JPH0573046B2 - - Google Patents

Info

Publication number
JPH0573046B2
JPH0573046B2 JP60186823A JP18682385A JPH0573046B2 JP H0573046 B2 JPH0573046 B2 JP H0573046B2 JP 60186823 A JP60186823 A JP 60186823A JP 18682385 A JP18682385 A JP 18682385A JP H0573046 B2 JPH0573046 B2 JP H0573046B2
Authority
JP
Japan
Prior art keywords
chamber
light
shielding plate
light source
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60186823A
Other languages
Japanese (ja)
Other versions
JPS6246515A (en
Inventor
Shunpei Yamazaki
Mamoru Tashiro
Shinji Imato
Kazuo Urata
Juji Misemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP60186823A priority Critical patent/JPS6246515A/en
Publication of JPS6246515A publication Critical patent/JPS6246515A/en
Publication of JPH0573046B2 publication Critical patent/JPH0573046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、光化学反応により被形成面上に薄膜
形成を実施する方法であつて、被形成面に均一に
量産性の優れたままは厚い膜厚の被膜を光照射室
上の透光性遮蔽板上にオイル等をコートすること
なく形成する手段を有する光CVD(気相反応)方
法に関する。
Detailed Description of the Invention "Field of Application of the Invention" The present invention is a method for forming a thin film on a surface to be formed by a photochemical reaction, and is a method for forming a thin film uniformly on the surface to be formed, with excellent mass productivity. The present invention relates to an optical CVD (vapor phase reaction) method that has means for forming a thick film on a light-transmitting shielding plate on a light irradiation chamber without coating with oil or the like.

「従来技術」 気相反応による薄膜形成技術として、光エネル
ギにより反応性気体を活性にさせる光CVD法が
知られている。この方法は、従来の熱CVD法ま
たはプラズマCVD法に比べ、低温での被膜形成
が可能であるに加えて、被形成面に損傷を与えな
いという点で優れたものである。
"Prior Art" A known technique for forming thin films through gas-phase reactions is the optical CVD method, which activates reactive gases using light energy. This method is superior to conventional thermal CVD methods or plasma CVD methods in that it is possible to form a film at a low temperature and does not damage the surface on which it is formed.

かかる光CVD法の実施例を第1図に示すが、
反応室2内に保持された基板1、その基板の加熱
手段3、さらに基板に光照射する低圧水銀灯9と
を有している。ドーピング系7には反応性気体の
励起用の水銀バブラ13及び排気系8にはロータ
リーポンプ19を具備している。ドーピング系よ
りの反応性気体、例えばジシランが反応室2に導
入され、反応生成物である例えばアモルフアス珪
素を基板(基板温度250℃)上に形成するに際し、
光源室と反応室との間の紫外光透光用の遮蔽板1
0、代表的には石英窓が設けられている。
An example of such a photo-CVD method is shown in FIG.
It has a substrate 1 held in a reaction chamber 2, heating means 3 for the substrate, and a low-pressure mercury lamp 9 for irradiating the substrate with light. The doping system 7 is equipped with a mercury bubbler 13 for exciting reactive gas, and the exhaust system 8 is equipped with a rotary pump 19. When a reactive gas from a doping system, such as disilane, is introduced into the reaction chamber 2 and a reaction product, such as amorphous silicon, is formed on a substrate (substrate temperature 250°C),
Shielding plate 1 for transmitting ultraviolet light between the light source chamber and the reaction chamber
0. Typically, a quartz window is provided.

しかし、低圧水銀灯が大気圧に保持されている
ため、石英を厚く(1〜3cm)しなければならな
い。そして、この水銀灯と石英窓との間の大気に
より紫外光特に185nmの短紫外光が吸収されて
しまう。大面積の基板の形成に成し、大きな窓と
すると、その窓が真空に対し破損しやすい等の欠
点を有している。
However, since low-pressure mercury lamps are maintained at atmospheric pressure, the quartz must be thick (1 to 3 cm). The atmosphere between the mercury lamp and the quartz window absorbs ultraviolet light, particularly short ultraviolet light of 185 nm. If a large window is used to form a large-area substrate, the window has drawbacks such as being easily damaged by vacuum.

