御弁開度を制御し 高温出力要求が無い場合は第二制
御弁を閉とし第一制御弁を全開とするものであ4作用 本発明の多温度利用ヒートポンプシステムにおいて、高
温出力を優先で得る場合は、 第二制御弁が全開となり
、中温出力要求および低温出力要求が無い場合は第一制
御弁全閉で第二中温サイクルが運転され 熱源側熱交換
器からの吸熱により中湿度が中間凝縮器で得られ その
凝縮熱を熱源として高温サイクルが運転される。ここで
高温サイクルと第二中温サイクルとの圧縮比を効率最高
のポイントに設定でき、これにより高温凝縮器では効率
よく高温が得られる。また同時に 中温出力の要求があ
る場合(友 低段圧縮機の出力を最大とし 吐出ガスが
中間凝縮器兼蒸発器へ流れるよう四方弁を切り換え 第
−制御弁開度を低段圧縮機の吐出圧力が設定値になるよ
う制御することにより低段圧縮機の余剰出力を中間凝縮
器兼蒸発器から中温として得られも また 同時に中温
出力要求がなく低温出力要求がある場合は、 四方弁を
切り換えることにより中間凝縮器兼蒸発器からの吸熱を
高温サイクルの熱源として用いることが出来るため省エ
ネルギーな運転が可能となム さらに低段圧縮機の吐出
圧力が設定値以下の場合は 第一制御弁を閉じる方向に
制ML、  設定値以上ならば第−制御後弁を開方向に
制御すム このことにより高温出力負荷と低温出力負荷
がバランスしてなくても安定な運転が可能となム 中温出力を優先で得る場合ζよ 第一制御弁を全開とし
て第一中間サイクルが運転され 熱源側熱交換器からの
吸熱により中温が中間凝縮器兼蒸発器で得られも また
 同時に高温出力の要求がある場合は 低段圧縮機の出
力を最大とし 第二制御弁開度を低段圧縮機の吐出圧力
が設定値になるよう制御することにより、中間凝縮器で
得られる凝縮熱を熱源として、高温サイクルを運転し高
温凝縮器で高温が得られも 低温出力を優先で得る場合は 同時に高温出力要求も有
れば第二制御弁を全脂 第一制御弁を閉として低段圧縮
機を運転し 中間凝縮器兼蒸発器から吸熱し低温を殊 
中間凝縮器での廃熱を高温サイクルの熱源として利用し
高温凝縮器で高温を得る。また高温出力が少ない場合も
しく LL  中間凝縮器兼蒸発器からの吸熱量が多い
場合ζL 低段圧縮機の吐出圧力が設定値を越えないよ
うに第一制御弁開度を制御し 余剰熱を熱源側熱交換器
から外部に放熱すも 以上のことにより、中間凝縮器兼蒸発器からの吸熱を高
温出力として利用でき、経済的な運転が可能となり、高
温出力と低温出力同時運転においては、 中間凝縮器で
の温度は高くできるため第二中温サイクルと高温サイク
ルの圧縮比を効率最大となるポイントの設定ができる。
In addition, a priority selection function is provided for high temperature output from the high temperature condenser, medium temperature output from the intermediate condenser and evaporator, and low temperature output from the intermediate condenser and evaporator. If there is no request for intermediate output, the first control valve opening is closed, and if there is a request, the output of the low stage compressor is maximized and the first control valve opening is controlled so that the discharge pressure reaches the set value. When giving priority to intermediate output, the first control valve is fully opened.If there is no request for high temperature output at the same time, the second control valve opening is closed.If there is a request, the output of the low stage compressor is maximized and the discharge pressure becomes the set value. The opening degree of the second control valve is controlled as follows: If low-temperature output is prioritized, if there is a high-temperature output request at the same time, the second control valve is fully closed, and the first control valve is fully closed, setting the discharge pressure of the low-stage compressor. The opening degree of the first control valve is controlled so as not to exceed the value, and when there is no high temperature output request, the second control valve is closed and the first control valve is fully opened. When obtaining high-temperature output with priority, the second control valve is fully opened, and if there is no medium-temperature output request or low-temperature output request, the first control valve is fully closed and the second medium-temperature cycle is operated. Medium humidity is obtained in the intermediate condenser due to the heat absorption of The condenser can efficiently obtain high temperatures.At the same time, if there is a demand for medium-temperature output, the four-way valve is switched so that the output of the low-stage compressor is maximized and the discharge gas flows to the intermediate condenser/evaporator. By controlling the opening so that the discharge pressure of the low stage compressor becomes the set value, the excess output of the low stage compressor can be obtained from the intermediate condenser and evaporator at medium temperature. If there is, by switching the four-way valve, the heat absorbed from the intermediate condenser/evaporator can be used as a heat source for the high temperature cycle, enabling energy-saving operation.In addition, the discharge pressure of the low stage compressor can be adjusted to the set value. In the following cases, the first control valve is controlled in the direction of closing, and if it exceeds the set value, the second control valve is controlled in the direction of opening.This makes it stable even if the high-temperature output load and the low-temperature output load are not balanced. In the case where priority is given to medium temperature output that enables stable operation, the first intermediate cycle is operated with the first control valve fully open, and