「問題を解決するための手段」 本発明はこれらの問題を解決するため、紫外光
を発光するランプの発光源の光源室に設け、さら
に被形成面を有する基板を反応室内に配設する。
さらに薄膜形成により同時に不本意に形成されて
しまう反応生成物が付着している遮蔽板をこれら
光源室および反応室とは異なつた位置にあるエツ
チング室に移し、このエツチング室にてプラズマ
気相反応により紫外光の透光を妨げる窓生成物を
エツチングして除去してしまうことを基本として
いる。
"Means for Solving the Problems" In order to solve these problems, the present invention provides a light source chamber for a light source of a lamp that emits ultraviolet light, and further disposes a substrate having a surface to be formed in the reaction chamber.
Furthermore, the shield plate to which the reaction products that are involuntarily formed during thin film formation are attached is moved to an etching chamber located at a different location from the light source chamber and the reaction chamber, and the plasma gas phase reaction is carried out in this etching chamber. The basic idea is to etch and remove window products that block the transmission of ultraviolet light.

本発明はかかる目的のため、系の中央部に光源
室を設け、透光性遮蔽板を2つ設けている(この
2つは一方が光化学反応室用の窓として作用させ
ている時、他方は紫外光の透光を妨げる生成物を
エツチング除去する工程を行うことによる生産性
向上のためである)。そしてこの光源室の外側に
反応室とエツチング室を対称に設けた。そして遮
蔽板は回転方式により反応室、エンチング室、反
応室、エツチング室…と連続または不連続に回転
して移設せしめたものである。
For this purpose, the present invention provides a light source chamber in the center of the system and two light-transmitting shielding plates. This is to improve productivity by etching away products that block the transmission of ultraviolet light). A reaction chamber and an etching chamber were provided symmetrically outside this light source chamber. The shielding plate is rotated and moved continuously or discontinuously to the reaction chamber, etching chamber, reaction chamber, etching chamber, etc. using a rotation method.

また、本発明方法においても、反応性気体を反
応室に導入するためのノズルを金属で設け、この
ノズルに対抗して配設した金属電極と基板(基板
ホルダ)またはステンレス反応室とのそれぞれを
一対の電極としてプラズマ反応(エツチングまた
はデイポジツシヨン)を行なわしめ得る。
Furthermore, in the method of the present invention, a nozzle for introducing a reactive gas into a reaction chamber is provided with metal, and a metal electrode and a substrate (substrate holder) or a stainless steel reaction chamber are arranged opposite to this nozzle. A plasma reaction (etching or deposition) can be performed as a pair of electrodes.

さらに光源室においては、この中に低圧水銀灯
を配設し、この光源室を真空(0.01〜10torr)と
することにより、ここでの185nmの紫外光の吸
収損失がなく、また、遮蔽板を薄くすることによ
り反応室での反応速度を大きくさせることができ
た。
Furthermore, a low-pressure mercury lamp is installed in the light source room, and by making this light source room a vacuum (0.01 to 10 torr), there is no absorption loss of 185 nm ultraviolet light, and the shielding plate is thin. By doing so, it was possible to increase the reaction rate in the reaction chamber.

本発明方法においては、この光源室自体を低圧
水銀放電の発光部とし、この光源室内に水銀を添
加し185nmを発生させる方式を採用することも
可能である。
In the method of the present invention, it is also possible to adopt a method in which the light source chamber itself is used as a light emitting part for low-pressure mercury discharge, and mercury is added into the light source chamber to generate 185 nm light.

また、この光源室で紫外光と可視光とを発光さ
せ、可視光により反応性気体の励起時間の助長す
る方式を採用してもよい。
Alternatively, a method may be adopted in which ultraviolet light and visible light are emitted in this light source chamber, and the excitation time of the reactive gas is accelerated by the visible light.

「作用」 これまで遮蔽板上に形成される反応生成物によ
り紫外光の透光が阻害され、結果として任意の膜
厚、特に厚い膜厚の薄膜を得ることができなかつ
た。しかし本発明方法においては、遮蔽板上に反
応を阻害する生成物が形成されることを実質的に
除去することができるようになつた。さらに光源
室を円筒状にすることにより、連続的に無限の厚
さにまで薄膜形成を行うことができる。また円筒
状の一方により自動的に基板を搬入し、他方に自
動的に搬出することにより、複数の基板上への連
続成膜を可能とする。
"Operation" Until now, the reaction products formed on the shielding plate inhibited the transmission of ultraviolet light, and as a result, it was not possible to obtain a thin film of any desired thickness, especially a thick film. However, in the method of the present invention, it has become possible to substantially eliminate the formation of reaction-inhibiting products on the shielding plate. Furthermore, by making the light source chamber cylindrical, it is possible to continuously form a thin film to an infinite thickness. Further, by automatically loading a substrate into one side of the cylindrical shape and automatically carrying it out to the other side, continuous film formation on a plurality of substrates is possible.

これらの特長のため、新たな被膜形成を行わん
とする時、ランプ表面上に以前工程で生じた反応
生成物はすでに除去させている。即ち、光気相反
応(光CVD)において、円筒状と透光性遮蔽板
上での反応生成物形成により、紫外光の被形成面
を有する基板表面までの到達がなくなる(阻害さ
れる)前に、透光性遮蔽板を新たな遮蔽板と実質
的にとりかえる。その結果、複数回の形式に対し
一定の厚さに再現性よく基板上に被膜を作ること
ができた。
Because of these features, when a new coating is to be formed, the reaction products formed in the previous process on the lamp surface have already been removed. In other words, in photo-vapor phase reaction (photo-CVD), the formation of reaction products on the cylindrical and transparent shielding plate prevents ultraviolet light from reaching the surface of the substrate having the surface to be formed. Then, the light-transmitting shielding plate is substantially replaced with a new shielding plate. As a result, we were able to form a film on the substrate with good reproducibility to a constant thickness for multiple applications.

さらにこの光CVDの後、同じバツチでこの被
膜上に反応室においてプラズマCVD法を行わし
めることにより、同じまたは異種の被膜を作製す
ることも可能である。
Furthermore, after this photo-CVD, it is also possible to produce the same or different types of coating by performing plasma CVD on this coating in the same batch in a reaction chamber.

さらに本発明は、反応室を大気に触れさせずに
遮蔽板上の不要生成物をプラズマエツチング性で
除去するため、反応系をロード・ロツク方式とし
得る。さらにオイルフリーの反応系であるため、
バツクグラウンドレベルの真空度を10-7torr以下
とすることができた。そして非酸化物生成物であ
る珪素等の半導体被膜、炭化珪素、窒化珪素、窒
化アルミニユーム、金属例えばアルミニユームを
光励起により被膜形成させることができた。
Furthermore, the present invention allows the reaction system to be of a load-lock type in order to remove unnecessary products on the shielding plate by plasma etching without exposing the reaction chamber to the atmosphere. Furthermore, since it is an oil-free reaction system,
We were able to reduce the background level vacuum to 10 -7 torr or less. It was also possible to form a film on a non-oxide product such as a semiconductor film such as silicon, silicon carbide, silicon nitride, aluminum nitride, or a metal such as aluminum by optical excitation.

さらに酸化物生成物である酸化珪素、リンガラ
ス、ホウ素ガラス等の被膜を作ることができる。
Furthermore, coatings of oxide products such as silicon oxide, phosphorus glass, and boron glass can be made.

「実施例」 以下本発明を第2図、第3図に示した実施例に
より、その詳細を記す。
``Example'' The present invention will be described in detail below using an example shown in FIGS. 2 and 3.

第2図において、被形成面を有する基板1はホ
ルダ1′に保持され、反応室2内のハロゲンヒー
タ3(上面を水冷25)に近接して設けられてい
る。反応室2の下側には、透光性遮蔽板10を有
する円筒状の光源室11を有する。この光源室内
には、紫外光源9とその直下に光源の冷却用パイ
プ13′、反射板12が配設されている。
In FIG. 2, a substrate 1 having a surface to be formed is held in a holder 1' and is provided in a reaction chamber 2 in close proximity to a halogen heater 3 (the upper surface of which is water-cooled 25). A cylindrical light source chamber 11 having a light-transmitting shielding plate 10 is provided below the reaction chamber 2 . In this light source chamber, an ultraviolet light source 9, a cooling pipe 13' for the light source, and a reflecting plate 12 are arranged directly below the ultraviolet light source 9.

ヒータ3が配設された加熱室4は、反応室2と
の窓14間での圧力差を10torr以下の概略同一の
真空度に保持し、窓14の厚さを薄くさせること
を可とした。
The heating chamber 4 in which the heater 3 is arranged maintains the pressure difference between the reaction chamber 2 and the window 14 at approximately the same degree of vacuum of 10 torr or less, and allows the thickness of the window 14 to be reduced. .

この反応室への基板の搬入、搬出は第3図に示
す。第3図は第2図A−A′の縦断面図を示す。
図面に示す如き搬入室27、ゲート弁26、反応
室2、ゲート弁26′、搬出室27′を具備する。
The loading and unloading of the substrate into and out of the reaction chamber is shown in FIG. FIG. 3 shows a longitudinal cross-sectional view of FIG. 2 A-A'.
It is equipped with a carry-in chamber 27, a gate valve 26, a reaction chamber 2, a gate valve 26', and a carry-out chamber 27' as shown in the drawings.