medium temperature is obtained in the intermediate condenser and evaporator by heat absorption from the heat exchanger on the heat source side. At the same time, if high-temperature output is required, the output of the low-stage compressor is maximized and the second control valve opening is controlled so that the discharge pressure of the low-stage compressor reaches the set value. If you want to operate a high-temperature cycle using the condensation heat generated by the condenser as a heat source, and give priority to low-temperature output even if a high temperature is obtained in the high-temperature condenser, if there is also a high-temperature output request at the same time, the second control valve is fully closed, and the first control valve is closed. The low-stage compressor is operated as
The waste heat from the intermediate condenser is used as a heat source for the high temperature cycle to obtain high temperature in the high temperature condenser. In addition, when the high temperature output is low or when the amount of heat absorbed from the intermediate condenser/evaporator is large, the first control valve opening is controlled so that the discharge pressure of the low stage compressor does not exceed the set value. Heat is radiated to the outside from the heat exchanger on the heat source side.As a result of the above, the heat absorbed from the intermediate condenser and evaporator can be used as high temperature output, making economical operation possible.In simultaneous operation of high temperature output and low temperature output, Since the temperature in the intermediate condenser can be raised, the compression ratio of the second intermediate temperature cycle and high temperature cycle can be set to the point where the efficiency is maximum.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。第1図において、20(L 低段圧縮機で、第一
制御弁21、四方弁22、中間凝縮器兼蒸発器23、膨
張弁24、25、熱源側熱交換器26を環状に接続して
第一中温サイクル27を構成し 低段圧縮機20の吐出
側と第一制御弁21との間から分岐し 第二制御弁28
を介し中間凝縮器29、逆止弁30、熱源側熱交換器2
6を経て四方弁22を介し低段圧縮機20の吸入側に接
続して第二中温サイクル31を構成し 高段圧縮機32
、高温凝縮器33、膨張弁34、高温蒸発器35を環状
に接続して高温サイクル36を構成している。 374
友 低温/中温出力要求信号発生器であり、 38(主
 高温出力要求信号発生器である。 39 ii、高温
出力 中温出力 低温出力の優先選択機能装置であり、
低温/中温出力要求信号発生器37と高温出力要求信号
発生器38の信号から優先選択機能装置3って優先選択
を行い制御装置40に信号を送る。また4 1 i表 
 圧力センサーであり、優先選択機能装置39の信号と
圧力センサー41の信号とを併せて制御装置40により
、第一制御弁21、第二制御弁28の開度、低段圧縮機
20の出力を制御すも 高温出力 中温出力優先 低温
出力優先のフローチャートメを第2〜4図に示す。
EXAMPLE An example of the present invention will be described below with reference to the drawings. In Fig. 1, a 20 (L low stage compressor) is connected in an annular manner with a first control valve 21, a four-way valve 22, an intermediate condenser/evaporator 23, expansion valves 24, 25, and a heat source side heat exchanger 26. A first medium-temperature cycle 27 is configured, and a second control valve 28 is branched from between the discharge side of the low stage compressor 20 and the first control valve 21.
through the intermediate condenser 29, check valve 30, and heat source side heat exchanger 2
6 and the four-way valve 22 to the suction side of the low stage compressor 20 to form a second medium temperature cycle 31, and the high stage compressor 32
, a high-temperature condenser 33, an expansion valve 34, and a high-temperature evaporator 35 are connected in a ring to form a high-temperature cycle 36. 374
38 (main) is a high temperature output request signal generator; 39 (ii) is a high temperature output, medium temperature output, and low temperature output priority selection function device;
The priority selection function device 3 performs priority selection based on the signals from the low/medium temperature output request signal generator 37 and the high temperature output request signal generator 38 and sends a signal to the control device 40. Also 4 1 i table
This is a pressure sensor, and the control device 40 uses the signal from the priority selection function device 39 and the signal from the pressure sensor 41 to control the opening degrees of the first control valve 21 and the second control valve 28 and the output of the low stage compressor 20. Flowcharts for controlling high temperature output, medium temperature output priority, and low temperature output priority are shown in Figures 2 to 4.