そして搬入室27に基板を配設しすべてを真空
下にした後、ゲート弁26をあけ、基板1、基板
ホルダ1′を反応室12に移設し、ゲート弁26
を閉とする。さらに反応室にて紫外光30にて光
化学反応を生ぜしめ、被膜形成を行つた後、この
基板1、基板ホルダ1′をゲート弁26′を開と
し、搬出室27′に移設し、ゲート弁26′を閉と
する。この後この搬出室により被膜形成がなされ
た基板を取り出す。
After placing the substrate in the loading chamber 27 and putting everything under vacuum, the gate valve 26 is opened, the substrate 1 and the substrate holder 1' are transferred to the reaction chamber 12, and the gate valve 26 is opened.
is closed. Further, in the reaction chamber, a photochemical reaction is caused using ultraviolet light 30 to form a film, and then the substrate 1 and substrate holder 1' are moved to the unloading chamber 27' with the gate valve 26' opened, and the gate valve 26' is opened. 26' is closed. Thereafter, the substrate on which the film has been formed is taken out from the unloading chamber.

円筒状の光源室について概説する。この光源室
は第2図においては上下が平面となつた変形円筒
状をしているが、第3図においては長方形を有
し、いわゆる円筒形を有せしめた。透光性遮蔽板
10,10′は平面をしてるが、円弧を構成させ
てもよい。そして一方の遮蔽板10が紫外光30
を光源9より遮蔽板10を経て反応室の基板に照
射して光化学反応を生ぜしめている。しかし同時
に時間の節約のため、他方の遮蔽板10′はエツ
チング室5にてプラズマエツチングにより遮蔽板
の表面の不本意に形成された反応生成物の除去作
業を行なう。そしてこの円筒状の光源室11は第
3に示す如く、モータ28により180°回転駆動さ
せている。
The cylindrical light source chamber will be outlined. In FIG. 2, this light source chamber has a deformed cylindrical shape with a flat top and bottom, but in FIG. 3, it has a rectangular shape, that is, a so-called cylindrical shape. Although the light-transmitting shielding plates 10 and 10' are flat, they may also have an arcuate shape. And one shielding plate 10 has ultraviolet light 30
A photochemical reaction is caused by irradiating the substrate in the reaction chamber from a light source 9 through a shielding plate 10. However, at the same time, in order to save time, the other shielding plate 10' is subjected to plasma etching in the etching chamber 5 to remove unintentionally formed reaction products on the surface of the shielding plate. This cylindrical light source chamber 11 is rotated by 180 degrees by a motor 28, as shown in the third diagram.

この円筒状の光源室はそのすべてを合成石英と
し、選択的に連続的に少しづつ回転させる方式と
してもよい。また図面に示した如く、ステンレス
で円筒状に設け、その一部を除去し、ここに合成
石英の窓を一対として構成せしめる方法をとつて
もよい。
This cylindrical light source chamber may be entirely made of synthetic quartz, and may be selectively and continuously rotated little by little. Alternatively, as shown in the drawings, a method may be adopted in which a stainless steel window is provided in a cylindrical shape, a part of which is removed, and a pair of synthetic quartz windows are formed therein.

前者は小さい基板を多数連続的に薄膜形成させ
んとする時有効であり、後者は比較的大きな基板
に連続的に薄膜形成を行わんとする時有効であ
る。
The former is effective when trying to continuously form thin films on a large number of small substrates, and the latter is effective when trying to continuously form thin films on relatively large substrates.

ドーピング系7は、バルブ23、流量計22よ
りなり、端部24′をへてノズル24に連結し反
応室2へ供給させた。反応室の圧力制御は排気系
8で実施した。そしてコントロールバルブ31を
経てターボ分子ポンプ(大阪真空製PG550を使
用)18、ロータリーポンプ19を経、排気させ
た。
The doping system 7 consisted of a valve 23 and a flow meter 22, and was connected to a nozzle 24 through an end 24' to supply the reaction chamber 2. The pressure in the reaction chamber was controlled by an exhaust system 8. Then, it was evacuated through a control valve 31, a turbo molecular pump (PG550 manufactured by Osaka Vacuum) 18, and a rotary pump 19.