夕風 この一実施例の構成における作用を、まず優先選
択機能装置39により高温出力優先が選択されている場
合について、第1皿 第2図を用い説明すも 高温出力
要求信号発生器38からの信号により高温出力優先が選
択されているとき、高温出力要求が有ると第二制御弁2
8が全開となも その時、中温出力要求も低温出力要求
もなければ第一制御弁21は全閉される。低段圧縮機2
0の吐出冷媒ガス6友  第二制御弁28、中間凝縮器
29を通り凝縮液化し逆止弁30へと流れも液冷媒は、
 膨張弁25、熱源側熱交換器26を通り減圧蒸発し 
四方弁22を通り低段圧縮機20へ吸入されも 同時に
高温サイクル36の高段圧縮機32が運転され 高温蒸
発器35で中間凝縮器29の凝縮熱を奪い冷媒は蒸発す
も 蒸発した冷媒ガスは 高段圧縮機20へ吸入吐出さ
れ 高温凝縮器33で凝縮し高温が得られる。凝縮した
液冷媒は、 膨張弁34、高温蒸発器35を通ることに
より減圧蒸発され再び高段圧縮機20へ吸入されも 同
時に中温出力要求がある時!友 低段圧縮機20の出力
は制御装置40により最大出力となム 次番ミ  中間
凝縮器兼蒸発器23で中温を得るための飽和圧力を設定
値として、低段圧縮機20の吐出圧力カ交 その設定値
より高ければそれを検知した圧力センサー41により制
御装置40を介して第一制御弁21に開動作を行し\ 
低段圧縮機20から吐出された冷媒ガスの一部を、第一
制御弁21、四方弁22を介し中間凝縮器兼蒸発器23
に流す。また 低段圧縮機20の吐出圧力カ丈その設定
値より低ければ圧力センサー41により制御装置40を
介して第一制御弁21に閉動作を行う。そうすることに
より高温出力負荷が大きい場合は 高温サイクル36の
高温蒸発器35と中間凝縮器29との熱交換量が大きく
、低段圧縮機20の吐出圧力が上がりにくいため中温出
力要求があっても高温出力が優先される。また高温出力
優先の時、同時に低温出力要求が有るときGEL  低
段圧縮機20の吐出圧力が設定値より低ければ第一制御
弁21は閉動作し 冷媒ガスは第二制御弁28を通り中
間凝縮器29で凝縮液化し逆止弁30、膨張弁24を通
り中間凝縮器兼蒸発器23で蒸発ガス化し低温が得られ
も 高温出力負荷が小さいときζよ 中間凝縮器29で
放熱が充分でなく吐出圧力が設定値を越えるため第一制
御弁21は開動作し 低段圧縮機20から吐出された冷
媒ガスを四方弁22から熱源用熱交換器26へ通し放熱
し吐出圧力の上昇を抑える。これにより中間凝縮器兼蒸
発器23での吸熱した廃熱を中間凝縮器29を介して高
温サイクル36での高温出力に有効に利用できも この
ことにより、高温出力優先運転中においても中温出力要
求が有れば低段圧縮機20の出力の余剰熱を利用できる
。また低温出力要求が有れば第二中温サイクル31と高
温サイクル36を最高の効率で運転可能な圧縮比にでき
、しかも低温部からの廃熱を高温サイクル36の熱源と
して有効に利用でき、高温出力負荷と低温出力負荷のバ
ランスが取れなくても安定な運転が可能となム 次に 中温出力優先が選択された場合について第1@ 
第3図を用い説明する。中温出力優先で中温出力要求が
あるとき第一制御弁2iを全開とす4 低段圧縮機20
から吐出された冷媒は、 第一制御弁21、四方弁22
を通り中間凝縮器兼蒸発器23で凝縮液化し中温が得ら
れる。その時高温出力要求があると低段圧縮機20(友
 制御装置40により最大出力となり吐出圧力が設定値
以上に有るときは第二制御弁28を開動作させ高温サイ
クル36の熱源として中間凝縮器29へ冷媒を流す。ま
た中温出力負荷が多いとき(友 低段圧縮機20の吐出
圧力は設定値以上に上昇せず、従って第二制御弁28は
閉動作される。これにより中温出力優先が行える。これ
により中温出力優先では、 同時に高温出力要求がある
と低段圧縮機20の出力の余剰熱が高温出力として利用
できも次へ 低温出力優先が選択された場合について第
1医 第4図を用い説明する。低温出力優先で高温出力
要求が無い場合、第一制御弁21は全皿第二制御弁28
を全閉とする。低段圧縮機20から吐出された冷媒ガス
Ct  第一制御弁21を通り四方弁22、熱源側熱交
換器26で凝縮液化し膨張弁25、24を通り中間凝縮
器兼蒸発器23で減圧蒸発し低温が得られも 同時に高
温出力要求がある場合、第二制御弁28が全開となり低
段圧縮機20で吐出された冷媒ガスは、 中間凝縮器2
9で凝縮液化し高温サイクル36の熱源となる。
Yukaze The operation of the configuration of this embodiment will first be explained with reference to FIG. 2 in the case where high temperature output priority is selected by the priority selection function device 39. When high temperature output priority is selected by the signal, if there is a high temperature output request, the second control valve 2
8 is fully open.At that time, if there is no medium temperature output request or low temperature output request, the first control valve 21 is fully closed. Low stage compressor 2
The liquid refrigerant passes through the second control valve 28 and the intermediate condenser 29, condenses into liquid, and flows to the check valve 30.
It passes through the expansion valve 25 and the heat source side heat exchanger 26 and evaporates under reduced pressure.
Although the refrigerant is sucked into the low-stage compressor 20 through the four-way valve 22, the high-stage compressor 32 of the high-temperature cycle 36 is operated at the same time, and the high-temperature evaporator 35 takes the condensation heat from the intermediate condenser 29 and evaporates the refrigerant. is sucked and discharged into the high-stage compressor 20 and condensed in the high-temperature condenser 33 to obtain a high temperature. The condensed liquid refrigerant passes through the expansion valve 34 and the high-temperature evaporator 35 to be evaporated under reduced pressure and sucked into the high-stage compressor 20 again, but at the same time there is a medium-temperature output request! The output of the low stage compressor 20 is set to the maximum output by the control device 40. If the pressure is higher than the set value, the pressure sensor 41 detects this and causes the first control valve 21 to open via the control device 40.
A part of the refrigerant gas discharged from the low stage compressor 20 is passed through the first control valve 21 and the four-way valve 22 to the intermediate condenser/evaporator 23.
flow to. If the discharge pressure of the low stage compressor 20 is lower than the set value, the pressure sensor 41 causes the first control valve 21 to close via the control device 40. By doing so, when the high-temperature output load is large, the amount of heat exchange between the high-temperature evaporator 35 and the intermediate condenser 29 of the high-temperature cycle 36 is large, and the discharge pressure of the low-stage compressor 20 is difficult to increase, so there is a demand for medium-temperature output. Also, high temperature output is prioritized. Also, when high temperature output is prioritized and there is a low temperature output request at the same time, the first control valve 21 closes if the discharge pressure of the low stage compressor 20 is lower than the set value, and the refrigerant gas passes through the second control valve 28 and is intermediately condensed. It is condensed and liquefied in the condenser 29, passes through the check valve 30 and the expansion valve 24, and is evaporated and gasified in the intermediate condenser/evaporator 23, even though a low temperature can be obtained. Since the discharge pressure exceeds the set value, the first control valve 21 opens, and the refrigerant gas discharged from the low-stage compressor 20 passes through the four-way valve 22 to the heat source heat exchanger 26 to radiate heat and suppress the increase in discharge pressure. As a result, the waste heat absorbed in the intermediate condenser/evaporator 23 can be effectively used for high temperature output in the high temperature cycle 36 via the intermediate condenser 29. As a result, medium temperature output is required even during high temperature output priority operation. If there is, surplus heat from the output of the low stage compressor 20 can be used. In addition, if there is a low temperature output request, the compression ratio can be set so that the second medium temperature cycle 31 and high temperature cycle 36 can be operated at the highest efficiency, and waste heat from the low temperature section can be effectively used as a heat source for the high temperature cycle 36. Stable operation is possible even if the output load and low-temperature output load cannot be balanced.Next: Regarding the case where medium-temperature output priority is selected Part 1 @
This will be explained using FIG. When there is a request for medium temperature output with priority given to medium temperature output, the first control valve 2i is fully opened 4 Low stage compressor 20
The refrigerant discharged from the first control valve 21 and the four-way valve 22
It is condensed and liquefied in an intermediate condenser/evaporator 23 to obtain an intermediate temperature. At that time, if there is a high temperature output request, the low stage compressor 20 (component controller 40) will output the maximum output, and if the discharge pressure is above the set value, the second control valve 28 will be opened and the intermediate condenser 29 will be used as the heat source for the high temperature cycle 36. Also, when there is a large medium temperature output load (the discharge pressure of the low stage compressor 20 does not rise above the set value, the second control valve 28 is closed. This allows priority to be given to medium temperature output. As a result, in the medium temperature output priority mode, if there is a high temperature output request at the same time, the excess heat from the output of the low stage compressor 20 can be used as high temperature output. When low temperature output is given priority and there is no high temperature output request, the first control valve 21 is switched to the second control valve 28 for all plates.