他方、プラズマエツチングに関しては、ドーピ
ング系7′よりNF3等の気体を29,29′をへて
導入した。このエツチング室の排気系8′にはコ
ントロールバルブ31′、ロータリーポンプ1
9′を用いた。
On the other hand, for plasma etching, a gas such as NF 3 was introduced from the doping system 7' through 29 and 29'. The exhaust system 8' of this etching chamber includes a control valve 31' and a rotary pump 1.
9' was used.

このノズル24はプラズマCVDおよびプラズ
マエツチにおける高周波電源17、マツチングト
ランス16よりの切り換えスイツチ31により選
ばれ24″にスイツチで切り換えた時、この2
4′は一方の電極を構成している。
This nozzle 24 is selected by a changeover switch 31 from a high frequency power source 17 and a matching transformer 16 in plasma CVD and plasma etching, and when switched to 24'', this two
4' constitutes one electrode.

かくして基板を反応室に図示の如く挿着した。
この反応室の真空度は10-7torr以下とした。この
後24より反応性気体を反応室に導入して被膜形
成を行つた。
The substrate was thus inserted into the reaction chamber as shown.
The degree of vacuum in this reaction chamber was set to 10 -7 torr or less. Thereafter, a reactive gas was introduced into the reaction chamber from 24 to form a film.

反応用光源は低圧水銀灯9とし、水冷13′を
設けた。その紫外光源は、低圧水銀灯(185nm、
254nmの波長を発光する発光長40cm、照射強度
15mW/cm2、ランプ電力40W)ランプ数16本とし
た。
The light source for the reaction was a low-pressure mercury lamp 9, and a water cooler 13' was provided. The ultraviolet light source is a low-pressure mercury lamp (185nm,
Emit light with a wavelength of 254nm, emission length 40cm, irradiation intensity
15 mW/cm 2 , lamp power 40 W) The number of lamps was 16.

この紫外光30は、透光性遮蔽板10を経て反
応室2の基板1の被形成面を照射する。
This ultraviolet light 30 passes through the transparent shielding plate 10 and irradiates the surface of the substrate 1 in the reaction chamber 2 to be formed.

ヒータ3は反応室の上側に位置した「デイポジ
ツシヨン・アツプ」方式とし、フレークが被形成
面に付着してピンホールの原因を作ることを避け
た。
The heater 3 was a "deposition up" type heater located above the reaction chamber to avoid flakes from adhering to the surface to be formed and causing pinholes.

図面の場合の被形成面有効面積は10cm×30cmで
あり、直径4インチの基板13枚がホルダ1′に
配設され得る構成とし、基板の温度はハロゲンヒ
ータ3により加熱し、室温〜500℃までの所定の
温度とした。
In the case of the drawing, the effective area of the surface to be formed is 10 cm x 30 cm, and the configuration is such that 13 substrates with a diameter of 4 inches can be placed in the holder 1'. The temperature was set at a predetermined temperature.

さらに、本発明による具体例を以下の実験例1
〜3に示す。
Further, a specific example according to the present invention is shown in Experimental Example 1 below.
~3.

実験例 1……シリコン窒化膜の形成例 反応性気体としてアンモニアを30c.c./分、ジシ
ランを8c.c./分でドーピング系7より供給し、基
板温度350℃とした。基板は直径4インチのウエ
ハ3枚とした。反応室2内圧力は3.0torrとした。
Experimental Example 1 Formation example of silicon nitride film Ammonia and disilane were supplied from the doping system 7 at 30 c.c./min and 8 c.c./min as reactive gases, and the substrate temperature was set at 350°C. The substrates were three 4-inch diameter wafers. The pressure inside the reaction chamber 2 was 3.0 torr.

60分の反応で2000Åの膜圧が形成させる。その
被膜形成速度は平均33Å/分であつた。本発明は
水銀の蒸気等を用いない直接光励起方式とした。
被膜の5点のばらつきは±5%以内に入つてい
た。この時この窒化珪素膜は遮蔽板10上にも形
成され、1000Åの厚さまでしか被形成面上に被膜
として生成させることができない。このため第3
図においては500〜1000Åの膜厚が形成された後、
遮蔽板10を10′の位置に、また遮蔽板10′を
10の位置に180°回転せしめ、実質的に連続的に
窒化珪素膜を積層した。不要の生成物が形成され
た遮蔽板10は回転してエツチング室に移設し
た。
A film thickness of 2000 Å is formed in a 60 minute reaction. The average film formation rate was 33 Å/min. The present invention employs a direct optical excitation method that does not use mercury vapor or the like.
The variation of the 5 points of the coating was within ±5%. At this time, this silicon nitride film is also formed on the shielding plate 10, and can only be formed as a film on the surface to be formed to a thickness of 1000 Å. For this reason, the third
In the figure, after a film thickness of 500 to 1000 Å has been formed,
The shielding plate 10 was rotated 180 degrees to the position 10' and the shielding plate 10' was rotated 180° to the position 10, and the silicon nitride film was substantially continuously laminated. The shielding plate 10 on which unnecessary products were formed was rotated and transferred to the etching chamber.