is fully closed. Refrigerant gas Ct discharged from the low stage compressor 20 passes through the first control valve 21 , condenses and liquefies at the four-way valve 22 and heat source side heat exchanger 26 , passes through the expansion valves 25 and 24 and evaporates under reduced pressure at the intermediate condenser/evaporator 23 Even if a low temperature is obtained, if there is a high temperature output request at the same time, the second control valve 28 is fully opened and the refrigerant gas discharged by the low stage compressor 20 is transferred to the intermediate condenser 2.
It is condensed and liquefied at step 9 and becomes a heat source for the high temperature cycle 36.

その隊 低温出力負荷が大きく高温出力が小さい場合、
中間凝縮器での凝縮熱量が低下し低段圧縮機20の吐出
圧力が設定値より高くなると圧力センサー41により制
御装置40から第一制御弁21に対して開動作を行う。
When the low temperature output load is large and the high temperature output is small,
When the amount of heat of condensation in the intermediate condenser decreases and the discharge pressure of the low stage compressor 20 becomes higher than a set value, the pressure sensor 41 causes the control device 40 to perform an opening operation on the first control valve 21 .

それにより余剰の冷媒ガスζよ 第一制御弁21から四
方弁22を経て熱源側熱交換器26で放熱する。液化し
た冷媒cヨ膨張弁25、24を経て中間凝縮器兼蒸発器
23で減圧蒸発し低温が得られ 蒸発した冷媒は、 四
方弁22を経て低段圧縮機20に吸入される。このこと
により低温出力優先では、 高温出力要求がないとき第
一中温サイクル27の運転が行われム同時に高温出力要
求が有ると第二中温サイクル31が運転され 第二中温
サイクル31と高温サイクル36を最高の効率で運転可
能な圧縮比にでき、しかも低温部からの廃熱を高温サイ
クル36の熱源として有効に利用でき、さらに低温出力
負荷と高温出力負荷とのバランスが取れなくても安定な
運転が可能となa 封入冷媒については 高温サイクル36に高沸点冷媒が
封入されているため高温であっても圧力は低く、システ
ムとして耐圧的に有利とな本発明の効果 以上のように本発明は、 高温出力優先運転中において
も中温出力要求が有れば低段圧縮機の出力の余剰熱を利
用できる。また低温出力要求が有れば第二中温サイクル
と高温サイクルを最高の効率で運転可能な圧縮比にでき
、 しかも低温部からの廃熱を高温サイクルの熱源とし
て有効に利用でき、高温出力負荷と低温出力負荷のバラ
ンスが取れなくても安定な運転が可能となる。中温出力
優先で(戴 同時に高温出力要求があると低段圧縮機の
出力の余剰熱が利用できる。低温出力優先で6表 高温
出力要求がないとき第一中温サイクルの運転が行われ 
同時に高温出力要求が有ると第二中温サイクルが運転さ
れ 第二中温サイクルと高温サイクルを最高の効率で運
転可能な圧縮比にでき、 しかも低温部からの廃熱を高
温サイクルの熱源として有効に利用でき、低温出力負荷
と高温出力負荷とのバランスが取れなくても安定な運転
が可能となるなどの多大な効果を有するものである。
As a result, the excess refrigerant gas ζ passes from the first control valve 21 to the four-way valve 22 and radiates heat at the heat source side heat exchanger 26. The liquefied refrigerant C passes through the expansion valves 25 and 24 and is evaporated under reduced pressure in the intermediate condenser/evaporator 23 to obtain a low temperature. The evaporated refrigerant is sucked into the low stage compressor 20 through the four-way valve 22. As a result, in the low temperature output priority mode, when there is no high temperature output request, the first medium temperature cycle 27 is operated, and when there is a high temperature output request at the same time, the second medium temperature cycle 31 is operated, and the second medium temperature cycle 31 and the high temperature cycle 36 are operated. The compression ratio can be set to allow operation at the highest efficiency, and waste heat from the low-temperature section can be effectively used as a heat source for the high-temperature cycle 36, and stable operation can be achieved even if the low-temperature output load and high-temperature output load cannot be balanced. Regarding the enclosed refrigerant, since the high-boiling point refrigerant is enclosed in the high-temperature cycle 36, the pressure is low even at high temperatures, and the present invention has advantages in terms of pressure resistance as a system. Even during high-temperature output priority operation, if there is a medium-temperature output request, surplus heat from the output of the low-stage compressor can be used. Furthermore, if there is a low-temperature output requirement, the compression ratio can be set to allow the second medium-temperature cycle and high-temperature cycle to operate at maximum efficiency, and waste heat from the low-temperature section can be effectively used as a heat source for the high-temperature cycle, allowing the high-temperature output load and Stable operation is possible even if the low-temperature output load cannot be balanced. With medium-temperature output priority (at the same time, if there is a high-temperature output request, surplus heat from the output of the low stage compressor can be used. With low-temperature output priority, Table 6) When there is no high-temperature output request, the first medium-temperature cycle is operated.
At the same time, when there is a high-temperature output request, the second medium-temperature cycle is operated, making it possible to achieve a compression ratio that allows the second medium-temperature cycle and the high-temperature cycle to operate at the highest efficiency, and effectively using waste heat from the low-temperature section as a heat source for the high-temperature cycle. This has great effects, such as enabling stable operation even if the low-temperature output load and the high-temperature output load cannot be balanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である多温度利用ヒートポン
プシステムの構成@ 第2図は同装置における高温出力
優先の制御フローチャート、第3図は同装置における中
温出力優先の制御フローチャート 第4図は同装置にお
ける低温出力優先の8・・第二制御弁、 29・・中間
凝縮器 31・・第二中温サイクル、 32・・高段圧
縮穀 33・・高温凝縮縁 35・・高温蒸発銖 36
・・高温サイク/に37・・低温/中温要求信号発生器
 38・・高温要求信号発生器 39・・優先選択機能
装置 40・・制御装置 41・・圧力センサ。 代理人の氏名 弁理士 粟野重孝 はか1名20・・低
段圧縮銑 21・・第一制御弁、 23・・中間凝縮器
兼蒸発器24、25、34・・膨張弁、26・・熱源側
熱交換器 27・・中温サイクツI/、2儀鏝圧縞機 第−制御弁 中間′Ji膳器兼姦仕器 第−中温サイクル 中聞凝縮巽 第二中@ゴイクル ・高段サイクル 高温X#基 、高1サイクル 低温/中、1饗求信号発生器 制御襞! 圧力七ンザー
Figure 1 shows the configuration of a multi-temperature heat pump system that is an embodiment of the present invention. Figure 2 is a control flowchart that prioritizes high-temperature output in the same device. Figure 3 is a control flowchart that prioritizes medium-temperature output in the same device. 8. Second control valve that gives priority to low temperature output in the same device, 29. Intermediate condenser 31. Second medium temperature cycle, 32. High stage compression grain 33. High temperature condensing edge 35. High temperature evaporator 36
...High temperature cycle/to 37..Low temperature/medium temperature request signal generator 38..High temperature request signal generator 39..Priority selection function device 40..Control device 41..Pressure sensor. Name of agent: Patent attorney Shigetaka Awano 1 person 20...Low stage compression pig iron 21...First control valve, 23...Intermediate condenser/evaporator 24, 25, 34...Expansion valve, 26...Heat source Side heat exchanger 27...Medium temperature cycle I/, 2nd trowel pressure stripe machine 1st - control valve intermediate 'Ji tableware and cooking device 1st - medium temperature cycle medium condensation Tatsumi 2nd medium @goikuru/high stage cycle high temperature X #base, high 1 cycle low temperature/medium, 1 intake signal generator control fold! Pressure Seven Zers

Claims (3)

【特許請求の範囲】[Claims] (1)高温凝縮器 高温蒸発器 高温用圧縮機高温膨張
弁を環状に接続して高温サイクルを構成し、低段圧縮機
、第一制御弁、四方弁、中間凝縮器兼蒸発器、第一膨張
弁、熱源側熱交換器を環状に接続して第一中温サイクル
を構成し、前記低段圧縮機の吐出側と前記第一制御弁と
の間から分岐し、第二制御弁を介し中間凝縮器、熱源側
熱交換器を経て四方弁を介し低段圧縮機の吸入側に接続
して第二中温サイクルを構成したことを特徴とするヒー
トポンプシステム。
(1) High-temperature condenser High-temperature evaporator A high-temperature cycle is constructed by connecting a high-temperature compressor and high-temperature expansion valve in a ring, including a low-stage compressor, a first control valve, a four-way valve, an intermediate condenser/evaporator, and a first An expansion valve and a heat source side heat exchanger are connected in a ring to form a first intermediate temperature cycle, which branches from between the discharge side of the low stage compressor and the first control valve, and connects the intermediate temperature cycle through the second control valve. A heat pump system comprising a condenser, a heat source side heat exchanger, and a four-way valve connected to the suction side of a low stage compressor to form a second medium temperature cycle.