そしてこのエツチング室においてはドーピング
系7′よりエンチング室にNF3を供給した。エツ
チング室の圧力を0.1torrとし、13.56MHzの高周
波1580Wの出力で加え、プラズマエツチを窓1
0上面に対して行つた。
In this etching chamber, NF 3 was supplied to the etching chamber from the doping system 7'. The pressure in the etching chamber was set to 0.1 torr, a high frequency of 13.56 MHz was applied with a power of 1580 W, and plasma etching was performed on window 1.
0 top surface.

約20分後、この石英10上の不要反応生成物で
ある窒化珪素被膜を完全に除去することができ
た。
After about 20 minutes, the silicon nitride film, which was an unnecessary reaction product, on the quartz 10 could be completely removed.

このNF3を除去した後ドーピング系7′より水
素を加え、この反応室内の残留弗素をプラズマク
リーンをして除去した。この後、この不要生成物
の除去のされた遮蔽板は再び180°回転させて反応
室と光源室をしきつている窓として使用させた。
かくして同一基板に膜厚の厚い基板を作ることが
できるようになつた。またバツチをかえて2回目
の被膜作製を行つたが、同じく再現性のよい被膜
を作り得た。
After removing this NF 3 , hydrogen was added from the doping system 7', and residual fluorine in the reaction chamber was removed by plasma cleaning. After this, the shielding plate from which the unnecessary products had been removed was again rotated 180° and used as a window separating the reaction chamber and the light source chamber.
In this way, it became possible to create substrates with thicker films on the same substrate. A second coating was produced with a different batch, but a coating with good reproducibility was also produced.

実験例 2…アモルフアスシリコン膜の形成例 ジシラン(Si2H6)を27より供給した。また、
同時に水素を供給した。被形成面に5000Åの膜厚
を70分間のデイポジツシヨンで形成させることが
できた。
Experimental Example 2 Formation Example of Amorphous Silicon Film Disilane (Si 2 H 6 ) was supplied from 27. Also,
At the same time, hydrogen was supplied. A film thickness of 5000 Å could be formed on the surface in 70 minutes of deposition.

この場合もアモルフアスシリコン膜が遮蔽板上
にも形成されてしまうため、同じ遮蔽板では200
Å以上の膜厚とすることができない。このため5
分後、円筒状の光源室を180°回転させエツチング
室で遮蔽板10の上面に付着したシリコン膜を実
験例1と同様のNF3を加えたプラズマエツチ法に
て除去した。わずか3分間で遮蔽板上の付着珪素
を除去することができた。そしてこの表面がきれ
いになつた遮蔽板をもとの反応室に移した。
In this case as well, the amorphous silicon film is also formed on the shielding plate, so the same shielding plate has a
It is not possible to make the film thicker than 1.5 Å. For this reason 5
After a few minutes, the cylindrical light source chamber was rotated 180°, and the silicon film adhering to the upper surface of the shielding plate 10 was removed in the etching chamber by the same plasma etching method as in Experimental Example 1 in which NF 3 was added. The attached silicon on the shielding plate could be removed in just 3 minutes. The shielding plate whose surface had been cleaned was then transferred to the original reaction chamber.

基板温度は250℃、圧力2.5torrとした。 The substrate temperature was 250°C and the pressure was 2.5 torr.

実験例 3…窒化アルミニユームの形成例 Al(CH33を代表例とするメチルアルミニユーム
をドーピング系7より8c.c./分で供給した。アン
モニアを30c.c./分で供給した。メチルアルミニユ
ームは光源室に水銀を用いることなく分解し、窒
化アルミニユーム膜を1300Åの厚さに作ることが
できた。被膜形成速度は330Å/分(圧力3torr、
温度350℃)を得ることができた。エチルアルミ
ニユームAl(C2H53等の他のアルキル化合物でも
よい。
Experimental Example 3 Formation example of aluminum nitride Methyl aluminum, of which Al(CH 3 ) 3 is a typical example, was supplied from the doping system 7 at a rate of 8 c.c./min. Ammonia was fed at 30 c.c./min. By decomposing methylaluminum without using mercury in the light source chamber, we were able to create an aluminum nitride film with a thickness of 1300 Å. Film formation rate is 330 Å/min (pressure 3 torr,
temperature of 350℃). Other alkyl compounds such as ethylaluminum Al(C 2 H 5 ) 3 may also be used.