(2)高温サイクルには高沸点冷媒を、第一および第二
中温サイクルには、前記高温サイクルの冷媒より低沸点
冷媒を用いたことを特徴とする請求項1記載のヒートポ
ンプシステム。
(2) The heat pump system according to claim 1, wherein a high boiling point refrigerant is used in the high temperature cycle, and a lower boiling point refrigerant than the refrigerant in the high temperature cycle is used in the first and second medium temperature cycles.
(3)高温凝縮器からの高温出力、中間凝縮器兼蒸発器
からの中温出力、中間凝縮器兼蒸発器からの低温出力の
優先選択機能を設け、高温出力優先の場合は第二制御弁
を全開とし、同時に中間出力の要求が無ければ、第一制
御弁開度は閉じ、要求が有れば低段圧縮機の出力を最大
とし、吐出圧力が設定値になるように前記第一制御弁開
度を制御する。中間出力優先の場合は、第一制御弁を全
開とし、同時に高温出力の要求が無ければ、第二制御弁
開度は閉じ、要求が有れば低段圧縮機の出力を最大とし
、吐出圧力が設定値になるように前記第二制御弁開度を
制御する。低温出力優先の場合は、同時に高温出力要求
があれば第二制御弁を全開、第一制御弁を全閉とし、低
段圧縮機の吐出圧力が設定値を越えないように第一制御
弁開度を制御し、高温出力要求が無い場合は第二制御弁
を閉とし、第一制御弁を全開とすることを特徴とする多
温度利用ヒートポンプシステムの制御方法。
(3) Provide a priority selection function for high-temperature output from the high-temperature condenser, medium-temperature output from the intermediate condenser/evaporator, and low-temperature output from the intermediate condenser/evaporator; if high-temperature output is prioritized, the second control valve is If there is no request for intermediate output at the same time, the first control valve opening is closed, and if there is a request, the output of the low stage compressor is maximized, and the first control valve is opened so that the discharge pressure reaches the set value. Control opening degree. When giving priority to intermediate output, the first control valve is fully opened, and if there is no request for high-temperature output, the second control valve opening is closed, and if there is a request, the output of the low stage compressor is maximized, and the discharge pressure is The second control valve opening degree is controlled so that the second control valve opening becomes a set value. When giving priority to low-temperature output, if there is a high-temperature output request at the same time, the second control valve is fully opened, the first control valve is fully closed, and the first control valve is opened to prevent the discharge pressure of the low stage compressor from exceeding the set value. 1. A method for controlling a multi-temperature heat pump system, characterized in that the second control valve is closed and the first control valve is fully opened when there is no high temperature output request.
JP2135947A 1990-05-25 1990-05-25 Heat pump system and its control method Expired - Lifetime JP2553738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135947A JP2553738B2 (en) 1990-05-25 1990-05-25 Heat pump system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135947A JP2553738B2 (en) 1990-05-25 1990-05-25 Heat pump system and its control method

Publications (2)

Publication Number Publication Date
JPH0432669A true JPH0432669A (en) 1992-02-04
JP2553738B2 JP2553738B2 (en) 1996-11-13

Family

ID=15163565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135947A Expired - Lifetime JP2553738B2 (en) 1990-05-25 1990-05-25 Heat pump system and its control method

Country Status (1)

Country Link
JP (1) JP2553738B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271000A (en) * 2009-05-25 2010-12-02 Yamato:Kk Heat storage type refrigerating system
WO2011036905A1 (en) * 2009-09-25 2011-03-31 株式会社 日立製作所 Air conditioning/hot-water supply system and heat pump unit
WO2011045976A1 (en) * 2009-10-16 2011-04-21 株式会社 日立製作所 Air-conditioning hot-water supply system
WO2011104877A1 (en) 2010-02-26 2011-09-01 株式会社 日立製作所 Air-conditioning hot-water-supply system
WO2011108068A1 (en) * 2010-03-01 2011-09-09 株式会社 日立製作所 Air-conditioning hot-water-supplying system
WO2012014306A1 (en) * 2010-07-29 2012-02-02 株式会社 日立製作所 Air conditioning and hot-water supply system
WO2012114461A1 (en) 2011-02-22 2012-08-30 株式会社日立製作所 Air conditioning/hot water supply system and control method for air conditioning/hot water supply system
WO2012114462A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Air conditioning/hot water supply system and control method for air conditioning/hot water supply system
JP2012215354A (en) * 2011-04-01 2012-11-08 Toshiba Carrier Corp Dual refrigeration cycle apparatus
WO2013128668A1 (en) 2012-03-02 2013-09-06 株式会社 日立製作所 Exhaust heat recovery system and operating method therefor
EP2532981A3 (en) * 2011-06-10 2016-07-27 Samsung Electronics Co., Ltd. Water Supply Apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042262B2 (en) 2009-03-31 2012-10-03 三菱電機株式会社 Air conditioning and hot water supply complex system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271000A (en) * 2009-05-25 2010-12-02 Yamato:Kk Heat storage type refrigerating system
WO2011036905A1 (en) * 2009-09-25 2011-03-31 株式会社 日立製作所 Air conditioning/hot-water supply system and heat pump unit
EP2482005A4 (en) * 2009-09-25 2016-12-21 Hitachi Ltd Air conditioning/hot-water supply system and heat pump unit
US9003817B2 (en) 2009-09-25 2015-04-14 Hitachi, Ltd. Air-conditioning hot-water supply system, and heat pump unit
CN102472535A (en) * 2009-09-25 2012-05-23 株式会社日立制作所 Air conditioning/hot-water supply system and heat pump unit
WO2011045976A1 (en) * 2009-10-16 2011-04-21 株式会社 日立製作所 Air-conditioning hot-water supply system
JP2011085331A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Air-conditioning hot water supply system
CN102472537A (en) * 2009-10-16 2012-05-23 株式会社日立制作所 Air-conditioning hot-water supply system
CN102753916A (en) * 2010-02-26 2012-10-24 株式会社日立制作所 Air-conditioning hot-water-supply system
WO2011104877A1 (en) 2010-02-26 2011-09-01 株式会社 日立製作所 Air-conditioning hot-water-supply system
JP5335131B2 (en) * 2010-02-26 2013-11-06 株式会社日立製作所 Air conditioning and hot water supply system
JP5373964B2 (en) * 2010-03-01 2013-12-18 株式会社日立製作所 Air conditioning and hot water supply system
WO2011108068A1 (en) * 2010-03-01 2011-09-09 株式会社 日立製作所 Air-conditioning hot-water-supplying system
JP5572711B2 (en) * 2010-07-29 2014-08-13 株式会社日立製作所 Air conditioning and hot water supply system
WO2012014306A1 (en) * 2010-07-29 2012-02-02 株式会社 日立製作所 Air conditioning and hot-water supply system
WO2012114462A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Air conditioning/hot water supply system and control method for air conditioning/hot water supply system
WO2012114461A1 (en) 2011-02-22 2012-08-30 株式会社日立製作所 Air conditioning/hot water supply system and control method for air conditioning/hot water supply system
JP5492347B2 (en) * 2011-02-22 2014-05-14 株式会社日立製作所 Air conditioning and hot water supply system and control method for air conditioning and hot water supply system
JP5629367B2 (en) * 2011-02-22 2014-11-19 株式会社日立製作所 Air conditioning and hot water supply system
JP2012215354A (en) * 2011-04-01 2012-11-08 Toshiba Carrier Corp Dual refrigeration cycle apparatus
EP2532981A3 (en) * 2011-06-10 2016-07-27 Samsung Electronics Co., Ltd. Water Supply Apparatus
WO2013128668A1 (en) 2012-03-02 2013-09-06 株式会社 日立製作所 Exhaust heat recovery system and operating method therefor

Also Published As

Publication number Publication date
JP2553738B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JPH0432669A (en) Heat pump system controlling method therefor
JPS6155018B2 (en)
JP2003021428A (en) Heat pump type water heater
JP3316444B2 (en) Heat pump water heater
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JPH04103571U (en) Heat pump water heater
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JPH033902Y2 (en)
JPH05340641A (en) Heat pump
JPS611968A (en) Air-conditioning and hot-water supply heat pump device
JPH0794927B2 (en) Air conditioner
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPH0674589A (en) Multichamber room cooler/heater
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPS6358062A (en) Cooling device by circulation of refrigerant
JPH03144236A (en) Cooling and heating device for multi rooms
JPH0351644A (en) Multiroom cooling heating device
JPH04222360A (en) Heat pump type air conditioner
JP2863474B2 (en) Thermal storage type air conditioner
JP2691423B2 (en) Engine driven heat pump air conditioner
JPS61276662A (en) Heat pump type water heater
JPH0457933B2 (en)
JPS6321454A (en) Heat-pump hot-water supply machine