窓のプラズマエツチングはエツチング室に移設
してCCl4を供給してプラズマ反応を行つた。加
えて水素を供給した。かくして窒化アルミニユー
ムを除去させることができた。
For plasma etching of windows, the chamber was moved to an etching chamber and CCl 4 was supplied to carry out the plasma reaction. In addition, hydrogen was supplied. In this way, aluminum nitride could be removed.

この被膜形成を10回繰り返しても、厚い膜厚を
同一条件で得ることができた。
Even if this film formation was repeated 10 times, a thick film could be obtained under the same conditions.

「効果」 本発明は、以上の説明より明らかなごとく、大
面積の基板上に被膜を形成するにあたり、紫外光
源を反応室内に配設することにより、石英窓を除
きまた185nmを有効に被形成面に照射させるこ
とが可能となつた。このため従来より公知のオイ
ルをまつたく用いる必要がない。このため被膜内
には炭素等の不純物が入りにくく、かつ排圧を
10-7torrと高真空にし得、オイルフリーの高純度
の被膜作製が可能となつた。
"Effects" As is clear from the above description, the present invention is effective in forming a film on a large-area substrate by arranging an ultraviolet light source in the reaction chamber, excluding the quartz window, and effectively forming a film at 185 nm. It became possible to irradiate the surface. Therefore, there is no need to use conventionally known oils. This makes it difficult for impurities such as carbon to enter the coating, and reduces exhaust pressure.
It has become possible to create a high vacuum of 10 -7 torr and to produce oil-free, high-purity coatings.

さらにこの光CVD法による被膜形成に加えて、
この上に重ねて同じまたは異なる被膜をプラズマ
CVD法で形成させることが可能である。かかる
場合、光CVD法で被膜を形成して被形成面をス
パツタさせず、さらにプラズマ気相法によりこの
上に重ねて同じ膜または他種の膜をプラズマ
CVD法にて作ることも可能である。即ち被膜形
成速度を遅くさせることなく、再現性のよい被膜
形成をさせることができた。
Furthermore, in addition to film formation using this optical CVD method,
Plasma deposits the same or different coating on top of this.
It can be formed by CVD method. In such cases, a film is formed using the optical CVD method to prevent spatter on the surface to be formed, and then the same film or a different type of film is layered on top of it using the plasma vapor phase method.
It is also possible to make it by CVD method. That is, it was possible to form a film with good reproducibility without slowing down the film formation rate.

なお本発明は、珪素および窒化珪素、窒化アル
ミニユームにおいてその実験例を示したが、アン
モニアのかわりにN2O、O2として酸化珪素、酸
化アルミニユームとすることもできる。さらにそ
れ以外にM(CH3o即ちMとしてIn、Cr、Sn、
Mo、Ga、W、Alを用い、Mの金属またはその
珪化物またはこれらの酸化物または窒化物を作製
してもよい。また、鉄、ニツケル、コバルトのカ
ルボニル化物を反応性気体として用い、鉄、ニツ
ケル、コバルトまたはその化合物の被膜また珪化
物とこれらとの化合物を形成することは有効であ
る。
Although the present invention has shown experimental examples using silicon, silicon nitride, and aluminum nitride, it is also possible to use silicon oxide or aluminum oxide as N 2 O or O 2 instead of ammonia. Furthermore, in addition to that, M(CH 3 ) o, that is, M as In, Cr, Sn,
A metal M, a silicide thereof, or an oxide or nitride thereof may be produced using Mo, Ga, W, or Al. It is also effective to use a carbonylated product of iron, nickel, or cobalt as a reactive gas to form a film of iron, nickel, cobalt, or a compound thereof, or a compound of a silicide and these.

前記した実験例において、桂素半導体の形成に
際し、ドーパントを同時に添加できる。また光源
として低圧水銀灯ではなくエキシマレーザ(波長
100〜400nm)、アルゴンレーザ、窒素レーザ等
を用いてもよいことはいうまでもない。
In the above-mentioned experimental example, a dopant can be added at the same time when forming a borosilicate semiconductor. In addition, the light source is not a low-pressure mercury lamp but an excimer laser (wavelength
100 to 400 nm), argon laser, nitrogen laser, etc. may of course be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より公知の光励起CVD装置を示
す。第2図、第3図は本発明の光CVD装置を示
す。
FIG. 1 shows a conventionally known photoexcitation CVD apparatus. FIGS. 2 and 3 show the optical CVD apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1 光源室よりの光により光化学反応を反応室に
生ぜしめ、該反応室内の被形成面上に薄膜形成を
行う方法において、エツチング室と反応室とをそ
れぞれ透光性遮蔽板を介して光源室に接続し、該
透光生遮蔽板を光源室の周りに回転可能に設け
て、反応室にて反応生成物が形成されてしまつた
透光性遮蔽板を光源室とエツチング室との間に移
動して、該透光性遮蔽板をエツチング処理し、そ
の後再び該透光性遮蔽板を反応室と光源室との間
に設けることを特徴とする薄膜形成方法。 2 エツチング室と反応室とがそれぞれ透光性遮
蔽板を介して光源室に接続されており、該透光性
遮蔽板は光源室の周りを回転可能に設けられたこ
とを特徴とする薄膜形成装置。
[Scope of Claims] 1. A method in which a photochemical reaction is caused in a reaction chamber by light from a light source chamber and a thin film is formed on a surface to be formed in the reaction chamber, in which the etching chamber and the reaction chamber are each provided with light-transmitting shielding. The light-transmitting raw shielding plate is connected to the light source chamber through a plate, and the light-transmitting raw shielding plate is rotatably provided around the light source chamber, and the light-transmitting shielding plate, in which the reaction product has been formed in the reaction chamber, is connected to the light source chamber. A method for forming a thin film, which comprises moving the light-transmitting shielding plate between the reaction chamber and the etching chamber, etching the light-transmitting shielding plate, and then again providing the light-transmitting shielding plate between the reaction chamber and the light source chamber. 2. Thin film formation characterized in that the etching chamber and the reaction chamber are each connected to a light source chamber via a light-transmitting shielding plate, and the light-transmitting shielding plate is provided so as to be rotatable around the light source chamber. Device.
JP60186823A 1985-08-26 1985-08-26 Thin film forming method Granted JPS6246515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186823A JPS6246515A (en) 1985-08-26 1985-08-26 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186823A JPS6246515A (en) 1985-08-26 1985-08-26 Thin film forming method

Publications (2)

Publication Number Publication Date
JPS6246515A JPS6246515A (en) 1987-02-28
JPH0573046B2 true JPH0573046B2 (en) 1993-10-13

Family

ID=16195230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186823A Granted JPS6246515A (en) 1985-08-26 1985-08-26 Thin film forming method

Country Status (1)

Country Link
JP (1) JPS6246515A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314828A (en) * 1987-06-18 1988-12-22 Matsushita Electric Ind Co Ltd Photo-cvd equipment
JP3531398B2 (en) * 1997-02-19 2004-05-31 富士電機ホールディングス株式会社 Apparatus and method for manufacturing thin-film solar cell

Also Published As

Publication number Publication date
JPS6246515A (en) 1987-02-28

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
US6786997B1 (en) Plasma processing apparatus
US5803974A (en) Chemical vapor deposition apparatus
JPS60245217A (en) Thin film formation equipment
US4910044A (en) Ultraviolet light emitting device and application thereof
JPH0573046B2 (en)
JPH05144741A (en) Formation of amorphous silicon film
JPH0689455B2 (en) Thin film formation method
JPH0543393A (en) Method for preparing carbon material
JPH0351292B2 (en)
JPS61196528A (en) Thin film forming apparatus
JPS61127120A (en) Formation of thin film
JP2608456B2 (en) Thin film forming equipment
JPS6118124A (en) Thin film forming apparatus
JPS61196529A (en) Thin film forming apparatus
JPS6118125A (en) Thin film forming apparatus
JPS61288431A (en) Manufacture of insulating layer
JPS61196527A (en) Thin film forming apparatus
JPS6156279A (en) Film forming method
JP2001115267A (en) Plasma treatment system and method
JPS6118123A (en) Thin film forming apparatus
JPS625633A (en) Thin film forming method
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPS6129120A (en) Thin film forming device
JPS61146791A (en) Formation of diamond film or diamond-like carbon film